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Abstract: The elastic net is among the most widely used types of regularization algorithms, com-
monly associated with the problem of supervised generalized linear model estimation via penalized
maximum likelihood. Its attractive properties, originated from a combination of `1 and `2 norms,
endow this method with the ability to select variables, taking into account the correlations between
them. In the last few years, semi-supervised approaches that use both labeled and unlabeled data
have become an important component in statistical research. Despite this interest, few researchers
have investigated semi-supervised elastic net extensions. This paper introduces a novel solution
for semi-supervised learning of sparse features in the context of generalized linear model estima-
tion: the generalized semi-supervised elastic net (s2net), which extends the supervised elastic net
method, with a general mathematical formulation that covers, but is not limited to, both regression
and classification problems. In addition, a flexible and fast implementation for s2net is provided.
Its advantages are illustrated in different experiments using real and synthetic data sets. They show
how s2net improves the performance of other techniques that have been proposed for both supervised
and semi-supervised learning.

Keywords: covariate shift; elastic net; semi-supervised classification; semi-supervised regression;
unlabeled data

MSC: 62-08

1. Introduction

A large proportion of statistical learning has focused on supervised techniques. How-
ever, there are many problems where the available labeled observations are scarce or where
obtaining the labels is costly, but where substantial amounts of unlabeled data exist. For
example, thousands of medical images are collected every day, but labeling them is a
time-consuming and expensive process [1]. An expert is required to manually identify and
locate regions of interest, such as those containing aneurysms, emphysemas, or polyps.
Besides locating the regions of interest, it is usually necessary to have them analyzed by a
laboratory to confirm the diagnosis and assess their severity. Another example is found
in deoxyribonucleic acid (DNA) analysis, where obtaining the three-dimensional folder
structure of a protein can take months of expensive lab work to a crystallographer [2].
A third example can be found in the field of clinical psychology, where a clinician has the
responses given by a small group of patients to a given test together with the diagnosis
assigned after a laborious clinical interview. In addition, the answers from a separate
undiagnosed group that has filled this test online are also collected. Other examples can
be found in research areas, such as natural language processing [3], image classification
and segmentation [4,5], image quality assessment [6], graph-based classification [7], cancer
detection [8], or web content classification [9].
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The accessibility of partially labeled databases, such as those obtained in the previous
problems, has caused semi-supervised learning to receive enormous interest in recent
years. This interest can be seen in the various review articles showing how several tech-
niques developed in the fields of statistics and machine learning have been adapted to
the semi-supervised framework [10,11]. These include decision trees [12], support vector
machines [13], neural networks [14], discriminant techniques [15] or regressions [16].

Despite this enormous effort in adapting the supervised techniques to the semi-
supervised paradigm, one widely used technique that has received limited attention is the
elastic net [17–19]. Among the first techniques that were developed to extend the elastic
net to the semi-supervised paradigm was the joint trained elastic net (JT) [20]. JT internally
assigns labels to the unlabeled data in conjunction with the optimization of the objective
function. One aspect to note is that this objective function contains a term that controls the
importance that is given to the unlabeled data. A weakness of this work, as indicated by
the author himself in a later paper, is that there was no analysis of the conditions for which
the model was expected to be useful [21]. In the latter work, this weakness was addressed
and they demonstrated that JT was able to handle covariate shifts, that is, scenarios in
which the distribution of features in labeled and unlabeled data were different.

Although they provided a mathematical proof of performance bounds, Larsen et al.
pointed out the difficulty in tuning and interpreting their model parameters [22]. The latter
authors recently extended the work of Culp and Ryan so that the shift in mean value and
the covariance structure are modeled explicitly, providing greater interpretability. It is
important to note that, to date, the joint trained methodology is only applicable to linear
regression problems, and there is no available software implementation of semi-supervised
elastic net in the generalized linear framework.

Regarding classification with unlabeled data, early extensions of logistic models
to handle unlabeled observations are found in the work by Amini and Gallinari [23].
More recent approaches to deal with classification in the semi-supervised framework are
described by Culp and Ryan [24] and Krijthe and Loog [25]. However, none of these
research works have considered approaching the problem from the elastic net perspective.

In this article, a methodological and algorithmic approach called s2net is developed
to extend the elastic net to semi-supervised generalized models. Therefore, it tackles the
problem of feature selection in semi-supervised contexts. Its mathematical formulation is
presented from a general perspective, covering a wide range of models. We will focus on
linear and logistic responses, but the implementation can be easily extended to other losses
in generalized models. In addition, a flexible and fast implementation in R is provided.

This paper is organized as follows. Section 2 provides an overview of previous works
that are closely related to the technique s2net. Then, Section 3 provides the mathematical
framework of our methodology. Details regarding the algorithm and its implementation
are discussed in Section 4. Sections 5 and 6 explore its properties using synthetic and real
data sets, respectively. Some conclusions are drawn in the final section.

2. Related Works

In this section, the most related works to the proposed methodology are presented
from a mathematical point of view.

The elastic net technique was introduced for generalized linear models in the super-
vised context by Friedman et al. [26]. It is formulated as

argmin
β

{R(yL, XLβ) + λ1‖β‖1 + λ2‖β‖2}, (1)

where XL is the (standardized) matrix that contains the labeled observations, yL is the vector
with the corresponding labels, β is the vector containing the weights of the regression,
and λ1‖β‖1 + λ2‖β‖2 is the penalization term. The notations ‖·‖1 and ‖·‖2 refer to the `1
and `2 norms, and R represents the risk function (for example, the squared error or the
logistic error).
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Later, Culp [20], motivated by the automatic text analysis, introduced the elastic net
regularization in the semi-supervised framework. Nowadays, it is possible to access nu-
merous and diverse online documents, such as free books or comments on social networks.
There is interest in associating labels to these documents, such as the genre of the book or
whether the comments are favorable. Obtaining the predictors such as the bag of words
is straightforward. However, obtaining the dependent variable is complicated and costly.
It would involve reading the books, and each of the millions of comments. To tackle this
problem, Culp proposed the following semi-supervised elastic net formulation:

argmin
β,α

{
‖yα − Xβ‖2

2 + λJ(β) + γ‖α‖2
2

}
, (2)

where X is the matrix containing the labeled and unlabeled observations, yα is the vector
obtained concatenating the labels yL with the vector XUα (XU being the matrix containing
the unlabeled observations), and J(β) is any penalization function, such the elastic net,
lasso or ridge.It is important to notice that, from a computational point of view, JT is not a
novel algorithm. Its solution is computed using the supervised elastic net (specifically, the
glmnet package for R), so it can exploit the properties of the elastic net implementation,
such as regularization paths [27] and the safe rules [28].

It is important to highlight that Culp showed that the above formulation is equivalent
to solving the optimization problem [20]:

argmin
β

{
‖yL − XLβ‖2

2 +
∥∥∥0− X(γ)

U β
∥∥∥2

2
+ λ1‖β‖1 + λ2‖β‖2

2

}
, (3)

with
X(γ)

U =
√

γ(Σ2 + γI)−1/2U>XU, (4)

where XU = UΣV> is the singular value decomposition of XU.
The above work was extended by Ryan and Culp to include scenarios where covariate

shift might occur [21], that is, situations where the feature distributions of labeled and unla-
beled data may differ. One possible scenario, indicated by the authors, is drug discovery.
When a new drug is developed, obtaining covariates is straightforward (e.g., measure-
ments of its components). However, responses such as side effects or the overall effect can
take years to be obtained. For that reason, labeled data would come from similar drugs
that were previously analyzed and for which both covariates and response are available.
To handle those scenarios, Ryan and Culp introduced an extra parameter in the previous
semi-supervised problem formulation that allow a better control of the importance given
to the unlabeled part:

argmin
β

{
‖yL − XLβ‖2

2 + γ1

∥∥∥X(γ2)
U β

∥∥∥2

2
+ λ1‖β‖1 + λ2‖β‖2

2

}
, (5)

where
X(γ2)

U =
√

γ2(Σ
2 + γ2I)−1/2U>XU, (6)

This formulation, in addition of being more flexible, includes the supervised least-
squares problem as a particular case when γ1 = 0.

Recently, Larsen et al. proposed the extended linear joint trained framework (ExtJT). It
adds a methodological improvement to Ryan’s semi-supervised formulation, which takes
into account the shift in the expected value of the response variable in the unlabeled data
with respect to the labeled data [22]. This improvement is introduced through an extra
term in the objective function
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argmin
β

{
‖yL − XLβ‖2

2 + γ1γ2

∥∥∥X(γ2)
U β

∥∥∥2

2
+ γ3

nLnU

nU + nL

∥∥∥µ>β
∥∥∥2

2

}
, (7)

where nU and nL are the number of unlabeled and labeled observations, respectively, and
µ is the vector mean of the columns of XU. However, Larsen et al. focused only on the
linear response case. Among the conducted experiments, it was observed the excellent
performance that ExtJT achieved in predicting the weight in percentage of the active
ingredient in pharmaceutical tables when the measurements were collected with two
similar spectrometers.

The s2net proposed in this article integrates the core ideas of ExtJT, including the
elastic-net regularization to deal with high-dimensional data, and a generalization to both
regression and classification problems. Thus, our framework also provides semi-supervised
logistic regression models with elastic-net penalizations. In addition, unlike the previous
techniques, it does not rely on other implementations. The s2net methodology is described
in the following section.

3. Methodology

In the following, we present the analytical derivations leading to the creation of our
s2net technique. For this purpose, we first take the ExtJT formulation, including the elastic
net regularization,

argmin
β

{
‖yL − XLβ‖2

2 + γ1γ2

∥∥∥X(γ2)
U β

∥∥∥2

2
+ γ3

nLnU
nU + nL

∥∥∥µ>β
∥∥∥2

2
+ λ1‖β‖1 + λ2‖β‖2

2

}
. (8)

Using a reparameterization of γ1, γ2 and γ3, one can show that the terms

γ1γ2

∥∥∥X(γ2)
U β

∥∥∥2

2
+ γ3nLnU/(nU + nL)

∥∥µ>β
∥∥2

2 are equivalent to γ1‖T(γ2, γ3)β‖2
2, where

T(γ2, γ3) is a transformation of the unlabeled data that captures both the covariance
structure and the shift with respect to the labeled data, given by

T(γ2, γ3) =
√

γ2U(Σ2 + γ2I)−1/2ΣV> + γ31µ>. (9)

After this reparameterization, the objective function is given by

argmin
β

{
‖yL − XLβ‖2

2 + λ1‖β‖1 + λ2‖β‖2
2 + γ1‖ȳL1− T(γ2, γ3)β‖2

2

}
. (10)

Notice that in the previous formulation, we included a transformation to center
the data.

We now turn our attention to an extension of (10). The choice of square error norm
for the error term ‖yL − XLβ‖2

2 is justified when the underlying model is linear. However,
in other scenarios (for instance, binary response) it makes more sense to use other risk
functions. With that in mind, we propose to write (10) in a more general form, letting
R(·|y, X) : Rp → R) be any (continuously differentiable and convex) risk function.

argmin
β

{
R(β|yL, XL) + λ1‖β‖1 + λ2‖β‖2

2 + γ1R(β|ȳL, T(γ2, γ3))
}

. (11)

Notice that both the input data matrices and the hyper-parameters are fixed, and there-
fore, (without loss of generality) problem (11) can be reparameterized as the
s2net formulation

argmin
β∈Rp

{
L(β) + λ1‖β‖1 + λ2‖β‖2

2

}
, (12)

where L(β|yL, XL, XU, γ1, γ2, γ3) is given by

L(β) = R(β|yL, XL) + γ1R(β|ȳL, T(γ2, γ3)). (13)
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Before showing the s2net optimization, we present a few remarks.

Remark 1. Problem (12) is a generalized elastic net problem with a custom loss function. If γ1 = 0,
then (12) is the (naïve) supervised elastic net problem [29].

Remark 2. If we let T(γ2) =
√

γ2U(Σ2 + γ2I)−1/2U>XU, with XU = UΣV> the singular
value decomposition of XU (without centering), andR(·|y, X) the norm-2 squared error, then (11)
is the linear joint trained framework (JT) [20].

Remark 3. In (11), the hyper-parameter γ2 regulates the covariance structure, whereas γ3 controls
the shift between the center of the labeled data and the center of the unlabeled data. Figure 1 provides
insights into the intuition behind T(γ2, γ3), when the hyper-parameters γ2 and γ3 are changed.

Figure 1. Simulated two-dimensional data that illustrate how varying the parameters γ2 and γ3

affects the projected “null” data T(γ2, γ3).

Previous remarks highlight that s2net generalizes other approaches, and therefore,
with a strong algorithm to optimize the objective function and an appropriate selec-
tion of the hyper-parameters, s2net can outperform (or at least emulate) other popular
methods’ results.

Before concluding this section, we would like to provide a few notes about the in-
tuition behind the method. As shown in panel A of Figure 2, we have a set of labeled
source observations composed of two independent variables, and a set of unlabeled target
observations. Initially, the method performs a transformation of the mean and the covari-
ance matrix of the unlabeled target observations (panel B). This is achieved by fixing the
values γ2 y γ3 as explained in Remark 3 and shown in Figure 1. Using the labeled source
observations and the transformed target observations, the regression plane is updated
(panel C). This regression plane is used to obtain the prediction of the unlabeled target
observations (panel D).
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Figure 2. Intuition behind the proposed technique.

4. Algorithm

Remark 1 suggests that the solution of (12) can be found by solving an elastic net prob-
lem with a general error term. To solve it, we prefer the fast iterative shrinkage-thresholding
algorithm (FISTA) [30], which is an accelerated gradient descent approach with backtracking.
In each step, given an initial β0 ∈ Rp, we minimize the surrogate function

Mt(β) =
1
2t
‖β− β0 + t∇L(β0)‖

2
2 + λ1‖β‖1 + λ2‖β‖2

2, (14)

where t > 0 is some step-size (chosen using backtracking).

Proposition 1.

Ut(β) := argmin
β∈Rp

{Mt(β)} = (1 + 2tλ2)
−1︸ ︷︷ ︸

ridge

S(β0 − t∇L(β0), tλ1)︸ ︷︷ ︸
lasso shrinkage

, (15)

where S is the coordinate-wise soft-thresholding operator,

S(z, λ)i = sign(zi)(|zi| − λ)+.

The proof of Proposition 1 can be found in Appendix A. Proposition 1 suggests a
gradient descent procedure to minimize (14). In addition, after each iteration k, we apply
the FISTA update, given by

β(k+1) ← Utk (β(k)) +
lk − 1
lk+1

(Utk (β(k))−Utk−1(β(k−1))), (16)

where lk+1 = (1 +
√

1 + 4l2
k )/2, l1 = 1.
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The choice for the function R in (13) depends on the type of response variable. For
instance, if the response is continuous (linear regression) thenR(β|y, X) = ‖y− Xβ‖2

2 is
probably the best choice. However, if the response is binary (logistic regression), then the
logit loss is more appropriate,

R(β|y, X) =
n

∑
i=1

(
log(1 + exp(x>i β))− yix>i β

)
(17)

Removing the Shift in the Unlabeled Data

When the direction of the mean shift of the unlabeled data XU with respect to the
labeled data XL is in the same direction as β (or close), then EyL 6= EyU. This, as Larsen et
al. noticed, forces the optimal hyper-parameter γ3 to be zero [22]. One strategy that they
propose is to remove the effect of β in µ (which is the mean shift of XU with respect to XL)
by updating XU with

X̃U = XU − 1µ>pp>, (18)

where

p =
X>L yL∥∥X>L yL

∥∥
2

. (19)

We instead propose to use

p = − ∇R(0|yL, XL)

‖∇R(0|yL, XL)‖2
(20)

thus extending this idea to general loss functions. However, the update in (18) is not
necessary (and may introduce unwanted noise) if the angle between µ and β is too big [22].
Figure 3 illustrates update (18) with a two-dimensional example. The unlabeled data XU
(blue) are shifted (green) toward the center of XL (red) in the direction of ∇R(0) after
evaluating if | cos(θ)| < 1/

√
2.

Figure 3. Example update of the unlabeled data in the direction of −∇R(0) prior to computing the
s2net solution.
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5. Simulations

In this section, we will investigate our proposed method s2net as a semi-supervised
alternative to the elastic net when the underlying model is linear and sparse.

To introduce the simulations and analysis in the rest of the paper, we make the
following assumptions on the problem.

1. There are labeled samples Xs
L, ys

L from a source domain (e.g., measurements taken
with an old instrument).

2. There are (some) labeled samples Xt
L, yt

L from a target domain (e.g., measurements
taken with a new instrument or with different raw materials going into the produc-
tion).

3. There are unlabeled samples Xt
U from a target domain (e.g., measurements taken with

a new instrument, which are very expensive to label).
4. The objective is to construct a model that predicts the labels from the target domain.

Moreover, in a recent article, Oliver et al. established some guidelines for comparing
semi-supervised methods [31]. Some of them can be adapted to our framework of study as
follows.

• High-quality supervised baseline. The goal is to obtain better performance using Xt
U and

Xs
L than what would be obtained using Xs

L alone. In our case, a natural baseline to
compare against is s2net with γ1 = 0 (as mentioned in Remark 1). We denote this
supervised method as baseline. In addition, we also include the elastic net (glmnet)
from the R package glmnet [27] to compare the naïve estimation of baseline with the
actual elastic-net solution. The hyper-parameters of each method were selected using
random search, which has been shown to be superior to grid search [32], with a total of
1000 random points. The hyper-parameters that minimized the loss in the validation
data set were selected as the best combination.

• Varying the amount of labeled and unlabeled data. To cover different scenarios in the
simulations, we vary the number of unlabeled target samples nt, in addition to the
number of variables p.

• Realistically small validation dataset. This is related to the assumption 2 above, which
is very important in order to have validation data. Without it, there is no clear and
realistic way to select the hyper-parameters of the methods. It is possible to select
the hyper-parameters using test data, but this would contradict the fact that in a
real semi-supervised scenario, these labels are unknown. To make it feasible, we
assume that the number of available samples for validation is small (in the rest of the
simulations and data analyses, we fix it at 20).

Additionally, the following semi-supervised methods were included in the simulations:
the safe semi-supervised semi-parametric model (s4pm) and fast anchor graph approxi-
mation (agraph) from Culp and Ryan [24], available in the R package SemiSupervised, the
implicitly constrained semi-supervised least squares classifier (ICLS) [25], available in the
R package RSSL, and the joint trained linear framework (JT) from Culp [20].

5.1. Two-Group Design

The simulation design for the first experiment is the following. Let

Σσ2

ρ =


σ2 ρ . . . ρ
ρ σ2 . . . ρ
...

...
. . .

...
ρ ρ . . . σ2


p/2× p/2

, Σ
σ2

1 , σ2
2

ρ1, ρ2 =

 Σ
σ2

1
ρ1 0

0 Σ
σ2

2
ρ2


p×p

.

The source and target data rows are independent and identically distributed, given by

xs ∼ N
(

0, Σ1, .05
.8, .01

)
, xt ∼ N

(
0, Σ.1, 1

.01, .5

)
. (21)
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Figure 4 illustrates this simulation design using an example data set, with
p = 200 variables, and 50 source and 200 target observations, respectively.

Figure 4. Example of simulated source/target data structure. Left panel shows the projected data on
the first two principal components. Right panel compares the rows of Xs (black) and Xt (red).

To generate the responses for the source data Xs, we used a sparse coefficient vector,
given by

βj =

{
0 j /∈ I
1 j ∈ I

,

where I is the included variables’ index set that contains 5 random indexes between 1 and
p/2− 1 and 5 random indexes between p/2 and p. Therefore, there are 10 out of p “true”
variables in the model. The target model’s coefficients, however, are given by

βt
j = Ujβj, where Uj ∼ U[0.9, 1.1] for j ∈ I. (22)

This introduces additional uncertainty in the target data, and models the case of a
small change in the underlying coefficient vector for the new data.

The training set consists of labeled source data Xs
train, ys

train (ns = 50 rows) and un-
labeled target data Xt

train (nt rows), whereas the validation set consists of labeled target
samples Xt

valid, yt
valid (20 rows). A test data set Xt

test, yt
test (800 rows) is used to evaluate the

performance of both methods for each of the 100 repetitions. The set-up for this and the
following experiments is given in Algorithm 1.

Algorithm 1 Experimental set-up.

Let C be a given classifier.
LetH be the set that contains the different hyperparameters combinations.
Let nrep be the number of repeated validations.
for i do in 1:nrep

Obtain Xs
train, ys

train, Xt
train, Xt

valid, yt
valid, Xt

test, yt
test.

Find h in H that maximizes a performance metric in Xt
valid, yt

valid using Xs
train, ys

train,
Xt

train
Get the performance measure P(i) of C in Xt

test, yt
test using h

end for
Return the performance measures Ps

Logistic response
For the classification case, to simulate the source data labels ys, we used a logistic model,

ys|xs ∼ Ber(p), with p =
(

1 + exp(−β>xs)
)−1

. (23)
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The target labels yt were generated analogously, but using βt instead—the noisy ver-
sion of β given in (22).

Tables 1 and 2 summarize the simulation results for linear and logistic responses,
respectively. To evaluate the statistical significance of the difference between each method
and baseline, we performed a Friedman rank test, followed by paired post-hoc tests [33].
Significant improvements (α = 0.05) with respect to baseline are highlighted with an
asterisk. In these simulations, s2net achieves the best result in every scenario.

Table 1. Average test mean squared error (MSE) of the different methods (two-group design, linear
response), over 100 simulations for each scenario. Significant improvements (α = 0.05) with respect
to the baseline are indicated by an asterisk.

nt = 50 nt = 250

p = 50 p = 100 p = 200 p = 50 p = 100 p = 200

baseline 0.59 0.58 0.69 0.56 0.53 0.64
glmnet 0.61 0.60 0.71 0.58 0.56 0.66
s2net 0.55 * 0.54 * 0.65 * 0.53 * 0.51 * 0.62 *
s4pm 0.71 0.71 0.75 0.64 0.57 0.65

agraph 0.86 0.88 0.99 0.77 0.76 0.91
JT 0.62 0.61 0.72 0.56 0.53 * 0.63 *

Table 2. Average test area under the receiver operating characteristic curve (AUC, %) of the different
methods (two-group design, logistic response), over 100 simulations for each scenario. Significant
improvements (α = 0.05) with respect to the baseline are indicated by an asterisk.

nt = 50 nt = 250

p = 50 p = 100 p = 200 p = 50 p = 100 p = 200

baseline 75.3 70.2 78.4 74.8 73.7 72.1
glmnet 75.9 71.8 78.3 73.6 74.9 71.7
s2net 79.4 * 73.8 * 79.4 * 78.6 * 75.8 * 76.6 *
s4pm 71.1 68.5 77.0 75.0 * 74.8 * 75.8 *

agraph 68.7 65.3 73.5 68.8 67.0 70.8
ICLS 60.4 54.2 57.6 60.4 55.8 53.6

5.2. Extrapolation Design

This simulation design is based on the one described by Ryan and Culp [21], but we
varied the number of variables and unlabeled target samples, the shift, and included the
logistic response case. The source data are simulated with independent and identically
distributed rows given by

xs ∼ N(0, 0.4I) (24)

Two possible coefficient patterns are considered:

β(lucky) = ( 1 . . . 1︸ ︷︷ ︸
5

−1 . . . − 1︸ ︷︷ ︸
5

0 . . . 0︸ ︷︷ ︸
p−10

) and β(unlucky) = ( 1 . . . 1︸ ︷︷ ︸
10

0 . . . 0︸ ︷︷ ︸
p−10

) (25)

There are three scenarios for the target data:

Same: xt ∼ N(0, 0.4I) and β = 5/
√

10β(lucky)

Lucky: xt ∼ N(δβ(unlucky), 0.4I), and β = 5/
√

10β(lucky)

Unlucky: xt ∼ N(δβ(unlucky), 0.4I), and β = 5/
√

10β(unlucky)

With δ as the shift of the target with respect to the source domain, Figure 5 displays the
three possible configurations for the data, projected in X1 and X6. In the “same” scenario,
the source and target data follow the same distribution, and thus the direction of β is not
important. In the “lucky” case, β is orthogonal to the shift (the source and target domains
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are different, but the response is less affected by the shift). In the “unlucky” case, however,
β is parallel to the shift, and thus we expect the responses to be shifted as well. This
“unlucky” scenario is more challenging, especially in the linear response case, where the
bias in the estimation of β will impact the extrapolation.

Figure 5. Simulated source/target data structure: extrapolation design.

For each repetition, the training data consist of ns = 50 rows of labeled Xs
train, ys

train,
and varying nt rows of unlabeled target data Xt

train. The validation and test sets consist of
20 and 100 observations, respectively, from the target domain.

Linear response
The labels (for the source and target data, respectively) are simulated as y = Xβ + ε,

with εi ∼ N(0, 2.5), for i = 1, 2 . . . n. The number of features p = 100 and the shift δ = 1.
Logistic response
The labels (source and target) are generated following a logistic response model,

y|x ∼ Ber(p), with p =
(

1 + exp(−β>x)
)−1

. (26)

The number of features p = 20 and the shift δ = 0.1.
Tables 3 and 4 compare the simulations for linear and logistic responses, respectively.

Table 4 displays better performance for baseline, and s2net, suggesting that there is improve-
ment when choosing the semi-supervised elastic net framework. However, in the “unlucky”
scenario of Table 3 (where the shift δ is in a direction parallel to the response direction
of the labeled data), glmnet outperforms the other alternatives by a weak margin. The
implementation of JT estimates the coefficients using glmnet, so they are expected to yield
similar estimations when the supervised model prevails. However, glmnet and baseline
are (in theory) solving the same optimization problem. We believe such differences are
due to the way coefficients are actually estimated: baseline uses a block gradient descent
optimization with soft-threshold, whereas glmnet is optimized using coordinate-gradient
descent, with rules to discard predictors [28], and a correction factor in the β estimations.
A detailed description of the differences between the naive and the elastic-net solution can
be found in the work of Bühlmann and Van De Geer [34].

Table 3. Average test MSE of the different methods (extrapolation design, linear response), over
100 simulations for each scenario. Significant improvements (α = 0.05) with respect to baseline are
highlighted with an asterisk.

“Same” “Lucky” “Unlucky”

nt = 50 nt = 250 nt = 50 nt = 250 nt = 50 nt = 250

baseline 5.58 5.71 5.85 5.74 61.6 48.0
glmnet 5.66 5.82 6.03 5.97 56.5 * 46.1 *
s2net 5.56 * 5.70 5.75 * 5.73 62.1 48.1
s4pm 6.23 6.21 5.76 * 5.81 120 86.7

agraph 6.21 6.39 6.09 6.06 56.6 * 71.6
JT 5.79 5.74 5.58 * 5.69 * 59.1 * 47.7 *
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Table 4. Average test area under the ROC curve (AUC, %) of the different methods (extrapolation
design and logistic response), over 100 simulations for each scenario. Significant improvements
(α = 0.05) with respect to baseline are highlighted with an asterisk.

“Same” “Lucky” “Unlucky”

nt = 50 nt = 250 nt = 50 nt = 250 nt = 50 nt = 250

baseline 74.7 74.9 76.2 74.0 77.5 75.5
glmnet 74.7 * 75.1 76.2 74.0 77.3 75.5
s2net 76.3 * 74.9 76.3 * 74.1 * 77.5 75.6 *
s4pm 74.2 74.4 74.6 74.1 73.6 74.2

agraph 74.4 73.0 74.3 72.8 75.7 72.9
ICLS 69.0 68.1 68.3 68.1 68.2 67.0

6. Application to Real Data

The purpose of this section is to evaluate the performance of s2net on real data-based
examples, and compare it with glmnet, s4pm, agraph, JT, ICLS, and the baseline (s2net
with γ1 = 0) in regression and classification tasks. An overview of the datasets used in this
section is given in Table 5.

Table 5. Description of the data used in the analysis.

Dataset Labeled ns (Train) Unlabeled nt (Train) Regression Classification p

shootout 50 50 X 575
auto-mpg (P1) 149 100 X 9
auto-mpg (P2) 208 100 X 7

spambase 100 500 X 52

6.1. IDRC 2002 “Shootout” Data

This data set was published in the International Diffuse Reflectance Conference in
2002, and it is currently available online ( http://eigenvector.com/data/tablets, last access
on 21 October 2019). It consists of the spectra from 655 pharmaceutical tablets measured
with two spectrometers. The response variable is the proportion of the active ingredient.
As shown in Figure 6, there are differences in both instruments’ measures ranging from 0.6
to 0.7 µm and 1.7 to 1.8 µm.

Figure 6. Spectra from 655 tablets (IDRC 2002 “Shootout” data) measured with two different instru-
ments (left–right).

To illustrate the s2net methodology, we assume that labels associated with measures
from Instrument 1 are known, and we investigate how predictions are affected when labels
are predicted using measures from Instrument 2. For this purpose, the original data are
randomly divided up into training, validation and test data sets, and this process is repeated

http://eigenvector.com/data/tablets
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100 times. A total of 50 tablets are used as training labeled samples from Instrument 1
(source), whereas 50 measures from Instrument 2 (target) are used as training unlabeled
samples. To select the best hyper-parameters for the methods, we separated a sample of 20
labeled measurements from Instrument 2 (target). The remaining tablets (unknown during
the training process) are used as test samples from Instrument 2, in addition to the (already
known) 50 measures used as training unlabeled samples. The response variable in the test
data is used to compute prediction errors.

Figure 7 compares the distributions of the MSE obtained by the different algorithms in
the test data set, for 100 repetitions. Notice that s2net is the one that achieves the smallest
error mean and variance, but all the methods are very similar.

method

baseline

MSE

glmnet

sd

s²net

s4pm

agraph

JT

0.0836

0.0796

0.0790

0.1035
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0.0877

0.029
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0.027

0.039

0.038

0.053

baseline

glmnet

s²net
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0
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20
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d
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s
it
y

method

baseline

glmnet

s²net

s4pm

agraph

JT

Figure 7. Density estimation of the (test) MSE of each method for 100 repetitions (shootout data).

6.2. Auto MPG Dataset

This data set is available in the UCI repositories [35], and the original data were
published by Quinlan [36]. We processed these data for the semi-supervised setting fol-
lowing the paper by Ryan and Culp [21]. The first set-up (P1) separates source and target
domains by variable Domestic, whereas the second set-up (P2) splits the data by variable
Cylinder <= 4.

Figures 8 and 9 display the results for 100 repetitions (varying the validation and
training target samples). As indicated by the distribution of the test error, and its mean in
Figure 8, s2net clearly outperforms the other methods in the auto-mpg (P1) data. However,
for the auto-mpg (P2) setting, the supervised glmnet is the one minimizing the test error.

6.3. Spambase Data

This data set was collected by Hewlett-Packard Labs, and it is available at the UCI
Repository of Machine Learning Databases [35]. It classifies 4601 e-mails as spam or non-
spam. There are 57 explanatory variables indicating the frequency of certain words and
characters in the e-mail. This data set was also studied by Kawakita and Kanamori [37]
in a semi-supervised context. To adapt it to our semi-supervised set-up, we split the
data according to variable Internet (e-mails from the source domain containing the word
internet in the body of the message). This partition yields different balances of the response
variable in the source and target domains, which suggests an additional complexity for
the prediction.

Figure 10 displays the empirical distribution of the accuracy in the test set for the spam-
base data. We notice that s2net outperforms glmnet by a margin close to 10%. However—
and this is why it is important to have a baseline method to compare—the supervised
version of s2net performs very similarly (slightly better). In this case, there is no advantage
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in using the unlabeled data, but the optimization method itself that computes the coefficient
estimations for s2net and baseline shows good performance.
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Figure 8. Density estimation of the (test) MSE of each method for 100 repetitions (auto-mpg-P1 data).
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Figure 9. Density estimation of the (test) MSE of each method for 100 repetitions (auto-mpg-P2 data).
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Figure 10. Density estimation of the (test) accuracy of each method for 100 repetitions (spambase data).



Mathematics 2022, 10, 3001 15 of 18

7. Conclusions, Limitations, and Future Research

In this article, we introduced s2net, a semi-supervised elastic net for generalized linear
models. It is shown that s2net generalizes the semi-supervised techniques JT and ExtJT.
It is also exhibited that, if the unlabeled information is not relevant, s2net chooses the
hyper-parameters so that it adopts the traditional supervised elastic network. Our method
was tested using both real and synthetic data sets, and the experiments confirmed our
approach as a good alternative to the elastic net in the semi-supervised context.

We introduced a general optimization framework that implements the FISTA algo-
rithm to solve the elastic-net for a generic loss function. As feature works, the implementa-
tion can be easily adapted to solve other extensions of lasso, such as the group-lasso and
the sparse-group lasso. In addition, we observed a relative improvement of using gradient-
descent to optimize (12) with respect to coordinate-descent, demonstrated by the fact that
our elastic net baseline sometimes outperforms glmnet (Tables 1–3, and Figure 10). A
limitation of the proposed s2net is that it is not suitable for moderate/large databases. The
fact that it requires computing the singular value decomposition of the centered unlabeled
data XU makes it impossible to be applied to huge/big data sets. Adapting the proposed
technique to the latter databases is currently another possibility for future work. Another
limitation is that the proposed technique has its focus in the context of the generalized linear
model. Extension of the technique to nonlinear models will be considered in the future.

The simulation design studied in Section 5.1 highlighted a scenario where s2net clearly
outperforms all the other methods. The increased performance might be a consequence
of the fact that the underlying model’s coefficient is different for the source and target
domains. Since s2net uses the information in the unlabeled data (in contrast to the elastic
net), it can learn that change and adapt. Compared to other semi-supervised methods,
s2net has the advantage of separating the shift from the covariance information, which
adds flexibility to the model. Additionally, s2net brings desirable properties of elastic net
to the semi-supervised framework, such as the sparsity in the solution.

To conclude, the excellent results obtained, together with the fact that the developed
software is freely offered to the scientific community, make it possible to solve several
current problems in various research areas. Among these are the social and behavioral sci-
ences. In these areas, researchers do not usually have the training to develop mathematical
software, but they have a multitude of open problems. As an example, and based on our
previous experience, the developed technique could be used to identify suicidal behavior
in one country from data obtained in another.

8. Computational Details

All the experiments in Sections 5 and 6 were conducted in the same HPC cluster
(www.hpc.dtu.dk, accessed on 1 June 2022), specifically 8 nodes with Intel(R) Xeon(R) CPUs
E5-2680 v2, 128G RAM, running Linux 3.10.0 and R (3.6.1—platform x86_64-conda_cos6-
linux-gnu (64-bit)—Anaconda Inc. (Austin, TX, USA)).

To select the hyper-parameters of all the methods, we used random search with 1000
iterations. For s2net and baseline, we took λ1, λ2 ∼ 2U[−8,1], and γ1, γ3 ∼ 2U[−8,1], γ2 ∼
2U[−1,10] (s2net). For glmnet and JT, α ∼ U[0, 1], λ ∼ 2U[−8,1], and γ1(τ) ∼ 2U[−8,1], γ2(γ) ∼
2U[−1,10] (JT). For s4pm and agraph, lams, gams, hs ∼ 2U[−8,1], and for ICLS, λ1, λ2 ∈
2U[−8,1]. The code for the simulations and data analyses is available online (https://github.
com/jlaria/s2net-paper, accessed on 1 June 2022), and the implementation of s2net is
available in CRAN (https://cran.r-project.org/package=s2net, accessed on 1 June 2022).

9. Code Availability

Code is available at https://github.com/jlaria/s2net (accessed on 1 June 2022).
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DNA Deoxyribonucleic acid
JT Joint trained elastic net
ExtJT Extended linear joint trained framework
FISTA Fast iterative shrinkage-thresholding algorithm
MSE Average test mean squared error
AUC Area under the receiver operating characteristic curve

Appendix A. Proof of Proposition 1

Let β be the minimizer of Mt(β), and let B0 = β0 − t∇L(β0). By the subgradient
conditions, ∂j Mt(β) 3 0, and notice that

•

∂j

(
1
2
‖β− B0‖2

2

)
= β j − (B0)j.

•

∂j‖β‖1 = vj =

{
sign(β j), β j 6= 0
∈ [0, 1], β j = 0

•
∂j‖β‖2

2 = 2β j

Then,

0 = ∂j Mt(β) = β j − (B0)j + tλ1vj + 2tλ2β j = β j(1 + 2tλ2)− (B0)j + tλ1vj.

Separating by cases,

• Case β j > 0 (vj = 1)

0 = β j(1 + 2tλ2)− (B0)j + tλ1

β j = (1 + 2tλ2)
−1[(B0)j − tλ1]⇔ (B0)j > tλ1.

• Case β j < 0 (vj = −1)

0 = β j(1 + 2tλ2)− (B0)j − tλ1

β j = (1 + 2tλ2)
−1[(B0)j + tλ1]⇔ (B0)j < −tλ1.
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• Case β j = 0 (|vj| ≤ 1)

0 = −(B0)j + tλ1vj ⇔ |(B0)j| < tλ1.

Putting the three cases together and taking j = 1, 2 . . . p, the result follows.

β = (1 + 2tλ2)
−1S(B0, tλ1).
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