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Abstract: The complexity of streamflow processes inhibits significant information about catchment
performance and its sensitivity to climate change. Little is known about the severity of climate change
within the coastal area of the monsoon–subtropical zone of climatic transition. This study advances a
quasi-local scale analysis to simplify daily streamflow dynamics and their relationship with monthly
hydro-climatic series (1981–2020) using six gauging stations on the Buffalo River due to its socio-
economic significance. An integrated framework based on continuous wavelet transform (CWT),
wavelet coherence (WC), innovative trend analysis (ITA), Mann–Kendall (MK), Sequential Mann–
Kendall, and Pettitt tests were employed. CWT showed huge declivity in daily streamflow intensity
(7676 to 719), >100 mm/day streamflow frequency (15 to 0), and wetness spell time-gap. WC obtained
significant streamflow–rainfall co-movement of 8–196-month periodicities, which characterized
Buffalo as anti-phase (1–4-month), lag-lead (8–32-month), and in-phase (64–196-month) in processes.
The Buffalo River’s sensitivity to significantly decreasing rainfall trends and increasing temperature
trends depicts Streamflow–ENSO teleconnection. Contrarily, ITA and MK exhibited significantly
increasing trends of tributaries’ low flow and inferred the perennial status of the catchment. The
Pettitt test corroborates the deductions and asserts 1990 (temperature), 1996 (streamflow), and
2004/2013 (rainfall) as the abrupt change points, while SMK captured a critical streamflow slump in
2015–2020. Overall, the study proved the reductionist approach and model framework to achieve
the hydrological process simplification and resolution of hotspots of hydrologic extremes within a
bimodal climate with complex topography. This study remarks on the management policy of the BR
and provides a reference for managing water resources and catchment hydro-climatic extremes.

Keywords: hydrologic extreme; periodicity; wavelet analysis; trend analysis; South Africa

MSC: 42C40

1. Introduction

Water provision in the Buffalo River Basin (BRB), a relatively small but significant
basin to the Buffalo City Metropolitan Municipality, South Africa, is becoming a critical
managerial issue due to the slump in dam water level [1–3]. The BRB depends mainly on
a storage-limited inter-granular and fissure aquifer system that is recharged by a highly
sporadic and bimodal rainfall-flow regime system [4–7]. The insufficient catchment hy-
drologic study on the BRB underpins the lack of uncertainty on the factors driving the
streamflow variability. Particularly, the geolocation of the BRB within the transition zone of
monsoon and subtropical climates means its streamflow is subjugated by the accentuated
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impact of climate change from two dissimilar zones [4,6,7]. Regional studies on the interan-
nual variability of hydro-climates and the impact of climate change have predicted more
frequent and intense hydrologic extremes inducing streamflow variability, however, with
uncertainty on its impact at a reduced scale [6–8].

Hydrologic extremes of floods and drought are costly natural disasters due to their im-
pact on sustainable development. The United Nations Office for Disaster Risk Reduction [9]
reported that the global loss of lives to flooding and drought hazards between 1995 and
2020 stands at 606,000, with 4.1 billion casualties, while about US $0.6 trillion was reported
between 1992 and 2012 [10,11]. The devastating hydrologic extremes are a manifestation of
an aspect of a long-term climate anomaly, termed “global warming”, typified by a gradually
increasing global average surface temperature, the disruption of precipitation patterns, and
the rise in sea level [12,13]. Hence, the common early warning system entails the assessment
of hydro-climatic variables. While the El Nino–Southern Oscillation (ENSO) phase is recog-
nized as a significant aspect of climatic anomaly [14–16], its teleconnection with streamflow
has been alluded to in the literature [17–19]. Moreover, Lakhraj-Govender and Grab [20]
noted that ENSO impact on rainfall is possibly insignificant at the coast, due to their finding
that depicts a meaningful prograde in the South Africa central region and substantial
assessment at the northern region, contrary to the result of [6]. Blamey et al. [21] argued
that the spatial variability of ENSO impact on rainfall is possibly due to the difference in
elevation. Due to this uncertainty, this study intends to provide inferential evidence of
ENSO–streamflow teleconnection at the transitional zone, coast, and elevation difference.

The periodicity of streamflow is an essential metric for assessing the optimum water
management for various socio-economic purposes and environmental sustainability [22–24].
Uses of these metrics include (i) the calibration of river periods and temporal sequences,
(ii) the study of river budget and its interaction with groundwater, and (iii) the assessment
and prediction of trends and alterations in the water cycle and hydrologic regime [24,25].
The water balance equation of a hypothetical hydrologic system in a river catchment com-
prises the hydrologic unit, which is the rainfall and other atmospheric processes (input), the
streamflow response (output), and the physiographic features [8,26]. The physiographic
features are the central processing section of a hydrological system related to the basin
morphology, soil type, geology, and water conservation practices, and landscape structures
are the processing unit [27–29]. Hence, a clustered analysis of streamflow with the weather
elements (such as rainfall and temperature) is often necessary to decipher the catchment
processes impacting streamflow dynamics.

For example, the unit hydrograph of poorly drained soil is more likely to peak higher
than well-drained soil due to variation in ponding time [29–31]. Similarly, the regulation of
the flow regime of a watershed is more likely to vary with watershed geology and aquifer
size due to baseflow support during the dry spell. A natural landscape tends to exhibit
a modular annual hydrograph compared to an altered or pressured landscape [26,30,32].
With the continuous population growth and increased freshwater demand for food and
socio-economic development, the drive for the sustainable development of water resources
demands a holistic assessment of factors controlling streamflow dynamics. However, such
an investigation is challenging and complex at a larger catchment or regional level, hence
the proposal for a reductionist approach where the larger-scale evaluation is performed
using a small-scale perspective [33]. In this study, streamflow dynamics are investigated
within a catchment scale, with sub-catchments with diverse physiography scenarios and
dual geology.

Several approaches have been presented in the literature to characterize the stream-
flow dynamics as a function of climate change. This includes hydrologic signature in-
dices [20,22–24,34–36], watershed structure [29,32,33,37–42], recession attributes [28,31,43,44],
and forest–streamflow–climate change nexus [45–48]. Statistical methods such as linear
regression tests, direct correlation analysis, and non-parametric analysis have commonly
been adopted. This includes the use of Mann–Kendall [49,50], modified Mann–Kendall [51],
Sen’s slope [52], and innovative trend analysis (ITA) [53]. These have been used to model
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the prevalent hydro-meteorological cycle and the statistical dependency of atmospheric
processes on teleconnection patterns and to predict the atmospheric mass distribution [4,14].
Due to the complexity of streamflow processes, this study considers a combination of spec-
tral analysis, trend analysis, and change point for assessing the hydrological extremities in
a watershed.

Spectral analysis, such as continuous wavelet transform analysis (wavelet coherence),
is a signal processing approach that evaluates (compares) the inherent (co-movement)
feature of (two) temporal data in a time-frequency domain [54–56]. Continuous wavelet
transform (CWT) has proven applicable to decomposing complex signals into a two-
dimensional function of time and frequency [54,56]. Furthermore, CWT computes various
wavelet functions to simulate and interpret the changes in signal trends in the window of
variable width [54,57,58]. Wavelet coherence quantifies the magnitude of the correlation
between two temporal data in periodic, scalar, and phase dimensions [59]. Hydrological
trend analysis is a temporal variability tool that enables the study of the periodic cycle
of temporal data [60], hydrologic shift [61], probability distribution patterns [62], and the
categorization of hydrologic intensity. It enables the decipherment of hydrologic phe-
nomena such as groundwater recharge, soil moisture saturation, flood development [63],
the prediction of excesses, and deficits in environmental flow volume [60]. Due to trend
and wavelet analysis capability for a three-dimensional analysis with respect to frequency,
length, and intensity [64], this study intends to present the holistic ramifications for char-
acterizing watershed performance and the influence of climate change and variability
on its performance.

The uniqueness of this study lies in the regional focus of the streamflow elasticity
on the ENSO impact on the coastal area of the bimodal climatic zone. The study intends
to build on Lakhraj-Govender and Grab’s [20] argument on the insignificant impact of
ENSO on the temperature at the coast while majoring on streamflow dynamics. Based
on the Web of Science and SCOPUS review (2001–2021), the majority of the seventy-one
streamflow–climate-related studies in South Africa are focused on forest management-
driven impact and drought analysis with insignificant studies within the coastal area. Only
Owolabi et al. [6,31], Nolte et al. [3], and Kusangaya et al. [64] have provided substantial
information on the impact of climate change on coastal flow systems at a reduced scale.
However, Kusangaya et al.’s [64] assessment, which simulated extreme streamflow dy-
namics in relation to the impact of climate change using downscaled General Circulation
Models, was carried out in the subtropical climate rather than in the transition zone. More-
over, the study revealed that the model performance for the flow sections (low-flow and
high-flow regions) was poorly depicted. Owolabi et al. [6,31] were focused on environmen-
tal flow recession performance as a function of its physiographic structure and streamflow
dependency on rainfall. The study failed to characterize the streamflow tripartite property
as a function of the hydro-climates resonance to ENSO impact [65]. Moreover, the forecasted
mid-21st century slump in the trend of future rainfall and possible water insecurity calls for
an improved understanding of streamflow dynamics [66], especially in water-scarce countries
such as South Africa. Besides, this study contributes to the study of the potential of water-
sheds within rural livelihoods considering the stake of drought, river diminution, and the
consequential water insecurity in the semi-arid environments of South Africa [2,3,8,67,68]. In
doing so, the following research questions were addressed:

1. Considering the complexity of streamflow processes in regional studies, can the reduc-
tionist approach provide a lucid explanation of streamflow dynamics and characterize
intra-catchment streamflow processes?

2. What numerical combination can reliably interpret the impact of climate change on
streamflow dynamics?

The study aims to investigate the spatial and temporal variability in streamflow
dynamics and the influence of climate change at a quasi-local scale. The study is approached
under three specific objectives: (1) to assess the temporal trends and spatial dissimilarity
of streamflow dynamics at lumped monthly scales in the Buffalo catchment from 1981 to
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2020, (2) to project the response of streamflow to climate change based on comparative
analysis with rainfall and temperature trends, and (3) to explore the robustness of the
analytical methods employed in the integrated framework. The integrated framework
combines the continuous wavelet transform, wavelet coherence, innovative trend analysis,
Mann–Kendall (MK) trend analysis, sequential MK (SMK) analysis, and Pettitt test. The
deductions will help characterize the streamflow dynamics of the Buffalo catchment and
elucidate the level of resilience of the rivers to the impact of climate change.

Description of the Study Area

The Buffalo River Basin is a pediplain that lies at the steep foothill of the Amathole
range within the Amathole District Municipality and extends to the coastal plain in the
Buffalo Metropolitan District Municipality, Eastern Cape, South Africa (Figure 1).
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Figure 1. The map of the Buffalo River Basin showing the basin elevation and the six streamflow
gauging stations: three stations on the main channel (Quencwe R., Tshoxa R. confluence, and the
mouth before the Yellowwood R. confluence) and three stations on the tributaries (Mgqakwebe R.,
Ngqokweni R., and Yellowwoods R.).

The Buffalo Basin spans an estimated area of 1237 km2, between 32◦40′07′′ S and
32◦58′50′′ S latitude and 27◦7′54′′ E to 27◦33′16′′ E longitude. The headwater comprises
six central reaches: Ngqokweni, Tshoxa, Mgqakwebe, Quencwe, Zwelitsha North, and Yel-
lowwoods, just before the entrance into Laing dam (Table 1). The range of average, minimum,
and maximum temperature from 1980 to 2020 are 6.9◦–35.8◦, 3.0◦–22.3◦, and 8.9◦–38.1◦, re-
spectively. The hydrological period begins in October with a more frequent downpour from
November to February and a mean annual rainfall of 590 (mm/year) from 1980 to 2020. Four
seasons are captured in the hydrologic regime: summer (December to February), autumn
(March to May), winter (June to August), and spring (September to November).
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Table 1. Description of the streamflow and meteorological stations in Buffalo watersheds and the
subcatchment properties.

Quencwe River Quencwe
River

Mgqakwebe
River

Buffalo @
Tshoxa Conf.

Ngqokweni
River

Yellowwoods
River

Buffalo @
Zwelitsha

Streamflow Station (SS) R2H008 R2H006 R2H005 R2H009 R2H011 R2H010
SS Latitude −32.768 −32.858 −32.875 −32.915 −32.941 −32.925

SS Longitude 27.373 27.371 27.383 27.386 27.461 27.479
Area (km2) 61 119 411 103 198 668

SS rainfall station 0079490 W 0079316 W 0079712 W 0079504 W 0080072 W 0079809 W
Mean annual flow (m3/s) 79.22 131.77 405.36 73.52 169.07 433.89

Altitude (m) 1351 865 1351 584 905 1315
Relief (m) 942 914 986 285 670 1112
Slope (%) 5.7 2 4.3 1.3 2.2 3

The area is underlain by unconsolidated red and grey sandstones intercalated with grey
shale and red mudstone of Balfour formation deposited in late Permian to early Triassic [5]
and covered by commercial forestry, which extends to the northeast. The lower half of the
catchment is characterized by agricultural activities, while the Urban areas are concentrated
in the south of the catchment [69]. The daily streamflow data of six stations, including that
of the Buffalo catchment mouth, from 1 January 1981 to 31 December 2020, were archived
by the Department of Water Affairs (DWA). Daily hydro-meteorological data from two
stations (extreme north and south), which comprise rainfall and average temperature,
from 1 January 1981 to 31 December 2020, were downloaded from the National Centres
for Environmental Information and the National Aeronautics and Space Administration
POWER Access viewer website. Data quality was thoroughly checked, and the missing
data were less than 2% in a year’s record [70]. Missing records were extrapolated by taking
the average preceding and succeeding values in the time series and comparing it with
the year record with a similar trend. The monthly average of hydro-climatic data and the
streamflow were computed to normalize the error due to corrected missing records.

Based on the statistical assessment of the streamflow data, Buffalo rivers are character-
ized by mean daily streamflow, which varies between 0.201 mm3/s at Quencwe station
to 5.176 mm3/s (Tshoxa station) and 1.874 mm3/s at the central Buffalo station (Table 1).
The coefficient of variation (CV) of the streamflow series indicates a relatively more con-
siderable variability (>100%) with the highest CV at Quencwe > Yellowwoods > Tshoxa >
Ngqokweni > Mgqakwebe > Buffalo in their order of variability.

2. Materials and Methods

This study analyzed the monthly streamflow at six gauging stations in the Buffalo
catchment in South Africa. The daily streamflow data were disaggregated into varying
periodic components using continuous wavelet transform using the wavelet functions
in Rstudio. The monthly streamflow and rainfall signals were further assessed for their
time-frequency co-movement using wavelet coherence to assess their degree of association.
The monthly streamflow was further assessed using innovative trend analysis for its extent
of sensitivity and dependence on hydro-climatic fluctuation based on its serial progression
with monthly rainfall and temperature data. The assessment was further corroborated
using the Mann–Kendall test, sequential MK analysis, and Pettitt test.

2.1. Wavelet Analysis

Wavelet analysis was carried out using continuous wavelet transform (CWT) to assess
the trend of the streamflow variable in the time-frequency domain. The wavelet power
spectrum of the streamflow was determined to explore the transition in the amplitude of
streamflow trend signal through time, to visualize the signal’s frequency, the main scale of
significant environmental flow, and the period of significant hydrological alteration [71].
The CWT of the streamflow is computed by convolving the streamflow time-series as a
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discrete sequence, xn, with a time-step, δt, and a wavelet function, ψ0 (n), within a discrete
wavelet scale, s, according to Equation (1):

Wn(s) = ∑N−1
n′=0 xn′ × ψ∗

[
δt
(n′ − n)

s

]
(1)

where N is the length of streamflow time-series, n is the localized time index, n’ is the
time variable, (*) denotes the complex conjugate, and ψ is the morlet wavelet, defined by
Equation (2) [54,72]:

ψ∗(n) = π
−1
4 e−iω0te

−n2
2 (2)

where i denotes the imaginary unit and ω0 is the nondimensional frequency, which is 6.
The proportion of the variance of the series at every wavelet scale and time-step are

computed to determine the local wavelet spectrum,
∣∣Wn(s)2

∣∣.
The concurrent power level of wavelet coherence (WC) was computed to describe

the phase shift, degree of association, and the effective correlation between rainfall and
streamflow at multiple periodic scales [54,73].

The WC between the two hydrological series is based on Equation (3):

R2
n(u, s) =

∣∣∣S0(s−1 ×Wxy
n (u, s))

∣∣∣2
s0

(
s−1|Wx

n (u, s)|2
)
× s0

(
s−1
∣∣∣Wy

n (u, s)
∣∣∣2) (3)

where S0 is a smoothing operator across the timeline and wavelet scale, and the wavelet
squared coherence, R2

n (u,s), is a positive value within the range 0 ≤ R2
n(u, s) ≤ 1. To

distinguish between the positive and negative correlation, the wavelet phase difference is
computed according to Equation (4):

φxy(u, s) =

∣∣∣S0(s−1 ×Wxy
n (u, s))

∣∣∣2
s0

(
s−1|Wx

n (u, s)|2
)
× s0

(
s−1
∣∣∣Wy

n (u, s)
∣∣∣2) (4)

The CWT and WC computations were performed in RStudio using a wavelet com-
putational analysis package based on the script authored by Angi Roesch and Harald
Schmidbauer and improved by Tian and Cazelles [54,74]. The continuous wavelet trans-
form and the power level of the cross wavelet transform were performed using the Bartlett
window smoothing in time and scale directions to obtain the natural progression of the
wavelet signal. However, the wavelet coherence analysis performance was improved for a
high-power signal convolution by using the Blackman and Hanning window smoothing
in the time and scale directions [59]. The movement of a black arrow explains the phase
relationship in four ways; a horizontal black arrow pointing right (left) signifies an in-phase
(anti-phase) relationship. A diagonal black arrow pointing right-downward (left-upward)
denotes the lead-phase, while right-upward (left-downward) denotes the lag-phase rela-
tionship. The lead-phase (lag-phase) of streamflow–rainfall co-movement is interpreted as
the lead (lag) of streamflow signal over rainfall [59].

2.2. Innovative Trend Analysis

The trend analysis was undertaken to examine the consistency of streamflow trends
with other hydro-climatic data trends. The assessment is based on the formulated null
hypothesis that highly altered streamflow is assumed to exhibit an amplified distortion
with respect to the increasing or decreasing trend of rainfall [53]. ITA, just like MK, is a non-
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parametric data analyst for trend analysis with no sensitivity to outliers and autocorrelation
effects. The computation of the ITA slope is based on Equation (5) [75]:

T =
2
N
×∑

N/2

i=1
10
µ

(
xj − xi

)
(5)

where T exhibits the slope attributes, N is the length of the data series, and xi and xj
represent a sorted equal half of hydro-climatic data points, xn, while µ denotes the average
value of xi. A positive (negative) T indicates an increasing (decreasing) trend.

The graphical notation of ITA is plotted according to the outline [53] below:

(i) The streamflow data, xn, is split into two halves, xi and xj.
(ii) Each half is sorted and expressed as a percentage of the mode value.
(iii) The scattered plot of the two subseries is plotted with the first half, xi, plotted on the

x-axis and the second, xj, plotted on the y-axis.
(iv) A trendless line, representing a 45◦ line (1:1), is drawn to clarify the existence of

deviation from the monotonic trend and the nature of the trend.
(v) The existence of a trend is inspected within the 45 to 55th percentile of the plot

where an upward (downward) deviation of the ±10% confidence limit of the ITA plot
indicates an increasing (decreasing) trend.

The ITA statistics were computed in Rstudio using the Trend change package version 1.2,
based on Şen [53]. By adding a script call, the derivation was extracted and recomputed in
percentage for an integrated plot in the Microsoft Excel package in relation to the graphical
outline presented above.

2.3. Mann–Kendall Trend Detection

The Mann–Kendall test is defined by the null hypothesis, H0, that there is no trend in
the time series when the tau magnitude is zero, while the alternative hypothesis, Ha, states
that there is a significant trend in the series for a given α significance level [76]. Probability,
p, in percent was calculated to determine the degree of confidence in the hypothesis. This
is based on MK statistics, S, defined by Equation (6):

S = ∑n−1
i=1 ∑n

j=i+1 sgn
(
xj − xi

)
(6)

where

sgn (x) =


1 i f x > 0,
0 i f x = 0
−1 i f x < 0

, (7)

In which n = the length of the time series of j1, j2, j3, . . . , jn; S is the sum of positive or
negative signs in the data. It indicates the trends in the data series, and x is the streamflow
data value in the year I and j, and j > 1.

The computation of the variance of S depends on the structure of the independent
data sample. If the sample has tied values, variance, Var(s), is computed using Equation (8):

Var(s) = [n(n− 1)(2n + 5)−∑n
i=1 ti(i− 1)(2i + 5)]/18 (8)

If the sample is without tied values, the mean and Var(s) are computed using:

E(s) = 0; Var(s) =
n(n− 1)(2n + 5)

18
(9)
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The Z transformation of the MK test is defined by the cases below, given that n is
larger than 10:

Z =


S−1√
Var(S)

i f S > 0

0 i f S = 0
S+1√
Var(S)

i f S < 0
(10)

where E(s) is the expected or mean value of s; Z statistics is the significance level for MK
computation, while t is the number of ties for ith values.

The acceptance or rejection of the null hypothesis depends on the position of Z to
the critical region of the significance level of α for a two-sided test. An upward trend is
indicated by a positive value of Z and vice versa. Consistent variability in the trend of time
series is computed based on Equation (11):

− Z1− α
2
≤ Z ≤ Z1− α

2
(11)

The Mann–Kendall test analysis was carried out in RStudio using the Trend package
of version 1.1.4, based on McLeod’s [77] script.

2.4. Sequential Mann–Kendall Analysis

To deduce the change point across time, the sequential Mann–Kendall analysis based
on the prograde and retrograde of the statistic sequence were computed. The sequential
MK test is based on the approach developed by Sneyers [78], where the intersection points
of the prograde and the retrograde are the significant change point, depending on their
relative displacement from the significance level interval. The analysis was performed in
Rstudio using the Trend Change package version 1.2 scripted by Sneyers [78]. The prograde
and retrograde computations were called out and downloaded into a spreadsheet for an
integrated plot in Microsoft Excel.

2.5. Pettitt Test

The Pettitt test was performed to assess the homogeneity in streamflow time series
and its corresponding hydro-climatic series. The nonparametric test is based on the ranking
of data series for detecting the point of abrupt change in the mean of a time series given
by the Mann–Whitney statistics [79,80]. Pettitt test statistic KN and its probability (Pt0) are
based on Equation (12):

Kt0 = max
1≤t≤n

|Ut,n| (12)

where,
Ut,n = Ut−1,n+∑n

i=1 sgn(Xt − Xi), 2 ≤ t ≤ n (13)

sgn(Xt − Xi)==


+1 i f Xt > Xi

0 i f Xt = Xi
−1 i f Xt < Xi

(14)

P(t0) ∼= 2exp
[
−6K2

t0

(
n3 + n2

)]
(15)

t(0) is considered the significant change point if P(t0) ≤ 0.5. The test was conducted in
Rstudio using the Trend Change package of version 1.2 scripted by Verstraeten et al. [81].

3. Results
3.1. Continuous Wavelet Transform

The continuous wavelet transform (CWT) of the daily streamflow series (1981–2020)
of stations in the Buffalo watershed was computed for information about the local wavelet
spectral signal (Figure 2). The results show that the more substantial variability lies within
the 128 and 4096-day scales. In most cases, substantial variability was exhibited at the
periodic scale above 4096 days to 8192 days; however, these lie within the solid bell-shaped
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curved padding demarcating the possible erroneous zone affected by the edge effect.
The most sporadic high-power signal, suggesting correlated wet days, in Quencwe, TB,
Ngqokweni, and ZB streamflow were exhibited at scale 2048 days, while Mgqakwebe and
Yellowwoods’ highest power lie on scale 4096 and 768 days. The most prominent region
clustering, indicating the wetness period (less randomness) and streamflow persistence
occurred slightly above 256 days, approximately a year.
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30 December 2020 in the Buffalo River basin. The red region denotes the areas of high power values
and a 5% significance level, while the cone of influence of the edge effects denoted by the diagonal
webs are the cut-off regions of analytical errors.

The least inter-annual persistence, possibly due to dry spells, is exhibited at the
upstream (Quencwe), indicating a sharp slump in high flow recurrence. The alteration
gaps between any twain extreme signal are ranked in the order of reducing time-length:
Quencwe > TB > Yellowwoods > Ngqokweni > Mgqakwebe > ZB. In the order of high-flow
recurrence at a threshold of 80 m3/day from the first to the last, the Buffalo streamflow
frequency can be ranked: Quencwe (15) > Yellowwoods (10) > Mgqakwebe (9) > TB (8)
>Ngqokweni (5) > ZB (0). Buffalo streamflow intensity is exhibited in the following order
from the most to the least: Quencwe (7676) > TB (7606) > Yellowwoods (7150) > Mgqakwebe
(4281) > Ngqokweni (2985) > ZB (719). Ngqokweni streamflow showed a unique streamflow
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behavior that was quite gentle in the first half and sporadic in the second half of the time-
scale. Both TB and Yellowwoods streamflow showed inter-annual persistence perceived to
be intermittent in quinquennium. In contrast, the most significant persistence is shown by
Mgqakwebe and downstream (ZB station).

3.2. Wavelet Coherence Analysis

The co-movement of streamflow and rainfall within the time-frequency domain is pre-
sented using the wavelet coherence scalograms (Figure 3). In this study, the co-movement
exhibited at each station and the different multiscalar levels explain the dominant phase
relationship. The assessment shows that streamflow and rainfall co-movement vary in time
and space within the watershed across the scale of one month to 384 months (480 months).
The hydro-climatic duo is significantly correlated across the short-, mid-, and long-term
scales at the 0.05 significance level. The order of streamflow–rainfall scalar variability
(1–160 months) across the station, that is, the total correlation of streamflow to rainfall, is
exhibited as TB > Ngqokweni > Yellowwoods > Mgqakwebe > ZB > Quencwe.
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Figure 3. Wavelet coherence analysis of daily rainfall and streamflow of Buffalo (1981–2020) and
their wavelet spectrum. The power level ranges from zero intensity (Blue) to high intensity (Red)
at a 95% confidence level. The cloudy/white transparent cover demarcates the border of the edge
effect interpretation. The right (left) pointing black arrow denotes an in-phase (antiphase) correlation
between the streamflow and rainfall, while the upward (downward) arrow denotes that streamflow
leads (lags behind) rainfall by 90◦.

Focusing on the low power level (1–4-month), only ZB (anti-phase), Ngqqokweni
(in-phase), and Quencwe (lead-phase) streamflow–rainfall exhibit a significantly vital co-
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movement, with light co-movement depicted by TB (anti-phase), Mgqakwebe (lag-phase),
and Yellowwoods (lag-phase). At the mid-power level (12–48 months), all the stations
show a significantly strong correlation between streamflow–rainfall. Streamflow–rainfall
co-movement levels are, accordingly: Quencwe (in-phase), Mgqakwebe (in-phase), TB
(lead-lag phase), Ngqokweni (lead-phase), Yellowwoods (lag-phase), and ZB (lag-phase).
At the high power level (120–480 months), some tangible information can be drawn from
Buffalo’s main channel. TB depicts lag-phase inception, ZB suggests an overall in-phase,
while Quencwe suggests the eventual in-phase relationship at the end of the time series.

3.3. Innovative Trend Analysis

The innovative trend analysis (ITA) of streamflow and hydro-climatic factors of the Buf-
falo catchment is presented as a scattered plot, divided across the regions of low (T < 33%),
medium (33% ≤ T ≤ 67%), and high (T > 67%) attributes (Figure 4A–F; Table 2). The ITA
results showed that streamflow and rainfall across all the stations exhibit significant mono-
tonic trends compared to temperature trends. The temperature trends tend to fluctuate
from no trends to insignificant increasing trends across the medium to the high intensities
temperature. Expectedly, this corresponds to the significantly decreasing trends exhibited
by rainfall across all the stations. ITA shows that Buffalo watershed streamflow varies
from a slight but tangible increasing low-flow (T = 0.002) trend to a strongly decreasing
high-flow in the following order; Yellowwoods > Ngqokweni > Mgqakwebe > Quencwe
> ZB > TB (Table 2). Only Yellowwoods streamflow showed a substantial increase in its
low-flow and medium-flow trends, while Ngqokweni and Mgqakwebe streamflow showed
an intangible increasing trend at the low-flow (Figure 4B,D,E). ZB station exhibits neutral
to slightly decreasing streamflow trends while Quencwe and TB stations are characterized
by a substantial decrease in trends across the entire flow attributes.

In comparison to rainfall trends, TB and Quencwe flow exhibit the most substantial
sensitivity to the declining rainfall trends, with the streamflow deviating throughout
the entire flow attributes (Figure 4A,C,F). Based on the flow attributes exhibited in the
ITA plots, the three tributaries (Mgqakwebe, Ngqokweni, and Yellowwoods) and ZB
showed remarkable insensitivity to rainfall trends. However, only ZB streamflow is elastic
considering the concentration of medium flow. This finding conforms to the periodic
variability of streamflow–rainfall co-movement shown on the WC plots.

In general, streamflow showed no virtual correlation with temperature, while the
significant trend increase depicted by ITA rainfall can be associated with the increasing ITA
temperature, though insignificant (Table 2; Figure 4).

3.4. Mann-Kendall Trend Test and Sequential Mann-Kendall Analysis

The MK test and sequential MK (SMK) plots were performed with no whitening to
ensure trend originality due to outliers at the test confidence levels of 5%. The MK trend test
showed relative similarity in trend pattern to ITA. The rainfall trend depicts a substantial
decrease across the stations compared to the temperature trend, exhibiting an insignificant
increase (Figure 5B,C). Comparatively, the SMK provides a better visualization of variability
across the time series compared to ITA, especially in the case of temperature trends within
the insignificant region (Table 2; Figure 5A–C).
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Table 2. Statistical summary of ITA, lumped and summed MK statistics. The subscripts Sf, Rf, and
Tp denote the computation for streamflow, rainfall, and temperature series. The bold figures and
dates are the significant deductions and significant change-points while the negative and the positive
results of T and
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In comparison to rainfall trends, TB and Quencwe flow exhibit the most substantial 
sensitivity to the declining rainfall trends, with the streamflow deviating throughout the 
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In comparison to rainfall trends, TB and Quencwe flow exhibit the most substantial 
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Figure 5. The plot of sequential Mann–Kendall trend analysis showing; (A). monthly streamflow,
(B). rainfall, and (C). temperature series (1981–2020). The dotted horizontal lines on the positive (Pos)
and negative (Neg) sides of the y-axis identify the significance level (α = 0.05). The straight and
dotted plots indicate the prograde (U(t)) and retrograde (U′(t)) series.

A critical assessment of the sequential MK analysis of the streamflow, rainfall, and
temperature series of Buffalo stations depict four major trend turning points, principally
in 1982–1983, 1992–1994, 2010–2011, and 2015–2020. The possible abrupt increase in the
temperature occurred twice; in the winter months of 1982–1983 (1983, at high altitude and
1982 at the lower altitudes, Ngqokweni, and Buffalo meteorological stations) and in 2011
(across the stations). The abrupt slump in rainfall trends occurred once and varied across
the stations with Mgqakwebe, ZB, Yellowwoods, Quencwe, and the remaining two stations
occurring in November 1997, March 2007, April 2015, March 2017, and June 2018. The
abrupt increase in streamflow trend occurred through 1992–1994 for the stations at the tribu-
taries and Buffalo, while Quencwe and TB flow registered the abrupt decline in streamflow
trend on 17 September and March 2018. The findings of the MK assessments correspond to
the implication of the relative displacement of the streamflow–rainfall ITA slope.

3.5. Pettittt Change Point

The Pettitt test enabled the corroboration of the Mann–Kendall test by validating the
insignificant change within the temperature series, even though the assessment indicated
that the abrupt increase in the temperature was triggered in 1990. In the same vein, the
assessment presents the specificity of the significant declining rainfall trends in 2004 and
2013 as identified by the MK and SMK plots. It also corroborates the significance of the
streamflow change points across the station to the significant deductions shown by ITA.
Compared to the SMK plot, 1995 and 1996 are the Pettitt periods of abrupt increase in
streamflow, while 1987 and 2015 were the slump periods in the streamflow of the TB and
Quencwe stations. The difference in the change points of SMK and Pettitt is because the
Pettitt test is based on the breaking point of the maximum slope of the progressive series,
while SMK depends on the interception point of the progressive and retrograde series.

4. Discussion
4.1. Characterization of Buffalo Streamflow Variability

The quantification of the streamflow process within a quasi-local scale has been
achieved with the Continuous Wavelet Transform (CWT), projecting the inter-annual
variability of daily streamflow across each sub-catchment. The result suggests that the dis-
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similarity remarks Buffalo streamflow in frequency, intensity, and length (periodicity) from
upstream (Quencwe) to downstream (ZB). At the same time, the sub-catchments (Mgqak-
webe, Ngqokweni, and Yellowwood) hydrological processes are self-contained [54,57,58].
The Innovative Trend Analysis reveals that the decline in high streamflow is due to the
decrease in high (severe) and low (fractional) rainfall. This culminates into a recharge–
storage–discharge system that favors the connected tributaries and increases in low stream-
flow, thus signaling the substantial groundwater–surface water discharge as a Buffalo River
regressor during the dry spell.

Hence, the study shares a similar view on the possible controlling factors, which com-
prise the physiographic, hydrographic, and local climatic factors [4,28,31,69,82]. An elabo-
rate discussion on the spatial variability of rainfall in a topographically complex environ-
ment under a monsoon climate system has been documented in the literature [7,21,82,83].
Moreover, Owolabi et al. [5] and Nolte et al. [3] extensively discussed the Buffalo catch-
ment’s hydrographic properties and highlighted the tributary’s differential groundwater
connection in enhancing the low-flow sessions and Buffalo’s perennial status. Owolabi
et al. [6] noted a significant increase in winter (May–June–July) rainfall and streamflow
trends and an insignificant decrease in the remaining part of the hydrologic regime. This
possibly contributes to the streamflow increasing trends considering the unfavorable hydro-
climatic distribution.

Flow attributes are either influenced by the hillslope or dam regulation by a compara-
tive analysis of the abrupt change in streamflow intensity and streamflow–rainfall in-phase
at Quencwe (Figures 3, 4 and 5A). Moreover, the groundwater recharge mechanism possibly
impacted the rain–runoff high-flow imbalance, especially upstream, where the maximum
rainfall and streamflow registered a percentage ratio of 94:30. More than half of the rainfall
at a certain threshold is possibly recharged, compared to the Yellowwood station, where
the percentage ratio of extreme rain-runoff is less than 1. This explains the streamflow
lag on rainfall (Yellowwoods WC), possibly due to the drainage network and sub-basin
morphogenetic development impacting extreme flow delivery in the Yellowwoods channel.
Compared to other models, the integrated model here provides better visualization of
hydrologic extremes hotspots.

The abrupt change in the runoff intensity due to the dam infrastructure and climatic
variability possibly impact the midstream performance, characterized by a massive decline
in supply relative to rainfall trends (Figures 3 and 4). The seasonality of flow from the
supply end possibly induces the dependency of Buffalo streamflow on rain, as shown by
its short-term (1–4-month) and mid-term (8–64-month) sensitivity to rain, as well as the
long-term persistence (Figure 3).

4.2. Buffalo Streamflow Response to Climate Change

The Buffalo River visibly exhibits high inter-annual variability, depicting periodic
amplitude that divides approximately across decadal inter-annual nodes; 1989, 1999, 2010,
and 2018, as projected by the CWT and SMK plots (Figures 2 and 5). Jury [4] reported
the impact of ENSO (El Niño–Southern Oscillation—the teleconnections between ocean–
atmosphere coupling) and the 10-year inter-annual variability of South African rainfall.
Varying intensity across all the stations exhibits other extreme events in 1985 and 2005. The
correspondence of the extreme streamflow event (7676 cd) at the upstream with persistent
recurrence of high-flow threshold (15 × 100 mm/day) and a long wet spell is typical of El
Nino at the upstream and conversely at the downstream, depicting La Nina (Figure 2) [65].

The repression provided by the increasing temperature trend, decreasing rainfall
distribution, and the accentuated response of streamflow dynamic also infers the imprint
of climate change in Buffalo (Figures 4 and 5; Table 2) [6,31]. The Pettitt test noted this in
the spring of 1990 for temperature and highly variable rainfall (Table 2). The consistency
of temperature and inconsistency of rainfall change points as a function of local and
regional differences in response to climate change has been well articulated [15,84,85].
The periods of critical temperature increase (1982–1983, 1990, and 2011) and significant
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rainfall decline (1992–1996 and 2014–2020) exhibited by the SMK plots (Figure 4) conform
to previous studies [7,14,21].

The SMK plots report a multi-year meteorological drought and result in a significant
river diminution within those periods of extreme change in rainfall pattern. The perception
is consistent with Mahlalela et al.’s [7] findings at the eastern and western flanks of the
transition zone, computed using Climate Hazards Group InfraRed Precipitation with
Station (CHIRPS) data. Mahlalela et al. [7] confirmed the impact of climate change by
comparing dry and wet springs to the cyclone and anticyclone anomaly.

This study identifies the existence of resilience to the significant impact of climate
change as a yardstick for selecting viable river channels (Figures 4 and 5; Table 2). As
a result, this study identifies the tributaries as the primary driver of the Buffalo River
persistence, considering the significant flow increase exhibited. In conformity with this,
the Pettitt test projected the uniform period of October 1996, indicating the period of the
significant streamflow increase for the three stations as well as ZB.

4.3. Evaluation of the Integrated Framework Robustness

The integrated framework achieved profound hydro-statistical analysis, depicting
the extreme events embedded in hydrological time series. Notably, the CWT enhances
the visualization of the interannual variability of streamflow and its properties (frequency,
length, and intensity) across different time scales. This was validated by SMK, which
also buttresses MK deduction and corroborates ITA based on the periodic trends across
time series. The contradictory values of ITA and SMK can be linked with the exertion of
ITA on long-term flow duration differences. At the same time, MK employs the mean
change across an estimated prograde and retrograde series. Essentially, ITA is weak for
detecting instantaneous trends; however, it provides crucial information about the varying
attributes of the flow sections. Moreover, the wavelet coherence appropriated the high
degree of variability across the stations, capturing the persistence of streamflow across
all levels in ZB stations. The Buffalo River across the second half of the time series while
the antiphase correlation suggests the streamflow regress against the declining rainfall
trends. The overall assessment shows that wavelet analysis needs to be corroborated to
substantiate the extremities it provides, while SMK tends to be more versatile among all
the methods used.

In general, the investigation suggests the predisposition of the watershed to extreme
climatic changes with calls for the optimized exploitation of the upstream dam in the study
area, although the average flow within the dam vicinity (TB) suggests its viability. The
report on the Ngqokweni River’s elasticity shows that good environmental management
practices were adhered to, despite its vulnerability (Table 1) [5]. The famishing nature of the
Quencwe River is possibly due to the impact of the hillslope on its sustenance compared to
the relatively plain Ngqokweni River. The Yellowwoods River also showed a high degree of
conservation considering its trend increase during drought. In response to climate change,
its inelastic flow might be due to its exploitation, which requires effective management
against river diminution and drought risk.

5. Conclusions

The Buffalo catchment’s climatic significance and topographic complexity are essential
factors in its streamflow dynamics. Considering this, the study area is an important site for
demonstrating the numerical assessment and characterization of streamflow dynamics. In
doing so, the reductionist approach at the headwater has proven reliable for simplifying
streamflow processes. Moreover, the integrated framework provided tangible evidence of
the extant impact of climate change. In addition, the following essential ramifications were
drawn from the study:

• The robustness of continuous wavelet transform for analyzing tripartite streamflow
property was distinctly portrayed;
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• The assessment provides a simplified approach for investigating the hotspot of hydro-
logic extremes;

• The scale of investigation possibly influences the complexity of a hydrological process;
• The study provided substantial evidence of streamflow–ENSO teleconnection and

projected the diminution of Buffalo streamflow;
• The Buffalo River is characterized as a rain-sensitive perennial channel, mainly replen-

ished by its seasoned tributaries;
• Innovative trend analysis is quite limited in a numerical capacity as it could not

provide tangible information or inference on change points.

The integrated framework employed here provides excellent insight into the per-
formance of the catchment. Future studies may assess the ENSO relationship with the
transition environment’s standard drought index considering the terrain’s sensitivity to
climate change. The approach engaged here is reliable for adoption in hydro-meteorological
assessment in any environment.
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