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Abstract: In this paper, a novel gain-scheduled sliding-mode-type (SM-type) iterative learning
(IL) control approach is proposed for the high-precision trajectory tracking of mechanical systems
subject to model uncertainties and disturbances. Based on the SM variable, the proposed controller
is synthesized involving a feedback regulation item, a feedforward learning item, and a robust
switching item. The feedback regulation item is adopted to regulate the position and velocity tracking
errors, the feedforward learning item is applied to handle the model uncertainties and repetitive
disturbance, and the robust switching item is introduced to compensate the nonrepetitive disturbance
and linearization residual error. Moreover, the gain-scheduled mechanism is employed for both
the feedback regulation item and feedforward learning item to enhance the convergence speed.
Convergence analysis illustrates that the position and velocity tracking errors can eventually regulate
to zero under the proposed controller. By combining the advantages of both SM control and IL control,
the proposed controller has strong robustness against model uncertainties and disturbances. Lastly,
simulations and comparisons are provided to evaluate the efficiency and excellent performance of
the proposed control approach.

Keywords: mechanical system; sliding-mode-type iterative learning control; trajectory tracking
control; gain-scheduled mechanism

MSC: 70E60; 70Q05; 93C15; 93C40

1. Introduction

Many advanced control methods have been introduced in [1–18]. Iterative learning
(IL) control is a memory-based control approach for the control plants which execute
repeated or periodic operations over a finite time domain. The IL control can gradually
improve the control performance by learning from the experience of previous iterations.
According to the utilization of different feedback regulators, the IL control can be mainly
classified into the proportional-type (P-type) IL control, differential-type (D-type) IL control,
proportional–differential-type (PD-type) IL control, and proportional–integral–differential-
type (PID-type) IL control. A survey on IL control and its applications can be found
in [19–22]. The IL control has the major advantage that it does not require an accurate
system model or even does not need any prior system information, which brings a great
convenience to the controller design. Since the pioneering work by Arimoto et al. [23] in
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1984, the IL control has been broadly utilized for the control of a large range of mechanical
systems, such as robotic manipulators [24–33], robotic fish [34,35], mobile robots [36,37],
spacecraft [38–40], and permanent magnet spherical actuators [41].

Although the IL control has been extensively developed, there are still some research
issues remaining not well addressed. Among these issues, the robustness and convergence
speed of the controller are two major concerns. During the practical applications, the
mechanical system is unavoidably affected by model uncertainties and disturbances. The
robust IL control is a good solution to such problems, with strong robustness against model
uncertainties and disturbances. A commonly used robust IL control method is integrating
the IL control with some compensation tools, such as neural network [42–45], fuzzy logic
system [46,47], and disturbance observer [48,49]. However, these approaches more or
less increase the structural complexity of the controller. Moreover, the sliding-mode-type
(SM-type) IL control is another effective robust IL control method. As a new type of
IL control, the SM-type IL control combines the advantages of both SM control and IL
control. Chen et al. [50] designed a robust IL controller for the output tracking of an SRV02
rotary plant by utilizing the second-order SM control technique. In [51], an SM-type IL
control approach was developed for the wire tension control of an automatic motor winding
machine. In [52], a constant-force control method was proposed for the robotic belt grinding
by integrating adaptive SM control with IL control. Nguyen et al. [53] designed an SM-type
IL control for the trajectory tracking of a quadrotor unmanned aerial vehicle subject to
model uncertainties and external disturbances. Zhang et al. [54] proposed an adaptive
SM-type IL control scheme for non-repetitive tasks of a upper-limb exoskeleton with output
constraints. In [55], an intelligent model-free controller was constructed for a tray indexing
system with unknown dynamics by combining IL control and super-twisting SM control.
Wang et al. [56] presented a global SM-type IL control approach for the contouring motion
tasks of an industrial biaxial gantry system. In [57], a neural network-based SM-type IL
controller was implemented to a permanent-magnet synchronous motor with uncertainties
and external disturbances.

It should be pointed out that the convergence speed is another critical performance
index for the IL control. Nevertheless, the convergence speed is not sufficiently considered
in the above SM-type IL control design. The constant iteration gains are employed in most
of the aforementioned SM-type IL controllers, resulting in the relatively slow convergence
speed. The adaptive IL control is an efficient approach to accelerate the convergence by
designing the adaptive iteration gains. To accelerate the convergence, a fundamental idea
of the adaptive IL control is adopting relatively small gains at the initial iterations and
gradually enlarging the gains with the iteration number increasing. Some existing adaptive
gain-scheduled strategies can be found in [29–32,36,39,41]. However, to the best of our
knowledge, there are limited studies focused on IL control with the consideration of strong
robustness and fast convergence speed simultaneously. Indeed, the robust IL control design
with fast convergence speed is still a challenging problem currently, which deserves to be
further addressed.

Inspired by the above discussions, we propose a novel gain-scheduled SM-type IL
control approach for the high-precision trajectory tracking of mechanical systems subject to
model uncertainties and disturbances. Both strong robustness and fast convergence speed
are included in the proposed control design. Compared to most previous research, the
main novelties and contributions of this work are presented as follows.

• The proposed controller is synthesized involving a feedback regulation item, a feed-
forward learning item, and a robust switching item. By combining the advantages of
both SM control and IL control, the proposed controller has strong robustness against
model uncertainties and disturbances.

• The gain-scheduled mechanism is employed for both the feedback regulation item
and feedforward learning item. Benefiting from this design, the proposed controller
can achieve relatively fast convergence speed.
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• Convergence analysis is theoretically provided. The proposed controller can ensure
the position and velocity tracking errors can eventually regulate to zero even in the
presence of model uncertainties and disturbances.

The rest of this paper is outlined as follows. Section 2 describes the problem. Section 3
designs the controller. Section 4 analyzes the convergence. Section 5 provides the simula-
tions and comparisons. Lastly, Section 6 concludes this work.

2. Problem Description

Consider the trajectory tracking of a large range of mechanical systems whose dynam-
ics can be described in Euler–Lagrangian form (1),

M(q)
..
q + C

(
q,

.
q
) .
q + G(q) = u + d (1)

where q ∈ Rn and
.
q ∈ Rn are the position and velocity of the mechanical system,

M(q) ∈ Rn×n is the inertia matrix, C
(
q,

.
q
)
∈ Rn×n is the Coriolis and centrifugal ma-

trix, G(q) ∈ Rn is the gravitational vector, u ∈ Rn represents the control inputs, and
d ∈ Rn represents the disturbances. When considering model uncertainties, the ma-
trices M(q), C

(
q,

.
q
)
, and G(q) can be rewritten as M(q) = M∗(q) + ∆M(q), C

(
q,

.
q
)
=

C∗
(
q,

.
q
)
+ ∆C

(
q,

.
q
)
, and G(q) = G∗(q) + ∆G(q), where M∗(q), C∗

(
q,

.
q
)
, and G∗(q) are

the nominal parts and ∆M(q), ∆C
(
q,

.
q
)
, and ∆G(q) are the unknown parts. Moreover,

the disturbances d can be rewritten as d = d1 + d2, where d1 and d2 are the repetitive
and nonrepetitive disturbances, respectively. Define the lumped model uncertainties as
δ
(
q,

.
q,

..
q
)
= ∆M(q)

..
q + ∆C

(
q,

.
q
) .
q + ∆G

(
q,

.
q
)
. Subsequently, system (1) can be rearranged

as (2),
M∗(q)

..
q + C∗

(
q,

.
q
) .
q + G∗(q) + δ

(
q,

.
q,

..
q
)
= u + d1 + d2 (2)

According to [58], system (2) has the following fundamental properties.

Property 1. The matrix
.

M
∗
(q) is positive definite and bounded.

Property 2. The matrix
.

M
∗
(q)− 2C∗

(
q,

.
q
)

is skew symmetric.

Let qd be the desired position to be tracked. Define e = qd − q as the position tracking
errors, and then the velocity tracking errors can be expressed as

.
e =

.
qd −

.
q. Employing

the Taylor expansion, the linearized dynamic model of the mechanical system along the
desired trajectory

(
qd(t),

.
qd(t),

..
qd(t)

)
can be calculated as (3),

M∗(t)
..
e(t) + (C∗(t) + C∗1(t))

.
e(t) + F∗(t)e(t) + ε

(..
e,

.
e, e, t

)
= H∗(t)− u− d1 − d2 − δ(t) (3)

where M∗(t) = M∗(qd(t)), C∗(t) = C∗
(
qd(t),

.
qd(t)

)
, C∗1(t) =

∂C∗
∂

.
q

∣∣∣qd(t),
.
qd(t)

.
qd(t), F∗(t) =

∂M∗
∂q

∣∣∣qd(t)
..
qd(t)+

∂C∗
∂q

∣∣∣qd(t),
.
qd(t)

.
qd(t)+

∂G∗
∂q

∣∣∣qd(t)
, H∗(t) = M∗(qd(t))

..
qd(t)+C∗

(
qd(t),

.
qd(t)

)
.
qd(t) + G∗(qd(t)), and ε

(..
e,

.
e, e, t

)
is the linearization residual error. Thus, the linearized

dynamic model of the mechanical system for the ith iteration can be described as (4),

M∗
..
ei
+ (C∗ + C∗1)

.
ei
+ F∗ei + εi = H∗ − ui − d1 − di

2 + δ (4)

The aim of this research is developing a controller u to ensure the desired position and
velocity of the mechanical system can be eventually tracked under model uncertainties
and disturbances, when i→ ∞ , ei(t)→ 0n , and

.
ei
(t)→ 0n . Before proceeding, standard

assumptions are made as follows.

Assumption 1. The model uncertainties and disturbances ∆M(q), ∆C
(
q,

.
q
)
, ∆G(q), d1, and d2

are bounded.

Assumption 2. The initial conditions for each iteration are identical, qi(0) = qd(0) and
.
qi
(0) =

.
qd(0).
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3. Controller Design

In this section, an innovative gain-scheduled SM-type IL controller is developed to
solve the above trajectory tracking problem. First, the SM variable for the ith iteration is
introduced as (5),

si =
.
ei
+ µei (5)

where µ > 0. Then, the gain-scheduled SM-type IL controller for the ith iteration is
synthesized as (6),

ui = ui
f b + ui

f f + ui
r (6)

where ui
f b is the feedback regulation item, ui

f f is the feedforward learning item, and ui
r is

the robust switching item. The expressions of ui
f b(t), ui

f f (t), and ui
r(t) are presented as

(7)–(9), respectively:
ui

f b = ki
f bsi, (7)

ui
f f = ki−1

f f si + ui−1, (8)

ui
r = ηsgn

(
∆si−1

)
, (9)

where ∆si = si+1 − si u−1 = 0n, ki
f b ∈ Rn×n, ki

f f ∈ Rn×n, η > 0, and sgn(·) represents the

signum function. The gain matrices ki
f b and ki

f f are exponentially scheduled through the
mechanism designed as (10), {

ki
f b = eγik0

f b,
ki

f f = eγik0
f f ,

(10)

where γ > 0, k0
f b, and k0

f f are the positive definite gain matrices for the initial iteration.

Remark 1. The proposed controller (6) involves the feedback regulation item (7), the feedforward
learning item (8), and the robust switching item (9). The feedback regulation item is adopted to
regulate the position and velocity tracking errors, the feedforward learning item is applied to handle
the model uncertainties and repetitive disturbance, and the robust switching item is introduced to
compensate the nonrepetitive disturbance and linearization residual error.

Remark 2. Moreover, the gain-scheduled mechanism (10) is employed and the gain matrices of
both the feedback regulation item and feedforward learning item are exponentially scheduled from
iteration to iteration. For the initial iteration, the position and velocity tracking errors are relatively
large. At this moment, the gain matrices are set small to avoid the control toques out of the reasonable
range. As the iteration number increases, the position and velocity tracking errors are degraded. At
this moment, the gain matrices become large enough through the mechanism (10) to enhance the
convergence speed of the proposed controller.

Remark 3. To give the readers a better understanding of the whole control design procedure, the
structure of the proposed gain-scheduled SM-type IL control approach is provided in Figure 1.

Remark 4. A weakness of the proposed controller is that it is designed under the assumption of the
identical initial conditions for each iteration. This assumption is commonly made in the previous
research on IL control. Nevertheless, such an assumption is quite conservative for practical systems.
Our future research will focus on removing this assumption, and the ideas in [59–62] may provide
the guideline.
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4. Convergence Analysis

In this section, the convergence of the proposed controller is analyzed through the
main theorem as follows.

Theorem 1. Consider the mechanical system (1) controlled by the SM-type IL controller (6) and
the gain-scheduled mechanism (10). If the control gains are properly determined satisfying the
conditions (11)–(14),

θ1 = λmin

(
k0

f b − k0
f f + 2C∗1 − 2µM∗

)
> 0 (11)

θ2 = λmin

(
µ
(

2F∗ + 2µC∗ + µk0
f b − µk0

f f − 2
.
C
∗
1

))
> 0 (12)

θ1θ2 > ‖F∗ − η(C∗ + C∗1 − µM∗)‖2 (13)

η ≥
∥∥∥∆εi + ∆di

2

∥∥∥ (14)

where ∆εi = εi+1 − εi, ∆di
2 = di+1

2 − di
2, λmin(·) represents the minimum eigenvalue of a

matrix, and ‖·‖ represents the Euclidean norm of a matrix or the induced norm of a vector.
Then, the desired position and velocity of the mechanical system can be eventually tracked,
when i→ ∞ , ei(t)→ 0n , and

.
ei
(t)→ 0n .

Proof. The Lyapunov function for the ith iteration is presented as (15),

Vi =
∫ t

0
e−cτ

(
si
)T

k0sidτ (15)
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where k0 = k0
f b + k0

f f and c > 0. Define ∆Vi = Vi+1 − Vi. Then, ∆Vi can be calculated
as (16):

∆Vi =
∫ t

0 e−cτ
(
si+1)Tk0si+1dτ −

∫ t
0 e−cτ

(
si)Tk0sidτ

=
∫ t

0 e−cτ
[(

∆si)Tk0∆si + 2
(
∆si)Tk0si

]
dτ

= 1
eγ(i+1)

∫ t
0 e−cτ

[(
∆si)Tki+1∆si + 2

(
∆si)Tki+1si

]
dτ

(16)

The linearized dynamic model of the mechanical system for the i + 1th iteration can
be described as (17),

M∗
..
ei+1

+ (C∗ + C∗1)
.
ei+1

+ F∗ei+1 + εi+1 = H∗ − ui+1 − d1 − di+1
2 + δ (17)

Combining (4) and (17), we can obtain (18),

M∗∆
..
ei
+ (C∗ + C∗1)∆

.
ei
+ F∗∆ei = −∆ui − ∆εi − ∆di

2 (18)

where ∆ei = ei+1 − ei and ∆ui = ui+1 − ui. Employing (6), ∆ui can be calculated as (19),

∆ui = ki+1
f b si+1 + ki

f f si + ηsgn
(

∆si
)

(19)

Combining (18) and (19), M∗∆
.
si can be calculated as (20),

M∗∆
.
si

= M∗
(

∆
..
ei
+ µ∆

.
ei
)

= −(C∗ + C∗1)∆
.
ei − F∗∆ei − ∆ui − ∆εi − ∆di

2 + µM∗∆
.
ei

= −(C∗ + C∗1)∆
.
ei − F∗∆ei −

[
ki+1

f b si+1 + ki
f f si + η

(
∆si)]− ∆εi − ∆di

2 + µM∗∆
.
ei

= −
(

C∗ + C∗1 − µM∗ + ki+1
f b

)
∆si −N∗∆ei − η

(
∆si)− ki+1si − ∆εi − ∆di

2

(20)

where N∗ = F∗ − µ(C∗ + C∗1 − µM∗). Rearranging (20), ki+1si can be calculated as (21),

ki+1si = M∗
(

∆
..
ei
+ µ∆

.
ei
)

= −(C∗ + C∗1)∆
.
ei − F∗∆ei − ∆ui − ∆εi − ∆di

2 + µM∗∆
.
ei

= −(C∗ + C∗1)∆
.
ei − F∗∆ei −

[
ki+1

f b si+1 + ki
f f si + η

(
∆si)]− ∆εi − ∆di

2 + µM∗∆
.
ei

= −M∗∆
.
si −

(
C∗ + C∗1 − µM∗ + ki+1

f b

)
∆si −N∗∆ei − η

(
∆si)− ∆εi − ∆di

2

(21)

Substituting (21) into (16), we can obtain (22),

∆Vi = 1
eγ(i+1)

{∫ t
0 e−cτ

(
∆si)Tki+1

d ∆sidτ − 2
∫ t

0 e−cτ
(
∆si)TM∗∆

.
sidτ

−2
∫ t

0 e−cτ
(
∆si)T

[(
C∗ + C∗1 − µM∗ + ki+1

f b

)
∆si + N∗∆ei + ηsgn

(
∆si)+ ∆εi + ∆di

2

]
dτ
} (22)

Since ∆si(0) = 0n, Equation (23) can be obtained through the integration by parts,∫ t
0 e−cτ

(
∆si)TM∗∆

.
sidτ = e−cτ

(
∆si)TM∗∆si

∣∣∣t
0
−
∫ t

0

[
e−cτ

(
∆si)TM∗

]′
∆sidτ

= e−ct(∆si)TM∗∆si + c
∫ t

0 e−cτ
(
∆si)TM∗∆sidτ

−
∫ t

0 e−cτ
(

∆
.
si
)T

M∗∆sidτ −
∫ t

0 e−cτ
(
∆si)T .

M
∗
∆sidτ

(23)

Rearranging (23),
∫ t

0 e−cτ
(
∆si)TM∗∆

.
sidτ can be calculated as (24),

2
∫ t

0
e−cτ

(
∆si
)T

M∗∆
.
sidτ = e−ct

(
∆si
)T

M∗∆si + c
∫ t

0
e−cτ

(
∆si
)T

M∗∆sidτ −
∫ t

0
e−cτ

(
∆si
)T .

M
∗
∆sidτ (24)

Moreover, inequality (25) can easily be derived:

2ki+1
f b − ki+1 = ki+1

f b − ki+1
f f > k0

f b − k0
f f (25)

Substituting (24) and (25) into (23), we can obtain (26),
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∆Vi <
1

eγ(i+1)

{
−e−ct

(
∆si
)T

M∗∆si − c
∫ t

0
e−cτ

(
∆si
)T

M∗∆sidτ − 2
∫ t

0
e−cτ

(
∆

.
ei
)T

N∗∆eidτ

−2
∫ t

0
e−cτµ

(
∆ei
)T

N∗∆eidτ −
∫ t

0
e−cτ

(
∆

.
ei
)T

B∗∆
.
eidτ − 2

∫ t

0
e−cτµ

(
∆ei
)T

B∗∆
.
eidτ

−µ2
∫ t

0
e−cτ

(
∆ei
)T

B∗∆eidτ − 2
∫ t

0
e−cτ

(
∆si
)T[

η
(

∆si
)
+ ∆εi + ∆di

2

]
dτ

} (26)

where B∗ = k0
f b − k0

f f + 2C∗1 − 2µM∗. Since ∆ei(0) = 0n, Equation (27) can be obtained
through the integration by parts,∫ t

0 e−cτµ
(
∆ei)TB∗∆

.
eidτ = e−cτµ

(
∆ei)TB∗∆ei

∣∣∣t
0
−
∫ t

0

[
e−cτµ

(
∆ei)TB∗

]′
∆eidτ

= µe−ct(∆ei)TB∗∆ei + cµ
∫ t

0 e−cτ
(
∆ei)TB∗∆eidτ

−
∫ t

0 e−cτµ
(
∆ei)TB∗∆eidτ −

∫ t
0 e−cτµ

(
∆ei)T

(
2

.
C
∗
1 − 2µ

.
M
∗)

∆eidτ

(27)

Rearranging (27),
∫ t

0 e−cτµ
(
∆ei)TB∗∆

.
eidτ can be calculated as (28),

2
∫ t

0 e−cτµ
(
∆ei)TB∗∆

.
eidτ = µe−ct(∆ei)TB∗∆

.
ei
+ cµ

∫ t
0 e−cτ

(
∆ei)TB∗∆eidτ

−
∫ t

0 e−cτµ
(
∆ei)T

(
2

.
C
∗
1 − 2µ

.
M
∗)

∆eidτ
(28)

Substituting (28) into (27), we can obtain (29),

∆Vi <
1

eγ(i+1)

{
−e−ct

(
∆si
)T

M∗∆si − c
∫ t

0
e−cτ

(
∆si
)T

M∗∆sidτ − 2
∫ t

0
e−cτ

(
∆ei
)T

N∗∆eidτ

−cµ
∫ t

0
e−cτ

(
∆ei
)T

B∗∆eidτ −
∫ t

0
e−cτ

(
∆ei
)T

µD∗∆eidτ −
∫ t

0
e−cτ

(
∆

.
ei
)T

B∗∆
.
eidτ

−ce−cτ
(

∆ei
)T

N∗∆ei − 2
∫ t

0
e−cτ

(
∆si
)T[

η
(

∆ζ j
)
+ ∆εi + ∆di

2

]
dτ

} (29)

where D∗ = 2F∗ + 2µC∗ + µk0
f b − µk0

f f − 2
.
C
∗
1 . From conditions (11)–(13), inequality (30)

can be derived:

−2
∫ t

0
e−cτ

(
∆ei
)T

N∗∆eidτ −
∫ t

0
e−cτ

(
∆ei
)T

µD∗∆eidτ −
∫ t

0
e−cτ

(
∆

.
ei
)T

B∗∆
.
eidτ

≤ −
∫ t

0
e−cτ

(
θ1‖ ∆

.
ei ‖

2
+ 2
(

∆
.
ei
)T

N∗∆ei + θ2‖ ∆ei ‖2
)

dτ

≤ −
∫ t

0
e−cτ

(
θ1‖ ∆

.
ei ‖

2
+ 2‖ ∆

.
ei ‖‖ N∗ ‖max‖ ∆ei ‖+ θ2‖ ∆ei ‖2

)
dτ

≤ −
∫ t

0
e−cτ

(√
θ1‖ ∆

.
ei ‖+

√
θ2‖ ∆ei ‖

)2
dτ ≤ 0

(30)

Moreover, from condition (14), inequality (31) can be derived:(
∆si
)T[

ηsgn
(

∆si
)
+ ∆εi + ∆di

2

]
≥
∥∥∥∆si

∥∥∥(η −
∥∥∥∆εi + ∆di

2

∥∥∥) ≥ 0 (31)

Substituting (30) and (31) into (29), we can obtain (32),

∆Vi < 0 (32)

This means that Vi+1 < Vi. Moreover, from the definition of Vi, we have Vi > 0
and Vi is bounded. Thus, we can derive that when i→ ∞ , si(t)→ 0n . Combined with
the definition of si, we further have that when i→ ∞ , ei(t)→ 0n and

.
ei
(t)→ 0n . This

finishes the proof. �

5. Simulations and Comparisons

In this section, simulations and comparisons are provided to demonstrate the efficiency
and advantages of the proposed controller. The simulation scenario is considered as the
trajectory tracking control of a two-link robot manipulator, as shown in Figure 2, whose
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dynamics can be described as system (1) with the expressions of M(q), C
(
q,

.
q
)
, and G(q),

given as (33) [58],

M(q) =
[

M11 M12
M21 M22

]
, C

(
q,

.
q
)
=

[
C11 C12
C21 C22

]
, G(q) =

[
G1
G2

]
(33)

where M11 = ξ1 + ξ2 + 2p3 cos q2, M12 = M21 = ξ2 + ξ3 cos q2, M22 = ξ2, C11 =
−ξ3

.
q2 sin q2, C12 = −ξ3

( .
q1 +

.
q2
)

sin q2, C21 = ξ3
.
q1 sin q2, C22 = 0, G1 = ξ4g cos q1 +

ξ5g cos(q1 + q2), G2 = ξ5g cos(q1 + q2), ξ1 = m1l2
c1 + m2l2

1 + J1, ξ2 = m2l2
c2 + J2, ξ3 =

m2l1lc2, ξ4 = m1lc2 + m2l1, ξ5 = m2lc2, and g = 9.8 m/s2. Moreover, the meanings of the
physical and geometric parameters m1, m2, J1, J2, l1, l2, lc1, and lc2 can be found in Figure 2.
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Figure 2. Diagram of the two-link robot manipulator.

In the simulations, the physical and geometric parameters of the robot manipu-
lator are chosen as m1 = 2.2 kg, m2 = 0.9 kg, J1 = 3.8 kgm2, J2 = 4.4 kgm2,
l1 = 0.4 m, l2 = 0.6 m, lc1 = 0.2 m, and lc2 = 0.3 m. The disturbances are given
as d = [0.4 sin(0.8t), 0.3 cos(1.2t)]T Nm. The desired trajectory of the robot manipulator
is chosen as qd = [sin(2t), cos(2t)]T rad. Accordingly, the initial position and velocity of
the robot manipulator are set as q(0) = [0, 1]T rad and

.
q(0) = [2, 0]T rad/s, respectively.

Moreover, the control gains of the proposed gain-scheduled SM-type IL controller are
selected as µ = 2, η = 0.1, γ = 1, k0

f b = diag{10, 10}, and k0
f f = diag{10, 10}.

The simulation results for the proposed controller under the first five iterations are pro-
vided in Figures 3–7. Figures 3 and 4 show the time response of the position tracking and
velocity tracking under the first five iterations. It is clearly seen that as the iteration number
increases, the actual position and velocity of the robot manipulator can regulate to the de-
sired values more accurately and rapidly. The time response of the control torques under the
first five iterations is given in Figure 5. It is obvious that the control torques can always stay
within the reasonable range during the whole trajectory tracking process. Figures 6 and 7
present the maximum absolute errors (MAEs) of the position tracking and velocity tracking
under the first five iterations. The MAEs greatly decrease for the first three iterations
and then they tend to be steady. Under the fourth iteration, the MAEs of the position
tracking are MAE{e1} = 8.3× 10−4 rad and MAE{e2} = 4.7× 10−4 rad, and the MAEs of
the velocity tracking are MAE

{ .
e1
}
= 1.1× 10−2 rad/s and MAE

{ .
e2
}
= 8.8× 10−3 rad/s.

It is noteworthy that such tracking accuracy is sufficient for the operations of industrial
robots in the real world.
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Besides the proposed controller, the finite-time PD-like controller based on the homo-
geneous method in [63] is also employed for comparisons, which is designed as (34),

u = −k1sigα1(e)− k2sigα2
( .
e
)

(34)

where k1 > 0, k2 > 0, 0 < α1 < 1, α2 = 2α1/(1 + α1), and sigα1(·) represents sigα1(x) =[
|x1|α1sgn(x1), |x2|α1sgn(x2), . . . , |xn|α1sgn(xn)

]T. Note that large gains k1 and k2 can result
in the relative fast convergence speed, but the control torques may become relatively large
at the same time. In the simulations, the control gains of the compared finite-time PD-
like controller are selected as k1 = 100, k2 = 100, α1 = 1/2, and α2 = 2/3 through trial
and error.

The performance comparisons between the proposed controller under the fourth
iteration and the compared finite-time PD-like controller are provided in Figures 8–12.
Figures 8 and 9 present the tine response of the position tracking and velocity tracking
under both controllers. Figures 10 and 11 give the tine response of the position and velocity
tracking errors under both controllers. Moreover, the time responses of the control torques
under both controllers are shown in Figure 12.
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From Figures 10 and 11, the steady-state position and velocity tracking errors under
the compared finite-time PD-like controller are much larger than those under the proposed
controller. The proposed controller can realize the high-performance trajectory tracking
of robot manipulator even subject to model uncertainties and disturbances. However,
the tracking performance of the compared finite-time PD-like controller is relatively poor
under the same conditions. This means the proposed controller is strongly robust against
model uncertainties and disturbances. The strong robustness of the proposed controller is
mainly because it combines the advantages of both SM control and IL control. Moreover,
it is not difficult to find that the settling time under the compared finite-time PD-like
controller is also quite longer than that under the proposed controller. This means the
proposed controller has relatively fast convergence speed. The fast convergence speed of
the proposed controller is benefiting from the utilization of gain-scheduled mechanism.
From the simulation results, it is concluded that the proposed controller can achieve better
tracking performance than the compared finite-time PD-like controller in terms of higher
steady-state accuracy and faster convergence speed.
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6. Conclusions

We propose a novel gain-scheduled SM-type IL control approach for the high-precision
trajectory tracking of mechanical systems subject to model uncertainties and disturbances.
Specifically, the proposed controller involves a feedback regulation item to regulate the
position and velocity tracking errors, a feedforward learning item to handle the model
uncertainties and repetitive disturbance, and a robust switching item to compensate the
nonrepetitive disturbance and linearization residual error. Moreover, the gain matrices
of both the feedback regulation item and feedforward learning item are exponentially
scheduled to enhance the convergence speed. The proposed controller can ensure the
position and velocity tracking errors eventually regulate to zero through convergence
analysis. Lastly, the efficiency and advantages of the proposed controller are verified by
simulations and comparisons. It is expected that the proposed control approach can provide
a beneficial reference for the high-precision control of industrial robots in the real world.
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