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Abstract: Risk propagation is occurring as an exceptional challenge to supply chain management.
Identifying which supplier has the greater possibility of interruptions is pivotal for managing the
occurrence of these risks, which have a significant impact on the supply chain. Identifying and
predicting how these risks propagate and understanding how these risks dynamically diffuse if
control strategies are installed can help to better manage supply chain risks. Drawing on the complex
systems and epidemiological literature, we research the impact of the global supply network structure
on risk propagation and supply network health. The SIR model is used to dynamically identify
and predict the risk status of the supply chain risk at different times. The results show that there
is a significant relationship between network structure and risk propagation and supply network
health. We demonstrate the importance of supply network visibility and of the extraction of the
information of node firms. We build up an R package for geometric graphs and epidemics. This paper
applies the R package to model the supply chain risk for an automotive manufacturing company.
The R package provides a firm to construct the complicated interactions among suppliers and display
how these interactions impact on risks. Theoretically, our study adapts a computational approach
to contribute to the understanding of risk management and supply networks. Managerially, our
study demonstrates how the supply chain network analysis approach can benefit the managers by
developing a more holistic framework of system-wide risk propagation. This provides guidance for
network governance policies, which will lead to healthier supply chains.

Keywords: supply chain risk management; supply chain resilience; risk propagation; supply network
health; SIR epidemic model

MSC: 68-11; 93-10

1. Introduction

In globally dispersed production economies, supply chain management systems have
necessarily become more dynamic and complex [1]. Enterprises today must compete using
their supply chains as essential components of their strategies. However, such cooperation
is not always continually successful or stable due to reasons attributable to what we can
today see as lack of resilience [2]. Moreover, the same enterprise may be involved in
multiple supply chains, resulting in multi-level network structures.

Where most enterprises tend to implement a global purchasing and selling strategy
and have supply chains that are distributed around the world, risks such as poor supplier
financial health, supplier distortion of capabilities, and conflicting objectives (amongst
other issues) can trigger serious supply, quality, performance, and inventory breaks [3].
Following the Japanese magnitude 7.3 earthquake in 2016, the surrounding high-tech
manufacturing industry was unable to provide parts to Toyota (Sony and Honda were
other notable firms), causing the operation to suffer losses of up to USD 277 million [4].
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Schaeffler produces roller bearings and linear motion products and is the only needle
roller supplier to numerous auto OEMs. During 2017, the company had to cut off its
supply due to environmental protection factors and requested the relevant government
department to give the supplier a three-month transition period to allow Schaeffler to
switch its suppliers [5]. The implication of this component stock-out potentially meant
the full suspension of production of more than 200 models from 49 auto OEMs, with over
3 million vehicles not able to leave the factory. The outbreak of COVID-19 caused a sudden
interruption of the global supply chain, which had a great impact on the profitability
and sustainability of some supplier companies, especially in emerging economies [6]. At
the time of writing, in 2022, the COVID-19 pandemic is causing lockdown restrictions,
including suspended production; the full global impact of this has yet to be fully realized.

Numerous studies have shown that risk propagation in the supply chain is mainly the
process by which the behavior of a node enterprise is transmitted to its adjacent nodes [7].

However, an important limitation of such studies is that they have performed the
analyses only on the types of networks or on simple examples of supply chain networks, as
pointed out by Ivanov and Sokolov [8]. Of importance to practicing supply chain managers
is a requirement for data in advance or dynamically about how many entities are infected by
a potential risk and where it is in the supply network [9]. Comparatively, risk propagation
has attracted less attention in the literature. Varthini R et al. [10] asserted the great value
and significance in studying the mechanism of risk propagation and the control of supply
chains and argued for an interdisciplinary approach to understand how supply networks
behave and evolve. This study aims to bridge the above research gap.

More recently, various literature related to the SIR epidemic model with nonlinear
incidence has been investigated; for example, Buonomo et al. [11] investigated the global
stability of the endemic equilibrium with the use of an appropriate Lyapunov. The risks
in the supply chains have some similarities with the propagation development seen in
infectious diseases. Table 1 lists some similarities of the risk propagation between supply
chains and infectious disease.

Table 1. Propagation modes and similarities.

Propagation Automotive Manufacturing
Supply Chain

Infectious Disease
Propagation Network Similarity

Network Supply chain Social network Many nodes and
uncertain connections

Media Risk Pathogen Different media have different spread
speeds and hazards

Object Node enterprise Human or other species Different propagation objects,
different resistance

Mechanism Spread through business Spread by contact The first to be affected are individuals
exposed to sources of risk

Stage Outbreak, propagation, recovery Incubation period, outbreak
period, recovery period

After being infected, surviving
individuals are immune

The simulations in this paper are calculated using R, where the fundamental unit of
shareable code is the ‘package’. To facilitate sharing, the ‘R package’ bundles code, data,
documents, and tests together. The data structure of the mathematical graphs in these
packages is slightly different, and we build up our package based on the data structure of
the package “network”. The “network” package stores a network as an edge list, which
saves storage space for a network, compared with storing a large adjacency matrix. It is
also flexible in that we can add attributes for the vertices and edges of the network, and this
can facilitate the storage of additional information for a geometric graph and supply chain
risks, such as the locations of vertices and the transition steps of the risks. It also provides a
set of functions to visualize a network from which we also benefit in our package.
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To date, no study of supply chain network analysis has captured risk propagation
performance dynamically or discussed the control methods of networks using SIR. The
existing static SIR model cannot describe the dynamic, complex interaction between nodes
in the supply chain. The research presented in this paper addresses this problem.

The case focus in this study is a major Chinese car maker; in recent years, China’s
automotive market has been gradually opening to foreign investment, and many automo-
tive companies have chosen China to set up factories. According to the China Automotive
Association, the average value of China’s automotive production and sales in the past five
years was about 27 million [12]. China’s automotive industry has now become the world’s
largest automotive producing country. Due to the vast numbers of parts required and
the high degree of industry collaboration, supply chain complexity introduces risks and
disruptions. Supply chain managers can rely on the results of this study to dynamically
predict and identify the risks and provide the corresponding measures to improve the
supply chain resilience.

This paper combines complex network systems and epidemic SIR modeling ap-
proaches to construct models and analyze the risk propagation in an automotive supply
chain. In this paper, we (i) conduct an in-depth exploration of the risk propagation mech-
anism, elucidating the key factors affecting risk propagation in auto supply chains, and
visualize the change; (ii) extract key information from the simulated epidemics in order
to understand how the number of different types of node enterprises changes and how
the risks evolve; (iii) explore how control measures can ensure the healthy and orderly
operation of the entire supply chain. We pursue these objectives using computational
modeling with an R package and a network analysis approach.

The remainder of this article is organized as follows. Firstly, the theoretical foun-
dations and hypotheses are presented. Secondly, our research design and methodology
are described. Following that, the analysis, results, and implications of our findings are
discussed. Furthermore, an application of the framework is shown with the case study on
the automotive industry in China. Finally, conclusions and directions for future research
are presented.

2. Literature Review

The development of supply chains is no longer a simple linear connection between
node enterprises. There are extensive and intricate relationships in the network structure
of supply chains, which can be abstracted into a complex network structure. If any node
enterprise changes, the related enterprises are affected and may change accordingly, thus
potentially affecting the stability of the whole supply chain network. This type of structure
is represented by dynamic models, often employing agent-based (AB) modeling, which are
used to examine real-world supply network structural dynamics. Complicated cause and
effect, nonlinearity, entity heterogeneity, and supply network structure over an extended
time range can be solved by agent-based models [13]. Several enterprise levels can be
captured by these models [14], including firm- and network-level behaviors as well as
sustainability-based metrics over time.

Risk propagation refers to the spread of both endogenous and exogenous risks from
one organization to other organizations through the supply network [15]. Work on the
propagation of risk in supply chains has focused on the method or mode of risk transfer,
and the process of risk itself [16], whereas other scholars have studied the propagation
mechanism of the supply chain risk [17]. Some complex network evolution models of
un-weighted, undirected, and weighted directed graphs are constructed in the agricultural
product supply chain [18]. Computational models based on multi-agent simulation or
Petri net theory [19] can also serve as valuable proxies in understanding possible risk
propagation patterns using complex designs that mimic real-world supply networks. Ai
Genyun et al. [20] conducted relevant research on the evolution of the regulations of
the supply chain risk, believing that response time and the convergence coefficient of
each enterprise jointly determine the controllability of the supply chain. Considering the
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interdependence of the risks, some risk propagation models based on the Bayesian network
can evaluate specific risks in the supply chain, and some corresponding control measures
should be taken according to the different supply chain environments [21].

The mathematical transmission model of the smallpox virus can be traced back to
1760 [22]. In 1911, Ross [23] laid the foundation for the study of the malaria transmission
process to study the dynamics of infectious diseases in the future. As a solid foundation,
epidemiology and evolutionary biology models play a crucial role in the study of risk
diffusion in complex networks [24]. Indeed, epidemiological models have been applied to
simulate the spread of risk in complex network environments in previous studies. Examples
include the spread of infectious diseases in biological systems, the spread of computer
viruses in the internet, and grid failures in power systems [25]. The risk spread of pandemic
models is widely used in finance, with contagion caused by shocks to complex financial
networks [26]; how to use the SIR epidemic model to develop contracts that minimize
procurement and social costs after disasters is considered [27]. Despite the SIR epidemic
model being well developed, it has not been used for the risk propagation mechanism in
the automotive supply chain. The model can be used for risk analysis and forecasting due
to the association with the nature of risk propagation.

The SIR model is the most classic model in epidemiology for studying the spread of
infectious diseases. The hosts in a closed system are divided into three compartments:
susceptible, infectious, and recovered. A susceptible host may be infected by infectious
hosts, and the infectious hosts may also recover before infecting other hosts. The SIR model
has been largely implemented in R, and there are well-built packages to implement it, such
as EpiModel [28] and EpiDynamics [29]. However, the majority of the packages rely on
the assumption that the hosts in the closed system are inter-connected with every other
host, which is not true in the supply chain framework. Therefore, this paper contributes
by generalizing this assumption. We allow node companies to only connect to the node
companies with which they have a business relationship, through which the risk propagates.
We put this connection in the network framework.

Most studies mainly use qualitative methods to study supply chain risk control, while
a few quantitative studies on the risk control have been researched [30]. The most relevant
work has tended to identify the risks following an operational model of supply chains
and then studied the risks caused by uncertain factors, evaluated them, and proposed
corresponding risk control measures [31]. In complex networks, random immunity, target
immunity, acquaintance immunity, contact immunity, artificial immunity, and priority
immunity are the common approaches to solving medical, computer network, and supply
chain quality management problems [32]. The immune strategies appearing in the risk
propagation and the control of the supply chain are the research gap. This study not only
studies the supply chain risk of the automotive manufacturing industry, but also explores
its risk control and puts forward corresponding control measures.

3. Methodology
3.1. Complex Network Modelling

Erdos and Renyi (1960) proposed random graph theory for the first time in their
research, and the study of complex networks was carried out accordingly. It has two main
characteristics: node complexity and relationship complexity. In a complex network, the
degree of a node vi is the number of edges directly connected to it, denoted by ki. Nodes
with a degree of 0 are called outliers. Normally, the nodes with more degrees in the network
are more important than the others. Because it is connected to a large number of nodes,
there are many ways to infect other nodes. When the risk spreads in the network, it is very
valuable to focus on the nodes with more degrees in the network. The average degree in the
network refers to the average value of the degrees of all the nodes in the network, which is
represented by <k>.

ki = ∑
j∈N

zij (1)
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< k >=
1
N

N

∑
i=1

ki (2)

where zij indicates the connection relationship between two nodes, 0 means not connected,
and 1 means connected.

3.2. SIR Modelling

SIR modelling is a common model in investigating the dynamics of complex networks
and propagation. The SIR model is often used to study diseases that will not be infectious
after being cured, such as chicken pox. In this model, node states are divided into the
following three categories:

S (Susceptible)—Susceptible state nodes, which are in a healthy state but have the
possibility of being infected.

I (Infected)—Infected state nodes, which are in an infected state and can pass risk to
their neighboring nodes.

R (Removed)—Immune state nodes. There are two states for this state node: one is
that the node has recovered and is immune and will not be infected; the other is that the
node is removed from the network due to death.

Each node must be one of the above three states, but the node in the immune state
cannot infect other nodes, and it has also acquired permanent immunity. Some infected
nodes acquire permanent immunity after being cured.

In the model below, α represents the probability that a node in a susceptible state
is infected and becomes an infected node, β represents the probability of an infected
node being cured and gaining immunity to become an immune node. S(t), I(t), and R(t),
respectively, represent the proportion of nodes in susceptible, infected, and immune states
at t. The infection mechanism of the SIR model is shown in Figure 1. The differential
equation representation of the SIR model is:

dS(t)
dt = −αS(t)I(t)

dI(t)
dt = αS(t)I(t)− βI(t)

dR(t)
dt = βI(t)

S(t) + I(t) + R(t) = 1

(3)

Figure 1. Infection mechanism diagram of SIR model.

3.3. Model Development

Based on the SIR model, this paper establishes a risk propagation model for the au-
tomotive manufacturing supply chain. Due to the fact that the anti-risk capabilities and
business volume of each node enterprise are different, the automotive manufacturing sup-
ply chain network to be constructed is an undirected network with weights. When a certain
node enterprise in the network encounters a risk, the risk will spread through the business
transactions between the nodes, so that the node companies with which it has a business
relationship will be infected first. As a result, it spreads to the surroundings, threatening
the stability of the entire supply chain system. According to this basic propagation rule,
this paper describes the propagation evolution of the supply chain risk in the automotive
manufacturing industry.

3.3.1. Model Assumptions

(1) At the same time t, the node can only be in one of the three states. During the state
change of a node, no node can directly change from a susceptible state to an immune



Mathematics 2022, 10, 3008 6 of 16

state; it must go through an infected state. In addition, when risks spread in the
automotive manufacturing supply chain, the risks faced by node companies in the
supply chain can only come from one neighboring node at a time.

(2) All node companies in the supply chain are likely to be infected by neighboring nodes.
However, the anti-risk capabilities of each node enterprise are different, and the
edge weights between the connected nodes will be changed due to different business
volumes. Therefore, it has an impact on the input and output of the risks.

3.3.2. Parameter Determination

(1) Determination of infectious rate parameters

The object of this paper is an undirected network with weight. The weights of the
edges are mainly based on the business volume between nodes. When the risk is introduced,
the risk infection rate will change dynamically due to the change of the edge weights. When
selecting the next infected node, the amount of business transactions between the two
nodes is mainly considered. The greater the amount of business transactions, the greater
the possibility of infection. Where i is the node at risk, node i is connected to node j, and the
risk interference function of node j is defined as f (αj). The expressions are as follows [33]:

f (αj) = p(eij)× α0 (4)

p(eij) =
eij

∑n
y=1 ey j

(5)

α = f (αj) (6)

in the formula: α0—Initial risk value.
p(eij)—The ratio of the edge weights of node i and node j to the sum of the edge

weights of all nodes connected to node j.
y—Represents all nodes connected to node j.

(2) Determination of recovery rate parameters

In the process of risk propagation, enterprises have a certain capacity to resist risks.
The vulnerability of a node is an important indicator of its ability to resist risks. Generally,
the higher the node’s vulnerability, the weaker its ability to defend itself against risks,
and vice versa. In this paper, the reciprocal of the degree of node vulnerability is used to
indicate the ability of the node to defend itself against risks. It is mainly considered from
two aspects: one is to consider the importance of the node in the network; the other is the
connection relationship between one node enterprise and the others.

Ce(i) = θ−1
n

∑
j=1

aijej (7)

sk =
k

∑n
i=1 di

(8)

ω(i) = skCe(i) (9)

β =
1

ω(i)
(10)

in the formula: Ce(i)—Node importance index;
θ—Main eigenvalues of the network adjacency matrix;
ej—The corresponding eigenvector;
aij—Represents whether there is business communication between nodes. The logical

variable 1 means yes, 0 means no.
sk—Node enterprise weight, which is determined by the node degree and the total

number of edges in the automotive manufacturing supply chain network;
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k— Represents the degree of node enterprise;
di—The number of edges in the supply chain of the automotive manufacturing industry;
ω(i)—Comprehensive vulnerability evaluation value of node i.
During the process of risk propagation, if the infection rate of the transmitted node

is lower than the recovery rate, the node will not be infected by the risk, and then vice
versa. The risk interference state function φ(αi) during the node output can be expressed
as follows:

φ(αi) =

{
0; β ≥ f (αi−1)
1; β < f (αi−1)

(11)

In the formula, f (αi−1) represents the risk value of the incoming node i.

4. Model Application to the Automotive Company Case
4.1. Data Collection

This case study is based on an automotive company and supplier network in China.
After its production lines were put into full production, the company’s annual output
reached 450,000 vehicles per year. Due to the large number of models produced, the config-
uration options are very large. The supplier network is also complex and large, making its
supply chain network very fragile and vulnerable to the impact of risks. However, based on
the product positioning of this company, consumers have extremely high requirements for
their comfort and quality. According to the information released by the China Automotive
Quality Network in recent years, this company has recalled its products frequently due
to quality problems. Although the number of recalled vehicles is small, it must be taken
seriously to avoid serious incidents.

In order to ensure supplier confidentiality, the suppliers in this article are replaced by
coded identifiers. Due to the supply chain network being very complex, it was difficult
to obtain all the necessary supplier information. Therefore, this article builds a simplified
automotive manufacturing supply chain based on the available information, which includes
13 first-tier component suppliers, which are represented by B1 to B13; 16 s-tier component
suppliers, which are represented by D1 to D16, and 9 dealers, which are represented by
C1 to C9, where 1 automotive manufacturer is represented by A1. The supply–demand
relationship of each node in the supply chain is shown in Figure 2. The arrows in the figure
only indicate the direction of product flow, not the direction of risk propagation.

In order to visualize the spread of risk more intuitively, according to the approximate
geographic location of the selected node company and the supply and demand relationship
between each node company in Figure 2, we use R language to simulate it in Rstudio
software. The simulation diagram of the supply and demand relationship is shown in
Figure 3.

4.2. Model Simulation

According to the risk propagation model established above, the program was written
in R language, and the simulation analysis was conducted by Rstudio software. The risk
propagation evolution process of the automotive manufacturing supply chain is shown in
Figure 4.

(1) Build the initial network: the initial network scale is N nodes, and the edge weight of
each edge is assigned e0.

(2) In the constructed network with weight, randomly select a node i as a risk node and
set the initial risk value α0.

(3) If node i receives risk interference at a certain time t, it becomes the infection state.
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(4) In the process of risk propagation, nodes in the network have three states. The state
of each node is indicated by 0, 1, and −1. The susceptible state is 0, the infection state
is 1, and the immune state is −1.

Si,t =


0 susceptible
1 infection state
−1 immune state

(12)

(5) Measure whether the risk can be passed to the next node. Because a node in the
network is connected to multiple nodes, when the risk is spreading it will involve
multiple nodes. However, the probability of risk propagation is affected by the edge
weights, and the function f (αj) of Formula (4) can be used to calculate the change in
risk value.

(6) After determining the change in the risk value, the function φ(αi) is to determine
whether the risk can be passed to the next node.

(7) Repeat steps 6 and 7 until the evolution is over.

Figure 2. Supply and demand relationship map.
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Figure 3. Supply and demand geographic location plot.

Figure 4. Model simulation flow chart.

4.3. Parameter Determination

This section uses the above examples to analyze and study the key factors affecting
risk propagation. Here, it is assumed that there has been an incident (outbreak) in a Tier 1
supplier, and it cannot be recovered within a short time.

Because the component types of each node enterprise are different, here a whole
vehicle is used to represent a unit quantity, and its business volume is standardized. The
business volume of each node enterprise in Figure 2 is standardized, as shown in Table 2.
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Table 2. Business volume of each node.

Node Enterprise Portfolio Node Enterprise Portfolio Node Enterprise Portfolio

A1 459,600 B13 186,883 D4 184,820
B1 193,224 C1 1923 D5 200,537
B2 200,984 C2 1815 D6 185,933
B3 182,010 C3 1825 D7 179,557
B4 219,083 C4 1522 D8 184,942
B5 172,813 C5 1654 D9 167,898
B6 187,125 C6 2078 D10 195,321
B7 186,308 C7 1548 D11 201,486
B8 169,453 C8 1885 D12 208,233
B9 125,384 C9 2231 D13 180,551

B10 149,401 D1 200,201 D14 193,395
B11 191,217 D2 174,742 D15 202,572
B12 213,346 D3 169,453 D4 184,820

5. Model Analysis and Results
5.1. Risk Propagation Dynamic Analysis

A dynamic analysis of risk communication was carried out according to the supply–
demand relationship and the historical business data from the whole automotive manufac-
turing enterprise. Following discussion with experts, the initial risk value of the outbreak
in a certain level of supplier is estimated to be α0 = 0.6, and the number of nodes in the
network is N = 39. The infectious rate and recovery rate are dynamically changed according
to the Formulas (4) to (10). The simulation analysis of this scenario is shown in Figure 5.

As can be seen from Figure 5, 28 companies, including automotive manufacturers,
were at risk from the outbreak. It shows that the risk spreads very quickly. In the later stage
of the risk spread, the number of insured companies gradually increased. It illustrates that
it is necessary to take appropriate control measures to suppress the spread of risk after the
risk breaks out. The simulation information is summarized in Figure 6, which provides a
reference when implementing the risk control.

5.2. Risk Control

The immune strategies appearing in supply chain networks are mainly random im-
munity and target immunity. This paper selects target immunity as the more reasonable
immunity strategy and puts forward effective risk control measures.

In order to highlight the effectiveness of target immunity, the effects of target immunity
and non-immunity are compared here. The simulation parameters are consistent with the
above risk propagation evolution. The target immunity is to immunize the nodes with a
large degree of selection, and the key control and priority immunity are carried out. The
comparison is shown in Figure 7.

Figure 7 exhibits that the risk quickly spreads around without any control strategy,
and the associated companies are the first to be infected by the risk after the risk outbreaks.
The number of the insured companies increases exponentially. When the system reached a
steady state, a total of 28 enterprises were exposed to the scenario risk, and the propor-tion
of infected enterprises was as high as 71.79%. However, under the control strategy of
target immunity, only six enterprises were infected in the steady state, and the trend of
risk propagation was stable, showing that the immune effect of target immunity is better.
Thus, it expresses that the timely implementation of control measures for enterprises with
complex business relations in the network is necessary after the risk occurs.

In summary, taking certain measures to control the manufacturing networks with a
higher degree can effectively suppress the spread of risks in the automotive manufactur-ing
supply chain. Each node enterprise has varied control ability. When the influence of risk
exceeds the scope of the control ability of the enterprise, the risk will have an impact on
the enterprise and pass it on to the node enterprise with a direct business relationship. If
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the initial infected enterprise is a non-critical node, the risk will not immediately show
an explosive spread because of the small number of node enterprises directly related to it.
Other enterprises can take certain measures to prevent it in advance to avoid the impact of
this risk. If the initial risk enterprises are the key nodes, the risk is more easily transmitted
to those node enterprises with more business connections, and the spread range of the risk
will be relatively wider.

Figure 5. Dynamic analysis chart of risk propagation: (a) risk propagation of step 1; (b) risk propaga-
tion of step 25; (c) risk propagation of step 50; (d) risk propagation of step 55.

Enterprises should take the risk impact seriously and check and predict the risk in
advance in the daily operation. On the one hand, it is necessary to regularly check the
potential risks of the enterprise itself and to formulate relevant control measures to avoid
the outbreak of potential risks. On the other hand, scientific methods can be used to predict
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the potential risks of the industry and the entire supply chain. This enables enterprises to
actively take measures to survive.

Figure 6. Information extraction.

Figure 7. Comparison of inoculation effect: (a) risk propagation trend without immunity strategy;
(b) risk propagation trend with target immunity strategy.

6. Discussion and Managerial Implications

Based on the analysis and simulation of the structure and characteristics of the au-
tomotive manufacturing supply chain, the risk control strategy proposed in this paper
mainly includes three aspects: supply chain node companies, supply chain networks, and
the social environment.

6.1. Supply Chain Node Enterprises

(1) Establish a risk precaution system and standardize corporate management

The node companies in the supply chain should comprehensively inspect the existing
infrastructure and risk control system and effectively identify and evaluate potential risk
factors. A sounder risk precaution system should be established to reduce the risks caused
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by unstable factors. In addition, enterprises should improve the corresponding regulations,
operation guidebooks, etc., so that the management of the enterprise can be followed
and the workers’ operations can be instructed. Regular training should be carried out
within the enterprise to strengthen the employees’ risk awareness and regulate the workers’
operations processes to minimize the risks caused by human factors.

(2) Scientifically select risk control programs

The node enterprises can make reasonable use of the existing risk assessment models
in combination with their own actual conditions and initially estimate the probability of
risk occurrence and the loss caused by the risk. Based on their actual anti-risk capabilities,
they can choose a risk control plan scientifically.

(3) Dynamic adjustment of risk control strategies

Due to the uncertainty and diversity of the risks in the supply chain of the automo-
tive manufacturing industry, the node companies should adjust and update risk control
measures in a timely manner in order to improve the continuous immunity to risks.

6.2. Supply Chain Network

(1) Reasonable selection of partners

Among the most essential tasks of supply chain management is to strengthen the
relationship management of each node company in the supply chain network. It can
comprehensively inspect the credit and operating conditions of the cooperative enterprises
and select high-quality partners. For the companies that need to maintain long-term
cooperation, they should establish strategic partnerships, make full use of the advantages
of cooperative competition, and realize benefit sharing.

(2) Strengthen the sharing and transmission of information

In order to ensure that each enterprise has evidence to follow when making decisions,
the enterprises must pass real and effective information in a timely manner. Information
exchange and sharing among related companies in the network should be enhanced. This
can effectively reduce the risk loss caused by information factors and thus enhance the
overall strength of the supply chain.

(3) Improve supply chain resilience

The resilience of the supply chain refers to the ability of the supply chain to recover to
the same level as before the supply chain was interrupted by risks. Due to the complexity
of the automotive manufacturing supply chain network, risks can easily cause large fluctu-
ations. In order to enable the automotive manufacturing supply chain to recover within
a short time after encountering sudden risks, the overall supply chain can be improved
by eliminating unreliable structures in the chain, optimizing supply–demand matching
between enterprises, and reducing potential supply chain losses.

(4) Increase trust between enterprises

Due to the close cooperation between the various nodes in the automotive manu-
facturing supply chain, the supply chain system may not function properly due to the
sudden withdrawal of a node. In order to effectively prevent such incidents, it is possible to
increase the exit cost of the enterprise, increase the trust of each enterprise, and strengthen
the control of the upstream and downstream node enterprises.

6.3. Social Environment

(1) Establish a credit evaluation system

In order to make an accurate assessment of the companies in the supply chain, it
is possible to make full use of the existing social credit system and evaluate them in all
directions. It can comprehensively consider the company’s operating mode, financial
status, company size, etc. Therefore, it will be easier to make an objective evaluation and
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to establish corresponding credit files which are reasonably and effectively shared via the
internet. This not only disciplines the company, but also provides a reference for other
companies when selecting a quality partner.

(2) Establish a reward and punishment mechanism

A third-party industry platform can be established to reward credit-compliant busi-
nesses and punish those that fail to maintain compliance. In order to regulate the en-
terprise’s own behavior and reduce the risks caused by credit factors, the trustworthy
enterprises will obtain corresponding competitive advantages and rewards.

7. Conclusions and Future Work

Owing to the complex and changeable market environment, modern enterprises are
increasingly carrying out corresponding operation strategies, and the industrial competition
has gradually developed into the competition between their supply chains. Accordingly,
major enterprises have adopted a zero-inventory strategy and lean production to give full
play to the advantages of the supply chain and to outsource a large number of non-core
businesses to suppliers. This can effectively improve the competitiveness of enterprises.
Meanwhile, they have to face various potential risks at the same time. Once the outbreak
risk is not controlled in time and effectively, the whole industrial supply chain may stop
running, and the enterprises in the supply chain will suffer huge losses. Obviously, it is
crucial to study the supply chain risk and health control.

First, based on a complex network, the research on the supply chain network is
transformed into an indirect network with weights. Then, based on the characteristics of in-
fectious disease propagation, the SIR model was selected to model the complex interactions
among the nodes to understand the risk propagation in a supply chain over time.

Second, this paper analyzed the dynamic changes of risk in the supply chain, effec-
tively predicting which companies may be affected, and this achieves the goal of preventing
problems before they occur. This study is the first to use the R package to model risk propa-
gation in the supply chain. In addition, this paper also analyzed the dynamic changes of
the infection rate and recovery rate, different numbers of the same initial risk sources, and
how the changes affect the spread of risks.

Third, immunity strategies to control risks were introduced and effective control mea-
sures were proposed in this paper. Using a large, high volume automotive manufacturer as
the case, the study reflects the model’s feasibility and applicability.

Finally, we made recommendations for how managers in organizations could utilize
these models and simulations for the quantification and mitigation of risk. Using the
proposed SIR model, managers can effectively use the dynamic chart of risk propagation
and adjust their manufacturing system strategies, operations, and management while
clearly knowing the risks of different times and how different node outbreaks spread. It is
concluded that improving the firm’s ability to withstand the risks can effectively inhibit the
spread of risk.

The limitations of this work are related to being able to confidently model a very
complex system. The R package is used to represent the risk reduction view, which
simplifies the supply chain model in this paper. It does not consider how risks are cross-
transmitted when different types of risks occur simultaneously. Moreover, the risk is not
identified and assessed and the business volume and the supply and demand relationship
between the node enterprises are simply considered. According to the actual situation, the
corresponding evaluation index system can be established by using quantitative methods
to identify and evaluate the potential risks (e.g., FMEA) in order to make the research
content more comprehensive and scientific. Future research opportunities include testing
multiple models and forms of structural visibility (e.g., inverted-U).
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