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Abstract: In this work, we emphasise the dynamical study of spreading COVID-19 in Bangladesh.
Considering the uncertainty caused by the limited coronavirus (COVID-19) information, we have
taken the modified Susceptible-Asymptomatic-Infectious-Hospitalised-Recovered (SAIHR) compart-
mental model in a Caputo fractional order system. We have also introduced public behavioural
and government policy dynamics in our model. The dynamical nature of the solutions of the sys-
tem is analysed and we have also calculated the sensitivity index of different parameters. It has
been observed that public behaviour and government measures play an important role in control-
ling the pandemic situation. The government measures (social distance, vaccination, hospitalisa-
tion, awareness programme) are more helpful than only public responses to the eradication of the
COVID-19 pandemic.

Keywords: Caputo fractional differential equation; COVID-19; SAIHR compartmental model; stability;
sensitivity index
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1. Introduction

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the infectious
agent that causes Coronavirus Disease 2019 (COVID-19), which was initially discovered in
China in early December 2019. Since then, it has spread worldwide, destroying the health,
economy, and lives of billions of people. This has made it clear how important it is to
accurately represent infectious illnesses. In reality, statistical studies are generally based
on nonlinear mathematical models, which deal with epidemiology, and mostly determine
worldwide government policies.

The COVID-19 pandemic was first confirmed in Bangladesh on 8 March 2020. The
Health and Family Welfare department, Government of the People’s Republic of Bangladesh,
has confirmed a total of 1,962,213 COVID-19 positive cases and 29,135 deaths from 3 Jan-
uary 2022 to 23 June 2022 [1]. A total of 274,923,522 vaccine doses have been administrated.
The government of Bangladesh took actions, such as social distancing, mask-wearing, trav-
elling restrictions, lockdowns, vaccination, and hospitalisation, to control the COVID-19
situation [2].

Fractional calculus is a parallel branch of calculus that cannot be considered a gener-
alised version of integer order calculus [3,4]. Fractional order systems are more appropriate
than integer order systems in many fields and can express phenomena that are linked to
memory and affected by hereditary properties [5,6]. In endemic and epidemic areas, peo-
ple’s awareness of infection will reduce the rate of contact between various compartments,
such as between humans and mosquitoes in the dengue SIR-SI model [7], whereas in the
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epidemic model with vaccination, people who have received vaccinations have a stronger
tendency to be aware of previous epidemics than people who are susceptible. In order
for specialists to gain the most knowledge from the available data before making major
judgments, there should be a systematic way to combine the models and observations.
This overview refers to some obstacles in these models and looks at some intriguing ap-
proaches focusing on the development of general structures for such models, and proposes
an alternative approach, namely fractional calculus, whose main contrast to integer order
models is where such effects are overlooked or difficult to integrate. The fractional deriva-
tive formalism of epidemic models provides a useful tool for incorporating memory and
hereditary features of systems. Furthermore, the fractional models have one more degree
of freedom than the integer order model for fitting data. Examining numerous papers on
fractional epidemic models and count models based on dynamics with fractional order
derivatives, we have proposed several mathematical models on epidemiology and suggest
that developing numerical tools for fitting mathematical models to actual data will assist
concerned authorities in avoiding or control infectious disease outbreaks. Aside from these
benefits, there are some drawbacks to using the Caputo fractional system.

1. Finding analytical solutions is difficult for Caputo differential systems.
2. There are many concepts, such as bifurcation theory, parametric optimisation, persis-

tence, etc., that have not yet been developed for Caputo fractional order systems.
3. The numerical algorithms for delayed systems and stochastic fractional systems have

not yet been developed.

Considering all of the above facts, we have constructed our model in the Caputo dif-
ferential framework. In this context, the works of Das et al. [8] and Das and Samanta [9–11]
on fractional order dynamics may be mentioned. Significant contributions have recently
been made by several researchers to the various COVID-19 models in both integer and
fractional order systems [12–18].

Fractional order modelling is a useful approach for studying the nature of diseases
because it is an extension of the integer-order derivative. The fractional order system
also adds an extra parameter that can be used to improve numerical simulations. In this
model, we have considered a new infection function that includes the strength of the
government action and the strength of public response. This infection function has not
yet been used in previous works of fractional order systems. We have also studied the
public response to the spreading of COVID-19 disease. Our main objective is to study
the effect of public behaviour and governmental measures on disease spreading. We
have modified the contemporary SAIHR model by constructing a new infection function
and introducing a new state variable depicting social behavioural dynamics of public
awareness. There are several models on COVID-19, but our model is truly different from
the others and may answer new queries. We have taken Caputo fractional derivative
because the proposed system is autonomous in nature, which has been made physically
meaningful by dimensional homogeneity among the fractional order Caputo derivatives
and the parameters used in the system. The Caputo system can be simulated easily using
Adams devised technique (FDE12) for finding approximate solutions of fractional Caputo
ordinary differential equations.

In this work, a modified SAIHR model is formulated emphasising how the government
measures and public behaviour control the disease spread. Section 2 contains the proposed
model on COVID-19 with non-negative initial conditions. Section 3 describes the dynamical
nature of solutions in two different scenarios. Section 4 deals with the sensitivity indices of
different parameters. Section 5 shows numerical evidence of the dynamical nature of the
proposed model supporting analytical results. The work ends with a brief conclusion.

2. Model Construction

A five compartmental model under a Caputo fractional order framework has been
constructed, and the model is composed of susceptible (S), asymptomatically infected (Ia),
symptomatically infected (Is), hospitalised (H) and recovered (R) classes. In the context
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of COVID-19, the infected class is divided into two sub-classes, namely asymptomatic
and symptomatic, they are denoted by Ia and Is, respectively. According to some reports,
recovery from the disease does not guarantee permanent recovery, so some of the recovered
people revert back to the susceptible class at a constant rate ζ [19]. The model is given by

C
t0

Dε
t S(t) = Λε −Φ− µεS + ζεR,

C
t0

Dε
t Ia(t) = Φ− (µε + σε)Ia,

C
t0

Dε
t Is(t) = σε Ia − (µε

1 + ρε
1 + ρε

2)Is,

C
t0

Dε
t H(t) = ρε

1 Is − (µε
2 + γε)H,

C
t0

Dε
t R(t) = ρε

2 Is + γε H − µεR− ζεR,

C
t0

Dε
t Q(t) = dρε

2 Is − λεQ

(1)

where we have defined an infection function Φ as follows:

Φ = (1− α)[βε
1SIs(1−Q)κ + βε

2SIa] (2)

In this function, α represents the strength of government action, and κ represents the
strength of public response. It is worth noting that Q is a new state variable that represents
the social behavioural dynamics. The term d represents the strength of the public perception
of risk, λ−1 is the mean period of public response, and the model takes into account the
fact that public reaction will increase as more people become infected and will naturally
decrease over time. C

t0
Dε

t denotes the Caputo fractional derivative with initial time t0. Here
all equations of system (1) are balanced with respect to the time dimension. For the sake of
simplicity, we discard all the powers ε from the parameters. All parameters containing ε as
power trace are taken into account for an impact in numerical analysis. We have discarded
the power ε for analytical purposes only. The descriptions of all parameters are given in
Table 1.

Table 1. Description of biological interpretation of model parameters.

Parameter Interpretation Values (Range) Reference

Λ recruitment rate of the human population 0.001 [20]
β1 rate of infection per unit of time by the symptomatic infected Is 0.35 (0.005–0.34) [21]
β2 reduction factor of infected population by the Ia class compared to Is class 0.32 (0.005–0.34) [21]
σ rate at which asymptomatic becomes symptomatic 0.025 (0.02–0.1) [21]
ρ1 rate at which the symptomatic infected individuals are hospitalised 0.07 Assumed
ρ2 rate of recovery of the symptomatic infected individuals 0.14 Assumed
µ1 rate of mortality of symptomatic infected individuals 0.05 (0.05–0.1) [20]
ζ rate of retreat from recovered class to susceptible class 0.1 [21]

µ2 rate of mortality of hospitalised individuals 0.07 [20]
γ rate of transfer of hospitalised individuals to recovered class 0.05 Assumed
ε order of fractional derivative 0.95 (0–1) Assumed
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3. Basic Nonlinear Analysis

Definition 1 ([4]). The Caputo fractional derivative operator of order ε for an absolutely continuous
function g ∈ Cn([0, ∞+),IR) is defined as:

C
0 Dε

t g(t) =


1

Γ(n− ε)

∫ t

0

g(n)(s)
(t− s)ε−n+1 ds, ε ∈ (n− 1, n), n ∈ N

dn

dtn g(t), ε = n.

where Γ(·) is the Gamma function, t ≥ 0, and n is a natural number. In particular, for ε ∈ (0, 1):

C
0 Dε

t g(t) =
1

Γ(1− ε)

∫ t

0

g
′
(s)

(t− s)ε ds

Theorem 1 ([4]). Consider:
C
0 Dε

t x(t) = Ψ(x),

with ε ∈ (0, 1), x ∈ Rn. The equilibrium points (of this system) are solutions of the equation
Ψ(x) = 0. If for all eigenvalues (λi) of the Jacobian matrix J, |arg(λi)| >

επ

2
, the equilibrium is

locally asymptotically stable, where J =
∂Ψ
∂x

is calculated at the equilibrium point.

3.1. Case 1: Model without Control

In this case, we can omit the last equation of system (1), and the infection function is
taken as:

Φ = [β1SIs + β2SIa] (3)

The equilibrium points of the system (1) are mentioned below.

1. Disease-free equilibrium: E0 =

(
Λ
µ

, 0, 0, 0, 0
)

2. Endemic equilibrium: E1 = (S∗, I∗a , I∗s , H∗, R∗).

Here

S∗ =
(µ1 + ρ1 + ρ2)(µ + σ)

β1σ + β2(µ1 + ρ1 + ρ2)

I∗a =
(µ1 + ρ1 + ρ2)

σ
I∗s

I∗s =

µ(µ + σ)(µ1 + ρ1 + ρ2)

β2(µ1 + ρ1 + ρ2) + σβ1
(R0 − 1)

(µ + σ)(µ1 + ρ1 + ρ2)

σ
−

ζ

(
ρ2 +

γρ1

µ2 + γ

)
µ + ζ

H∗ =
ρ1

µ2 + γ
I∗s

R∗ =
(

ρ2 +
γρ1

µ2 + γ

)
1

µ + ζ
I∗s ,

(4)

where
R0 =

λ

µ(µ + σ)

[
β +

σβ1

µ1 + ρ1 + ρ2

]
. (5)
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The necessary and sufficient conditions for the existence of E1, in the feasible region

in R5, are as follows: (µ + σ)(µ1 + ρ1 + ρ2)(µ + ζ) > ζσ

(
ρ2 +

γρ1

µ2 + γ

)
and R0 > 1, or,

(µ+σ)(µ1 + ρ1 + ρ2)(µ+ ζ) < ζσ

(
ρ2 +

γρ1

µ2 + γ

)
and R0 < 1 . Here, R0 is the reproduction

number for the uncontrolled scenario calculated at disease-free equilibrium by the next-
generation matrix method. The next-generation matrix FV−1 at disease-free equilibrium
E0 is given as follows [22]:

F =


β2

(
Λ
µ

)
β1

(
Λ
µ

)
0 0



V =


µ + σ 0

−σ µ1 + ρ1 + ρ2



Thus, we get

R0 =
λ

µ(µ + σ)

[
β +

σβ1

µ1 + ρ1 + ρ2

]

Theorem 2. The disease-free equilibrium E0 =

(
Λ
µ

, 0, 0, 0, 0
)

is asymptotically stable if the roots

(η) of the following equation satisfy |arg(η)| > επ

2
:

µη2 + ηc1 + c2 = 0,
c1 = [2µ2 + ρ1µ + ρ2µ− β2Λ− σµ],
c2 = µ(µ + σ)(µ + ρ1 + ρ2)− β2Λ(µ + ρ1 + ρ2 + σ).

(6)

Proof. To study the local stability of disease-free equilibrium point E0 =

(
Λ
µ

, 0, 0, 0, 0
)

,

we have to compute Jacobian matrix J at E0.

J(E0) =


−µ −β2

Λ
µ −β1

Λ
µ 0 ζ

0 β2
Λ
µ − µ− σ β1

Λ
µ 0 0

0 σ −(µ1 + ρ1 + ρ2) 0 0
0 0 ρ1 (µ2 + γ) 0
0 0 ρ2 γ −(µ + γ)


The characteristic equation of J(E0) is

(λ + µ)(λ + µ + ζ)(λ + µ2 + γ)Υ(λ) = 0, (7)

where
Υ(λ) = µλ2 + λc1 + c2,
c1 = [2µ2 + ρ1µ + ρ2µ− β2Λ− σµ],
c2 = µ(µ + σ)(µ + ρ1 + ρ2)− β2Λ(µ + ρ1 + ρ2 + σ).

(8)

The three roots of the characteristic Equation (6) are −µ,−(µ + ζ),−(µ2 + γ), the disease-

free equilibrium is stable if |arg(λi)| >
επ

2
, where λi, i = 1, 2 are the roots of Υ(λ) = 0.
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To analyse the local stability of endemic equilibrium E∗1 , we need the following:

Definition 2 ([23]). The discriminant ∇( f ) of a polynomial f (x) = xn + α1xn−1 + α2xn−2 +
... + αn is defined as:

∇( f ) = (−1)
n(n− 1)

2 |Sn( f , f ′)|,

Sn( f , g) is the Sylvester matrix of f (x) and g(x) of order (n + l) × (n + l), where g(x) =
xl + β1xl−1 + β2xl−2 + ... + βl .

For n = 3, we have f (x) = x3 + α1x2 + α2x + α3 and f ′(x) = 3x2 + 2α1x + α2.

|S3( f , f ′)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 α1 α2 α3 0

0 1 α1 α2 α3

3 2α1 α2 0 0

0 3 2α1 α2 0

0 0 3 2α1 α2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −18α1α2α3 − (α1α2)
2 + 4α2

1α3 + 4α2
2 + 27α2

3

Hence

∇( f ) = −|S3( f , f ′)| = 18α1α2α3 + (α1α2)
2 − 4α2

1α3 − 4α2
2 − 27α2

3 (9)

Theorem 3 ([24]). If∇(P) is the discriminant of the characteristic equation P(λ) ≡ λ3 + a1λ2 +
a2λ + a3 = 0 of the Jacobian matrix of system (1) evaluated at the endemic equilibrium point
E1 = (S∗, I∗a , I∗s , H∗, R∗), where

a1 = µ1 + ρ1 + ρ2 +−β2S∗ + 2µ + σ + β1 I∗s + β2 I∗a
a2 = (µ1 + ρ1 + ρ2)(µ + σ− β2S∗)− σβ1S∗ + β1β2 I∗s S∗ + β2

2 I∗a S∗

+(µ1 + ρ1 + ρ2 − β2S∗ + µ + σ)(µ + β1 I∗s + β2 I∗a )
a3 = (µ + σ + β1 I∗s + β2 I∗a )[(µ1 + ρ1 + ρ2)(µ + σ− β2S∗)− σβ1S∗]
+ (β1 I∗s + β2 I∗a )(µ1 + ρ1 + ρ2 + σβ1S∗)

then the system is asymptotically stable if any of the following conditions hold:

1.∇(P) > 0, a1 > 0, a3 > 0 and a1a2 > a3

2.∇(P) < 0, a1 ≥ 0, α2 ≥ 0, a3 > 0 and α < 2
3

3.∇(P) < 0, a1 > 0, a2 > 0, a1a2 = a3 and α ∈ (0, 1).

3.2. Case 2: Model with Effects of Governmental Action and Additional Control

Let us consider the combined effects of government action along with public percep-
tivity of risk regarding severe and critical cases. The variable Q is added to the model
(system 1), which represents the public perception of risk. The value of Q increases when
more infection occurs and decreases naturally. The intensity of perception of risk (d) is
connected to the intensity of population (public) response κ. The infection function is
mentioned in (2).
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Theorem 4. If the intensity of public perception has no impact, the steady-state endemic state is
as follows:

S∗∗ =
(µ + σ)(µ1 + ρ1 + ρ2)

(1− α)[σβ1 + β2(µ1 + ρ1 + ρ2)]

I∗∗a =
(µ1 + ρ1 + ρ2)

σ
I∗∗s

I∗∗s =

µ(µ + σ)(µ1 + ρ1 + ρ2)

(1− α)[β2(µ1 + ρ1 + ρ2) + σβ1]
(R0 − 1)

(µ + σ)(µ1 + ρ1 + ρ2)

σ
−

ζ

(
ρ2 +

γρ1

µ2 + γ

)
µ + ζ

,

provided (µ + σ)(µ1 + ρ1 + ρ2)(µ + ζ) > ζσ(ρ2 +
γρ1

µ2 + γ
), R0 > 1

or (µ + σ)(µ1 + ρ1 + ρ2)(µ + ζ) < ζσ(ρ2 +
γρ1

µ2 + γ
), R0 < 1

H∗∗ =
ρ1

µ2 + γ
I∗∗s

R∗∗ =
(

ρ2 +
γρ1

µ2 + γ

)
1

µ + ζ
I∗∗s ,

Q∗∗ =
dρ2 I∗∗s

λ

Proof. The steady-state conditions lead to

S∗∗(1− α)

[
σβ1

(
1− dρ2 I∗∗s

λ

)
+ β2(µ1 + ρ1 + ρ2)

]
= (µ + σ)(µ1 + ρ1 + ρ2) (10)

(1− α)[β1S∗∗ I∗∗s (1−Q∗∗)κ + β2S∗∗ I∗∗a ] = (µ + σ)
µ1 + ρ1 + ρ2

σ
I∗∗s (11)

I∗∗a =
(µ1 + ρ1 + ρ2)

σ
I∗∗s

H∗∗ =
ρ1

µ2 + γ
I∗∗s

R∗∗ =
(

ρ2 +
γρ1

µ2 + γ

)
1

µ + ζ
I∗∗s ,

Q∗∗ =
dρ2 I∗∗s

λ

(12)

Substituting the value of S∗∗ into Equations (10) and (11), we arrive at a transcendental
equation that would not lead to an explicit expression of I∗∗s . In this context, we limit the
analysis for κ = 0. In this situation, we have found the following steady-state:
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S∗∗ =
(µ + σ)(µ1 + ρ1 + ρ2)

(1− α)[σβ1 + β2(µ1 + ρ1 + ρ2)]

I∗∗a =
(µ1 + ρ1 + ρ2)

σ
I∗∗s

I∗∗s =

µ(µ + σ)(µ1 + ρ1 + ρ2)

(1− α)[β2(µ1 + ρ1 + ρ2) + σβ1]
(R0 − 1)

(µ + σ)(µ1 + ρ1 + ρ2)

σ
−

ζ

(
ρ2 +

γρ1

µ2 + γ

)
µ + ζ

H∗∗ =
ρ1

µ2 + γ
I∗∗s

R∗∗ =
(

ρ2 +
γρ1

µ2 + γ

)
1

µ + ζ
I∗∗s ,

Q∗∗ =
dρ2 I∗∗s

λ
,

(13)

provided

(µ + σ)(µ1 + ρ1 + ρ2)(µ + ζ) > ζσ(ρ2 +
γρ1

µ2 + γ
), R0 > 1

or (µ + σ)(µ1 + ρ1 + ρ2)(µ + ζ) < ζσ(ρ2 +
γρ1

µ2 + γ
), R0 < 1

4. Sensitivity Analysis

To examine the sensitivity of R0 to any parameter (say, θ), a normalised forward
sensitivity index with respect to each parameter has been computed as follows [22,25]:

ΩR0
θ =

∂R0

∂θ

θ

R0

In a numerical (or other) model, sensitivity analysis (SA) is a technique that measures how
the effects of uncertainties in one or more input variables can lead to uncertainties in the
output variables. The values of sensitivity indexes for the parameters Λ, ρ1, ρ2, σ, β1, β2
corresponding to Table 1 is given in Table 2. From Table 2, it is clear that β2 is more sensitive
than β1 apart from Λ, and σ is more sensitive than ρ1, ρ2.

Table 2. Sensitivity indices of different parameters of system (1) corresponding to Table 1.

Parameters Sensitivity Index

Λ +1

σ −0.5502

ρ1 −0.0127

ρ2 −0.0141

β1 +0.0748

β2 +0.9252
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5. Numerical Simulations

In the numerical study, the predictor-corrector PECE method (mentioned in Appendix A)
for fractional differential equations has been applied in the MATLAB software platform [26].
Table 3 depicts the scenario of Bangladesh as a result of COVID-19 from 1 March to 10
June 2022. We ran numerical simulations to compare our model’s results to real data
from various reports published by the WHO [1] and worldometer [27]. The value of the
basic reproduction number is 1.2610, according to Table 1. Considering the demogra-
phy of Bangladesh [28] and present covid situation, we have assumed S(0) = 6,000,000,
Ia(0) = 600,000. Is(0) = 90,000, H(0) = 80,000, R(0) = 80,000, Q(0) = 0.1. Initially, we
performed a simulation of system (1) without government measures (α = 0 but κ 6= 0),
depicted in Figures 1 and 2. We have taken κ = 2000 for simulations. It is found that the
symptomatically infected population will be drastically increased if no action is taken
by the government (Figure 1). Therefore, a large proportion of the population needs to
be hospitalised, and this will create a massacre in the Health department of Bangladesh
(Figure 1). It is also observed that the social behaviour variable Q is diminished around
20 days from 1 March 2022 (Figure 2). Figures 3 and 4 depict the model with the control
(both government measures and public behaviour) scenario, which shows that the model
fits well with real-world scenarios of the pandemic situation in Bangladesh. Figure 5
portrays the variation of the time series of S, Ia, Is, H, R, Q for different values of the order
of derivatives (0.5, 0.6, 0.7, 0.8, 0.9). The curve of the symptomatically infected population
fits well with real data for ε = 0.9. The time series for different values of governmental
measures (α = 0.3, 0.5, 0.7) are given in Figure 6, and it is revealed that the curve of Is is
an approximation of active infected cases of the real scenario in Bangladesh for α = 0.7.
The variation in the time series of state variables (with κ) is given in Figure 7. The interest-
ing observation in Figure 7 is that the change in time series of all state variables, including
Is, is negligible for values of κ ranging from 0 to 80,000 but increases for values greater than
80,000. The time series for the case κ = 0 (Figure 7) depicts the situation in which only
government control is imposed, and no public behaviour is regulated. It is also observed
that the number of symptomatic infected individuals (Is) will increase if we reduce the
order of derivative closer to 0. The value of Q decreases slowly if the order of derivative ε
is fixed in a higher range (Figure 5).

Table 3. Number of active cases between 1 March 2022 and 10 June 2022.

Day Active Cases

1 March 2022 93,206

11 March 2022 62,302

21 March 2022 50,030

31 March 2022 42,010

10 April 2022 25,650

20 April 2022 31,241

31 April 2022 27,005

10 May 2022 25,665

20 May 2022 21,616

30 May 2022 19,739

10 May 2022 20,011
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Figure 1. Time series of S, Ia, Is, H of system (1) for 100 days from 1 January 2022 to 10 June 2022
when no government control is applied (α = 0), corresponds to Table 1.
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Figure 7. Variation time series with different values of κ.

6. Conclusions

For the COVID-19 pandemic, we have modified and created a SAIHR model, including
various transmission rates for contact with infected and exposed persons, and we have
incorporated parameters and variables to represent governmental action and society reac-
tion. We have formulated the proposed model by considering that a recovered individual
can retreat to the susceptible class. The model is considered in a Caputo fractional order
framework. We have used the data from Bangladesh, ranked 5th among 121 countries
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around the world. We have simulated the model, and it justifies the pandemic situation in
Bangladesh and provides sound validation. According to numerical studies, the impact of
Bangladeshi government action on disease spread was significant (Figures 1–4).

We have looked at the following three scenarios: (a) no control (Figures 1 and 2),
(b) only government action (Figure 7, case κ = 0 ) , and (c) the combined effect of gov-
ernment action and public reaction (Figures 3 and 4). The findings show that by carefully
selecting the parameters that govern social and government behaviour, it is possible to
halt the spread of the disease (or extinguish the endemic equilibrium). Additionally, we
have observed that governmental control is more successful than merely controlling public
behaviour. The effect of fractional order is very much important in epidemic dynamics. We
can fit our model and estimate other parameters with the right choice of ε.

Finally, we conclude that our model can justify the scenario of other countries also,
in that cases need to adjust the fractional order according to different parametric values.
Our proposed model is an abstract one, which can be developed as a statistical model, but
in this work, we have focused on the deterministic nature of the model and also studied
the effect of memory of disease transmission. Our model is not a predictive model rather
than a good interpolating model, though this model can be developed as a predictive
model. There are some statistical measures, such as parameter estimation, parameter
optimisation, statistical model selection, statistical sensitivity and robustness analysis, that
may enrich the quality of this article. We will definitively try to incorporate these in our
future research work. There is no perfect model for COVID-19 till now. There are so many
factors (including economical and financial factors) controlling the pandemic situation.
Therefore, we will consider these important factors in our future research.
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Appendix A

We have applied the numerical scheme (predictor-corrector algorithms for fractional
differential equations) presented by Garrappa [26] to solve the system (1). We have consid-
ered the following equivalent system:

C
t0

Dε
t X(t) = G(X(t))

X(t0) = X0, X0 ∈ R6
+

(A1)
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with

X(t0) =



S(t0)
Ia(t0)
Is(t0)
H(t0)
R(t0)
Q(t0)

,

in this context, t0 = 0. Then, system (A1) can be solved numerically by using the follow-
ing scheme:

G(tj) =
hε

Γ(ε + 2)
((j− 1)ε+1 − (j− ε− 1)jε)G(X(t0)) + X(t0)

+
hε

Γ(ε + 2)

j−1

∑
i=1

((j− i + 1)ε+1 − 2(j− i)ε+1

+(j− i− 1)ε+1)G(X(ti))

+
hε

Γ(ε + 2)
G
(

X(tj−1) +
hε

Γ(ε + 1)
G(X(tj−1)

)
,

(A2)

with tj+1 = tj + h, for j = 0, 1.2....., N − 1, we have used N = 10,000, h = 0.01.
The above scheme is used in the FDE12 function, which is easily available in the

MATLAB File exchange [29].
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