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Abstract: For the linear model Y = Xb + error, where the number of regressors (p) exceeds the
number of observations (n), the Elastic Net (EN) was proposed, in 2005, to estimate b. The EN uses
both the Lasso, proposed in 1996, and ordinary Ridge Regression (RR), proposed in 1970, to estimate b.
However, when p > n, using only RR to estimate b has not been considered in the literature thus far.
Because RR is based on the least-squares framework, only using RR to estimate b is computationally
much simpler than using the EN. We propose a generalized ridge regression (GRR) algorithm, a
superior alternative to the EN, for estimating b as follows: partition X from left to right so that every
partition, but the last one, has 3 observations per regressor; for each partition, we estimate Y with
the regressors in that partition using ordinary RR; retain the regressors with statistically significant
t-ratios and the corresponding RR tuning parameter k, by partition; use the retained regressors
and k values to re-estimate Y by GRR across all partitions, which yields b. Algorithmic efficacy is
compared using 4 metrics by simulation, because the algorithm is mathematically intractable. Three
metrics, with their probabilities of RR’s superiority over EN in parentheses, are: the proportion of
true regressors discovered (99%); the squared distance, from the true coefficients, of the significant
coefficients (86%); and the squared distance, from the true coefficients, of estimated coefficients that
are both significant and true (74%). The fourth metric is the probability that none of the regressors
discovered are true, which for RR and EN is 4% and 25%, respectively. This indicates the additional
advantage RR has over the EN in terms of discovering causal regressors.

Keywords: elastic net; generalized ridge regression; ordinary ridge regression; statistical significance

MSC: 62J05; 62J07

1. Introduction

Although half a century has passed since Hoerl and Kennard’s [1] discovery of ridge
regression (RR), the perception that it cannot set the coefficients of “insignificant” regressors
to zero lives on. Because this is a mathematically intractable perception, it has likely limited,
more than have other things, the standalone use of RR for regressor subset selection when
the number of regressors (p) exceeds the number of observations (n). We address this
perception by proposing a simple regressor selection method based on RR in conjunction
with the classical concept of statistical significance testing with t-ratios, when p > n. We
examine our proposal via a simulation study because of its mathematically intractable
nature. The use of computer methods for mathematical discovery is fairly well known to
mathematicians. For others, the excellent work of Petkovsek, Wilf and Zeilberger [2] may
be of interest in this regard.

As background, we recapitulate some key RR concepts first, which are relevant to this
paper. These concepts are mathematized using matrix analysis (see Schott [3] and Seber [4]),
which is a convenient methodology to work with them.
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For the well-known linear model Y = Xb + ε, where Y is centered, X is in correlation
form (Vinod [5] discuses why this is important in RR), ε is a vector of unobservable errors
(a.k.a. residuals) and n > p, the “ordinary” RR estimator of b, bRR, is the following one:

bRR =
(

XTX + kI
)−1

XTY (1)

where k > 0, I is a p× p identity matrix and T is the matrix transpose operator. Among
several linear estimators, (1) is known to optimally shrink b (see Frank and Friedman [6]).

When k = 0, bRR defaults to the well-known least squares (LS) estimator of b, bLS. For
non-stochastic k, the variance of bRR is given by:

Var(bRR) ≡ s2
k = s2

(
XTX + kI

)−1
XTX

(
XTX + kI

)−1
(2)

where s2 is the estimated residual variance when b is estimated by LS. The ith element of
bRR divided by the square root of the ith diagonal element of s2

k is denoted by t(i)RR; and
it measures the signal-to-noise ratio (SNR) in the ith element of bRR, while making it an
approximate t-ratio (see Halawa and El-Bassiouni [7]). Testing the null hypothesis that the
ith element of b, bi, is zero for several values of k, is discussed by Gokpinar and Ebegil [8].

Using classical calculus, Hoerl and Kennard [1] mathematically proved that there
always exists a value of k > 0 such that the average squared distance of bRR from the
true coefficient vector b is strictly less than the average squared distance of bLS from b.
However, this RR existence theorem does not lead to determining what an “optimal” value
of k should be, given X. Different methods for selecting k are discussed by Muniz et al. [9].
This limitation regarding k, together with the complex distributional properties associated
with studying bRR, make several aspects of RR mathematically intractable. Thus, computer
methods, and simulation in particular, become invaluable methodologies for discovering
RR properties.

What originally motivated RR? Long before the work of Hoerl and Kennard [1],
mathematicians had recognized that inverting an ill-conditioned matrix, A, after diagonal
incrementation would closely approximate its inverse (see Piegorsch and Casella [10]).
That is, it was fairly well-known to mathematicians that, for small k, (A + kI)−1 ∼= A−1.
RR, whose origins can be traced back to 1959 (see Hoerl [11]), was originally proposed for
accurately estimating b when XTX is ill-conditioned (see Hoerl [12]). Later, and somewhat
surprisingly, Brook and Moore [13] found that even absent multicollinearity in X, bLS tends
to be much too long on average, providing additional motivation for the use of RR despite
early criticism of it (e.g., by Smith and Campbell [14]).

An alternative mathematical representation of RR is the following optimization prob-
lem:

Minimize (Y – Xb)T(Y – Xb)
subject to

∑ b2
i ≤ k ≥ 0

 (3)

Given k, bRR would emerge as the solution to this nonlinear programming (NLP)
problem with a quadratic objective function and a single quadratic constraint. Simple
matrix analysis will get us from (3) to (1), eliminating the need to enter into the more
complex world of trying to solve NLP problems.

In 1996, the Lasso (see Tibshirani [15]) was proposed for estimating b; it is the solution
to the following optimization problem:

Minimize (Y – Xb)T(Y – Xb)
subject to

∑|bi| ≤ k ≥ 0

 (4)



Mathematics 2022, 10, 3057 3 of 27

The optimization in (4) is done using the procedures of Osborne, Presnell and Turlach [16],
and Efron, et al. [17]. As is easy to see, (4) is more complex to solve than is (3), because in
(4) we leave the LS framework behind and, thus, require mathematical operations beyond
matrix inversion to solve it. Formulation (4) can be seen as a quadratic programming
problem with linear constraints. Other linear constraints (on b) can be introduced into (4),
but solving it will become more complex (e.g., see Delbos and Gilbert [18]). That is, in the
“ordinary” Lasso, the sum of squared errors is minimized, subject to a constraint on the
sum of the absolute values of the coefficients. In contrast, RR minimizes the same objective
function with a constraint on the sum of the squares of the coefficients. Mathematicians
were aware of the idea of the Lasso before the work of Tibshirani [15], as attested to by the
works of Taylor, Banks and McCoy [19] and Santosa and Symes [20]. Tibshirani’s [15] work
popularized the Lasso for subset regressor selection.

To solve for b when p > n, the Elastic Net (EN) was proposed in 2005 by Zou and
Hastie [21]. The EN was hypothesized to be “like a stretchable fishing net that retains ‘all the
big fish’” and uses both the Lasso and RR to find b. The EN is represented as the solution of
b to the following optimization problem that mixes the Lasso and RR concepts:

Minimize (Y – Xb)T(Y – Xb)
subject to

∑|bi| ≤ t1 ≥ 0
∑ b2

i ≤ t2 ≥ 0

 (5)

Using Lagrange [22] multipliers [23], (5) can be recast as the solution of b to the
following optimization problem:

Minimize : (Y – Xb)T(Y – Xb) + δ1 ∑|bi|+ δ2 ∑ b2
i (6)

where 0 < δ0 ≤ δ2 ≤ 1 and δ0 is a “small” predetermined constant for us. b is estimated
after accounting for the double shrinkage inherent in the EN formulation (by rescaling
coefficients by 1 + δ2). The optimization is executed per Efron et al. [17]. As is obvious, the
EN formulation is also complex.

Thus far in the literature, the question of whether b can be estimated only using
RR (when p > n) has not been raised. The rest of this paper is dedicated to answering
this question. We compare RR and the EN, under the assumption of a linear model,
by computing four metrics: the proportion of true regressors discovered; the squared
distance, from the true coefficients, of the estimated coefficients that are significant (but not
necessarily true); the squared distance, from the true coefficients, of estimated coefficients
that are both significant and true; and the chance that none of the significant regressors
found are true. Results indicate that RR surpasses the EN with regard to all of these metrics.
This means there may be simpler ways to combine the Lasso and RR for model discovery,
in lieu of the more complicated way of doing so using the EN. RR is much “simpler”
than the EN because RR is a variant of the simple, and profound, least squares method
independently discovered by Gauss and Legendre in the early 18th century (see the works
of Plackett [24] and Stigler [25]). Specifically, Stigler [25] makes the following penetrating
observation: “The method of least squares is the automobile of modern statistical analysis:
despite its limitations, occasional accidents, and incidental pollution, it and its numerous
variations, extensions, and related conveyances carry the bulk of statistical analyses, and
are known and valued by nearly all.” Thus, RR can provide important feedback on the
outputs of other fashionable competitors, such as machine learning, with their pervasive
“black-box” focus on prediction, rather than on the process (i.e., causality) generating the
data, as an end in itself.

The next section provides an overview of the methods used. Other sections provide
granular details on the simulation methodology, its outputs, and the results found. Because
scientific replicability is germane to any such study, several tables of results derived and
other relevant materials, such as the code used for simulation, are included as supplemen-
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tary materials (SM) to this paper. The tables may provide insight into other results that we
may have missed observing.

2. Materials and Methods

It is well known that, if p > n, then b cannot be estimated by LS. However, if p > n,
then b can be estimated by RR, which is a “simple” and elegant modification of the LS
method. But RR is not used, on a standalone basis, to estimate b because of the perception
that RR will estimate all of the coefficients of X and thus produce a “meaningless” solution
if only a subset of the p regressors, ptrue < p, say, actually generate Y in nature. However,
entertaining such a perception is mistaken because the RR-estimated t-ratio for the ith
regressor, t(i)RR, can be used to eliminate insignificant regressors from the specification of
Y. This paper addresses this mathematically intractable perception by showing, via a
simulation study, that RR on a standalone basis can yield important insights regarding
ptrue.

2.1. Algorithmic Description of the RR Alternative to the EN

To simplify the concept of the EN, and avoid complex optimization methods, we
propose a simple and novel alternative to it, which can be expressed at high-level as
follows: Given X with p > n, we partition X from left to right such that every partition, but
the last one, has between 3 and 4 observations per regressor (OPR). For each partition, we
estimate Y with the regressors in that partition using two predefined values of the RR tuning
parameter, k: one that of Hoerl, Kennard and Baldwin [26] and the other that of Lawless
and Wang [27]. We retain the statistically significant regressors found via both values of k
(using t(i)RR), at an α level of 15%, in each partition. Then we use these selected values of k
and the statistically significant regressors retained to re-estimate Y using generalized RR
(GRR), with each set of the predefined k values selected—i.e., Y is re-estimated twice. When
“low” levels of collinearity are present in X, we use the set of k values of Hoerl, Kennard
and Baldwin (HKB) to estimate b; otherwise, we use the set of k values of Lawless and
Wang (LW) to estimate b. With high probability, this simple algorithm will find more of the
true regressors than would the EN, and, with high probability, the resultant estimate of b
will be more precise than the corresponding estimate yielded by the EN.

The alternative to the EN outlined in the predecessor paragraph is made precise by
putting it in algorithmic form next. In particular, it is recast precisely as the following
algorithm:

(a) Starting from left to right, we partition X into m sub-matrices such that 3 ≤
⌊ n

m
⌋
< 4,

where b·c denotes the greatest integer function. If n
m = 3, then there will be m

partitions with m regressors in each partition; otherwise, the mth partition will have
p−

⌊ n
m
⌋
×m regressors and all predecessor partitions will have m regressors each.

This partitioning is done so that all but the last partition has 3 OPR. We let the
partitions be named, from left to right, X1, X2, . . . , Xm, respectively. The number
3 OPR is chosen as the lower bound of

⌊ n
m
⌋

because Austin and Steyerberg [28]
have shown that an OPR of 2 is enough to detect statistical significance; and we
judgmentally increased that by one. This is set as a hard constraint.

(b) We define a “concatenation” operator ∪ that will be applied to matrices having the
same number of rows but not necessarily the same number of columns. The operator
∪will concatenate two matrices by creating a new matrix containing all of the columns
of the two matrices while retaining duplicate columns only once. Concatenation is
done from left to right; when duplicate columns exist, the leftmost one will be the only
one (among the duplicates) retained. When such an operator operates over multiple
matrices, we will index them, following familiar practice with other well-known
operators such as the summation operator (e.g., ∑i=5

i=1 wi). For example, under this
convention, X = ∪j=m

j=1 Xj ≡ ∪m
1 Xj.
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(c) We define another concatenation operator V that will concatenate matrices by retaining
all columns, including duplicate columns, as is. The following matrices (where the
lower-case letters denote real numbers) illustrate how the two operators work:(

a b
c d

)
∪
(

a e
c f

g
h

)
≡
(

a b
c d

e g
f h

)
(7)

and (
a b
c d

)
V
(

a e
c f

g
h

)
≡
(

a b
c d

a e
c f

g
h

)
(8)

(d) We estimate Y by RR using the regressors in Xj with k set to the value prescribed by

HKB, which is k = ps2

bTb . We denote this prescribed value of k by kj
HKB. We use the

value of t(i)RR for each regressor i in Xj to determine whether it is statistically significant
at an α level (i.e., type I error) of 15%. We denote the sub-matrix of Xj containing the
statistically significant regressors found as Xj, HKB.

(e) We repeat step “(d)” by using the value of k prescribed by LW, which is 1
F , where F is

the usual F ratio in the analysis of variance (ANOVA) table resulting from estimating
b by classical LS. We denote this prescribed value of k by kj

LW and denote the resultant
sub-matrix of Xj containing the significant regressors found as Xj, LW .

(f) We create Xj, RR = Xj, HKB ∪ Xj, LW , which is the set of significant regressors in Xj

identified by RR using either kj
HKB or kj

LW . We let pj > 0 denote the number of
regressors in Xj, RR.

(g) We repeat steps “(d)”, “(e)” and “(f)” ∀j, where ∀ denotes the universal quantifier “for
all”, an operator borrowed from Whitehead and Russell [29].

(h) We define the statistically significant sub-matrix of regressors identified in X by RR as
follows XRR ≡ ∪∀j 3 pj>0Xj, RR, where 3 denotes “such that”. The idea of subscripting
and superscripting alphabets, for creating notation, is borrowed from the idea of the
“tensor” (see Ricci-Curbastro and Levi-Civita [30]).

(i) We re-estimate Y by GRR using the regressors in XRR with the following vector of k

values: KHKB ≡ ∨
j=m
j=1 ∨

pj
1 kj

HKB. Under GRR (see Hoerl and Kennard [1]), the usual
matrix diagonal increment kI will be replaced by D(K)I, where K is a row-vector of
constants, rather than a single non-stochastic number as it is in the usual “familiar”
form of RR; D(K) is the corresponding diagonal matrix with the elements of K on
the diagonal, and I is the usual identity matrix. We let the resultant GRR estimated
coefficients be denoted by bHKB.

(j) We repeat step “(i)” with the following vector of k values: KLW ≡ ∨
j=m
j=1 ∨

pj
1 kj

LW . We
let the resultant GRR estimated coefficients be denoted by bLW .

(k) We will see that, for “low” to “moderate” levels of multicollinearity in X, bHKB is a
good solution, and, for “severe” levels of collinearity in X, bLW is a good solution. The
mathematical characterization of the adjectives in quotes will be clarified below. We
define the subset (sub-vector) of bRR containing only the true coefficients found by
GRR as btrue

RR , where the subscript RR ≡ HKB or LW as the case may be.

2.2. Simple Example to Illustrate Algorithm Use

To lessen the level of abstraction in the notation above, we illustrate it assuming we
have a dataset X with 5 observations and 9 regressors. We let the 9 regressors be denoted by
Z1 through Z9, respectively, and the regressand denoted, as usual, by Y. Because we have
5 observations, we can partition the first 8 regressors into subsets of two each and keep the
ninth regressor alone. Thus, we have 5 partitions (m = 5), and the OPR for 4 partitions is
5 ÷ 2 = 2.5 > 2, which meets the criterion of having an OPR of at least 2 to detect statistical
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significance. If each Zi is viewed as a 5 × 1 matrix (vector), we can define our partitions as
follows:

X1 ≡ Z1 ∪ Z2, X2 ≡ Z3 ∪ Z4, X3 ≡ Z5 ∪ Z6, X4 ≡ Z7 ∪ Z8, X5 ≡ Z9 ,

where X = ∪5
1Xj.

We can now perform 5 RRs to estimate Y and identify statistically significant regressors
using the modified t-statistic. These RRs are: Y vs. X1, Y vs. X2, Y vs. X3, Y vs. X4 and
Y vs. X5. Each RR is used to identify the statistically significant regressors, given the
value of k used (e.g., that of HKB or LW). Note, that on a standalone basis, each RR will
be a misspecified model if more than two regressors generate Y in nature. However,
this misspecification does not matter, because we ignore the estimated coefficients of
the significant regressors yielded by each of the five RRs. At this stage, we are only
interested in whether the regressors are statistically significant or not. This approach
has a point of contact with the classical stepwise procedure of Efroymson [31], which
starts with no regressors and adds them one at a time according to their partial F-statistics
(see Hocking [32]) until either all regressors are included or until no excluded regressors’
partial F-statistic is statistically significant. This procedure converges (see Miller [33]).
Efroymson [31] selected one variable at a time to test its significance. We select predefined
“blocks” of variables one at a time to test their significance. In Efroymson’s [31] approach,
we are also not interested in the intermediate coefficients of significant regressors. We are
only interested in the coefficients yielded by the jointly estimated statistically significant
regressors.

We let the values of k selected (e.g., per HKB or LW) to perform each of the 5 RRs
be k1, k2, k3, k4 and k5, respectively. Now we can suppose the statistically significant
regressors determined by these values of k are Z1, Z2, Z3, Z5, Z6 and Z9. Then Y will
be regressed against these 6 selected regressors using GRR with the following vectors
of k values: K ≡ (k1 k1 k2 k3 k3 k5). If Z ≡ Z1 ∪ Z2 ∪ Z3 ∪ Z5 ∪ Z6 ∪ Z9, then the
generalized RR estimate of the coefficients is:(

ZTZ + D(K)× I
)−1

ZTY

where

D(K) =



k1 0 0 0 0 0
0 k1 0 0 0 0
0 0 k2 0 0 0
0 0 0 k3 0 0
0 0 0 0 k3 0
0 0 0 0 0 k5

 and I is the 6 × 6 identity matrix

The product of D(K) and I produce the unequal diagonal increments for ZTZ.
Analogous to Efroymson’s [31] stepwise regressor selection procedure, intermediate

RR estimated coefficients are ignored here. However, the statistically significant regressors
and the corresponding values of k that identified them are retained. Then Y is re-estimated
by RR using these retained values of k, as above, to determine the corresponding coefficients
jointly.

2.3. Description of Simulation Design

An extensive simulation study is conducted by simulating several linear models by
discreetly varying the following parameters: multicollinearity levels of X (which is varied
from mild to extreme), the squared distance of b from the origin (which is varied from 10 to
600,000) and the a priori probability that an element of b is non-zero (which varied from 5%
to 95%). Multicollinearity levels are varied by setting the trace (ω) of ZTZ, where Z is a
partition of X, to 100, 300, 1000, 4000 or an extreme value (e.g., several trillions). Statistical
significance testing is done at an α of 15%. For each combination of simulation inputs (a.k.a.
a scenario), 2000 outputs are generated, and there are 822 scenarios.
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We borrow from the work of Gana [34], with a little simplification, the following
notation:

L2
1(bEM | X) ≡ the squared distance (length), from the true coefficients, of the esti-

mated coefficients that are statistically significant (but not necessarily true) given X, under
estimation method EM. This is a measure of coefficient precision. Note the connective
“given” is symbolized by the stroke symbol (|).

L2
1
(
btrue

EM
∣∣ X
)
≡ the squared distance, from the true coefficients, of estimated coeffi-

cients that are true (and statistically significant) given X, under estimation method EM.
EM f ound

(
Xtrue

EM
∣∣ X) ≡ the proportion of true regressors found by EM given X.

btrue
EM is empty ≡ none of the coefficients in bEM are true; that is all elements of bEM are

spurious but are statistically significant (i.e., they are “false positives”, so to speak).
Following Hoerl, Schuenemeyer and Hoerl [35], we simulate linear models using

an observable data matrix Xbase as our “base” matrix. The matrix Xbase was created as a
modified combination of the 3 datasets presented in Hoerl, Schuenemeyer and Hoerl [35]
and is presented as “Table A10” in Gana [34]. Xbase has 33 regressors and 89 observations
(and is shown in tab “X_base” in the Supplementary Materials Excel file “Supplemen-
tary_Material_file_mdpi_math.xlsx”). The X matrix used in this paper is the transpose of
the base matrix, XT

base. Thus, our chosen X ≡ XT
base matrix has 89 regressors and 33 observa-

tions.
Because X is not full-rank (it is an 89 × 33 matrix), we alter its eigenvalue spectrum by

partitioning it so collinearity levels can be varied from low to high levels. A good measure
of the multicollinearity level of a full-rank matrix Z, say, which is in correlation form, is
the trace of

(
ZTZ

)−1. We partition X into 3 mutually exclusive sub-matrices: X1:30
1 , X31:60

2
and X61:89

3 , where a partition Xs:t
r contains the columns s through t of X. Given a target

multicollinearity level (trace) ω, the eigenvalue spectrum of a partition is altered as follows:

(i) We let λi be the ith eigenvalue of
(
Xs:t

r
)TXs:t

r , where λi ≥ λi+1 for all i < t− s + 1 ≡ q.
(ii) We let E be the q× q matrix whose columns are the eigenvectors corresponding to the

eigenvalues.
(iii) Then ET(Xs:t

r
)TXs:t

r E = D( λ), where D( λ) is the diagonal matrix of the eigenvalues
λi, stored in vector λ, and ETE = EET = I, where I is a q × q identity matrix.

(iv) We choose a new vector of q arbitrary eigenvalues, θ, with θi denoting the ith eigen-
value entry in θ.

(v) We create Xs:t
r,1 ≡ Xs:t

r E D
(√

θi
λi

)
ET and transform Xs:t

r,1 to correlation form. We denote

the transformed Xs:t
r,1 as Xs:t

r,2. We denote by ∅i the ith eigenvalue of
(

Xs:t
r,2

)T
Xs:t

r,2. We

calculate
q
∑
1

1
∅i

= Φ.

(vi) We repeat steps “(iv)” and “(v)” (by trial and error) until Φ = ω.

The final selections of θ and the resultant values of ∅i, by partitions and predetermined
collinearity levels, are in the supplementary materials Excel file (see table “eigenvalues”).
Each partition is altered to target the same value of ω, without loss of generality. That is, ω
does not vary over partitions. However, there will be some variation in collinearity levels
across the sub-matrices of X. Because the original eigenvalues (λi) indicate extremely high
levels of collinearity by partition, this is considered to be the “extreme” multicollinearity
case. We use the ratio of the trace of

(
ZTZ

)−1 to the number of regressors (columns) in
Z as an “invariant” measure of the collinearity of Z. For the sub-matrices of X to which
RR is applied, these ratios are shown in the supplementary materials Excel file (see table
“trace”). Generally, one can think of “mild” to “quite severe” levels of multicollinearity
being present when this ratio varies from about 3 to 25, respectively.

The true coefficient vector, β (interchangeably b, as relevant), is simulated. Then ε is
simulated from a normal distribution with a mean of zero and a variance of unity (without
a loss of generality). Then the corresponding values of the regressand, Y (i.e., Xβ + ε), are
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calculated. Such linear models are simulated by varying the multicollinearity levels of X,
the squared distance of β from the origin (r2) and the a priori probability (ρ) that an element
of β is non-zero. The statistical significance (α) level used for testing the null hypothesis
that an element of β is zero is set at 15%.

For each simulated Y, linear models are fit with X as the initial set of regressors using
the EN and RR, respectively and fit-metrics compared. This is a comprehensive simulation
covering a wide range of linear models and is executed via the following Steps:

(1) We pick a multicollinearity level (ω) from {100, 300, 1000, 4000, extreme}, where
“extreme” denotes the original multicollinearity level of X.

(2) We use the multicollinearity level picked in Step “(1)” to create, as described previ-
ously (i.e., Steps “(i)” through “(vi)” above), the partitions: X1:30

1,2 , X31:60
2,2 and X61:89

3,2 .
We let Xω=ω0 ≡ X1:30

1,2 ∪ X31:60
2,2 ∪ X61:89

3,2 , where ω0 is the multicollinearity level picked
in “(1)”. Where the interpretation is clear, we will simply represent, for notational
brevity, Xω=ω0 as Xω.

(3) We pick a value of r2 (i.e., βT β) from {10, 25, 50, 100, 250, 500, 1000, 1500, 3000, 5000,
7500, 10,000, 15,000, 30,000, 60,000, 100,000, 150,000, 200,000, 300,000, 600,000}. That is,
20 possible values of r2 are selected.

(4) We pick a value of ρ from {0.05, 0.20, 0.35, 0.50, 0.65, 0.80, 0.95}. For greater granularity,
we include additional values of ρ from {0.10, 0.15, 0.25, 0.40, 0.45, 0.70} as necessary.
These additional values of ρ are used sometimes, to approximately mark ρ-cutoffs
where L2

1
(
btrue

RR
∣∣ XRR

)
starts being less than L2

1
(
btrue

EN
∣∣ X
)
.

(5) We generate a p× 1 vector, v, of uniform random numbers in the interval [–1, 1].
(6) We generate a p× 1 vector, c, of Bernoulli random variables (0 or 1) with Pr(c = 1) = ρ.
(7) We generate an n× 1 vector, ε, of independent, identically distributed normal (0, 1)

random variables.
(8) We perform pairwise multiplication to create a = v× c until aTa 6= 0.

(9) We generate β =

(√
r2

aT a

)
a.

(10) We generate Y = Xω β + ε.
(11) We partition Xω into 9 mutually exclusive sub-matrices: X1:10

ω , X11:20
ω , X21:30

ω , X31:40
ω ,

X41:50
ω , X51:60

ω , X61:70
ω , X71:80

ω and X81:89
ω . This ensures that, for our case, the OPR is at

least 2.
(12) We estimate Y using RR with all of the regressors in Xs:t

ω under the HKB determined
value of k. We use the modified t-statistic to select the RR-identified significant
variables in Xs:t

ω and retain them in Xs:t
ω, HKB, a non-null matrix. We let the value

of k identifying the significant regressors be denoted by ks:t
ω, HKB and the number of

significant regressors identified be: ps:t
ω, HKB > 0.

(13) We collect the RR-identified significant regressors, over all partitions, under the HKB-
determined value of k and concatenate them as Xω,HKB ≡ ∪∀ s:tXs:t

ω, HKB. Here, “∀ s : t”
includes only partitions for which at least one significant regressor is identified by
RR. Where obvious, this interpretation of ∀ s : t is assumed in lieu of burdening the
indexing by expanding the subscript to read as: ∀ s : t 3 ps:t

ω, HKB > 0.
(14) We estimate Y using RR with all of the regressors in Xs:t

ω under the LW-determined
value of k. We use the modified t-statistic to select the RR-identified significant
variables in Xs:t

ω and retain them in Xs:t
ω, LW , a non-null matrix. We let the value

of k identifying the significant regressors be denoted by ks:t
ω, LW and the number of

significant regressors identified be: ps:t
ω, LW > 0.

(15) We collect the RR-identified significant regressors, over all partitions, under the LW
value of k, and concatenate them as Xω,LW ≡ ∪∀ s:tXs:t

ω, LW .
(16) We create XRR ≡ Xω, HKB ∪ Xω, LW .

(17) We create KHKB ≡ ∨∀ s:t ∨
ps:t

ω, HKB
1 ks:t

ω, HKB and KLW ≡ ∨∀ s:t ∨
ps:t

ω, LW
1 ks:t

ω, LW .
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(18) We estimate Y using generalized RR with the regressors in XRR and K = KHKB. We
let the resultant estimated coefficient vector be denoted as: bHKB.

(19) We calculate L2
1(bHKB | XRR) and L2

1
(
btrue

HKB
∣∣ XRR

)
.

(20) We estimate Y using generalized RR with the regressors in XRR and K = KLW . We let
the resultant estimated coefficient vector be denoted as: bLW .

(21) We calculate L2
1(bLW | XRR) and L2

1
(
btrue

LW

∣∣ XRR
)
.

(22) We calculate the proportion of true regressors in XRR and denote it by
RR f ound

(
Xtrue

RR
∣∣ XRR

)
.

(23) We estimate Y using the EN. We ese the Schwarz Bayesian criterion (SBC) [36] as the
“stopping rule” with a maximum of 300 “steps” for EN calculations and δ0 ≡ 10−4.
The SBC is defined as n× log(SSE÷ n) + p× log(n), where SSE denotes the sum of
squared errors resulting from the fitted EN regression. The EN estimated β is stored
in p× 1 vector bsig

EN , where the coefficients of all EN-selected regressors, assumed to

be “significant”, are in bsig
EN .

(24) We calculate L2
1(bEN

∣∣ X) , L2
1(b

true
EN

∣∣ X) and EN f ound
(
Xtrue

EN
∣∣ X
)
.

(25) We repeat Steps 5 through 24, 2000 times.
(26) We calculate the hit rate: Pr

{
L2

1(bHKB | XRR) < L2
1(bEN | X)

}
. That is, we calculate

the percentage of times this event occurs in 2000 trials (simulations) and interpret it as
a probability.

(27) We calculate the hit rate: Pr
{

L2
1(bLW | XRR) < L2

1(bEN | X)
}

.
(28) We calculate the hit rate: Pr

{
L2

1
(
btrue

HKB
∣∣ XRR

)
< L2

1
(
btrue

EN
∣∣ X
)}

.
(29) We calculate the hit rate: Pr

{
L2

1
(
btrue

LW

∣∣ XRR
)
< L2

1
(
btrue

EN
∣∣ X
)}

.

(30) We calculate the miss rate: Pr
{

RR f ound
(
Xtrue

RR
∣∣ XRR

)
< EN f ound

(
Xtrue

EN
∣∣ X
)}

.

(31) We calculate the “empty” rates: Pr
(
Xtrue

RR is empty
∣∣ XRR

)
and Pr

(
Xtrue

EN is empty
∣∣ X
)
.

(32) We redo Steps 5 through 31 for all of the combinations of the simulation starting
conditions in Steps 1 through 4. That is, for each ω, the values of r2 are crossed with
the values of ρ.

The simulation done in this paper is executed in SAS [37]. The SAS code used for
simulation is provided as supplementary materials and named “ElasticRR3F.sas”.

3. Results

In real situations, the multicollinearity level of X would be knowable, a priori, but not
necessarily the values of r2 or ρ. So, a simple summarization of the simulation outputs
would simply be to consider the summary statistics of these outputs across all of the
simulation scenarios (i.e., r2 and ρ). For example, several metrics can be summarized
by considering the probabilities these metrics exceed 50%. Table 1 is a summary of the
simulation results across all scenarios. The subscript RR for a metric in Table 1 means that
the “best” value of that metric, yielded by either the HKB or LW value of k, is selected for
computing it at the selected value of ω in the simulation. For example, L2

1(bRR | XRR) ≡
min

{{
L2

1(bHKB | XRR), L2
1(bLW | XRR)

∣∣ ω
}}

.
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Table 1. Metrics measured and summarized across all simulation scenarios.

Metric in Plain English (for Generalists) and Mathematized (for Specialists) Measure *

Average probability that the squared length of the RR-estimated coefficient vector (from the true coefficient vector)
is shorter than the corresponding one for the EN: E

{
Pr
(
0 < L2

1(bRR | XRR) < L2
1(bEN | X)

)} 79%

Probability that the squared length of the RR-estimated coefficient vector is shorter than the corresponding one for
the EN more frequently (viz. 50 + % of the time): Pr

{
Pr
(
0 < L2

1(bRR | XRR) < L2
1(bEN | X)

)
> 50%

} 86%

Average probability that the squared length of the RR-estimated true coefficient vector is shorter than the
corresponding one for the EN: E

{
Pr
(
0 < L2

1
(
btrue

RR
∣∣ XRR

)
< L2

1
(
btrue

EN
∣∣ X
))} 67%

Probability that the squared length of the RR-estimated true coefficient vector is shorter than the corresponding
one for the EN more frequently: Pr

{
Pr
(
0 < L2

1
(
btrue

RR
∣∣ XRR

)
< L2

1
(
btrue

EN
∣∣ X
))

> 50%
} 74%

Average probability that RR finds more of the true regressors than does the EN:

E
{

Pr
(

RR f ound

(
Xtrue

RR

∣∣∣ XRR) > EN f ound
(
Xtrue

EN
∣∣ X) > 0

)} 89%

Probability that RR finds more of the true regressors than does the EN more frequently:

Pr
{

Pr
(

RR f ound

(
Xtrue

RR

∣∣∣ XRR) > EN f ound
(
Xtrue

EN
∣∣ X) > 0

)
> 50%

} 99%

Average proportion of true regressors found by RR: E
{

RR f ound
(
Xtrue

RR
∣∣ XRR)

}
65%

Average proportion of true regressors found by the EN: E
{

EN f ound
(
Xtrue

EN
∣∣ X
)}

41%

Conditional probability that RR finds fewer of the true regressors than the EN more frequently, given that the
squared length of the RR-estimated coefficient vector is shorter than the corresponding one for the EN less

frequently (i.e., the RR downside to finding true regressors when RR coefficients are relatively imprecise is small):

Pr[ Pr
{
(RR f ound

(
btrue

RR

∣∣∣ XRR) < EN f ound
(
btrue

EN
∣∣ X)

}
> 50%

∣∣∣ Pr(0 < L2
1(bRR | XRR) < L2

1(bEN | X)) < 50% ]

3%

Probability that RR finds none of the true regressors: Pr
(
btrue

RR is empty
)

4%

Probability that the EN finds none of the true regressors: Pr
(
btrue

EN is empty
)

25%

Probability that the proportion of times the squared length of the RR-estimated coefficient vector chosen with the
HKB RR tuning parameter is shorter than the corresponding one chosen with the LW RR tuning parameter more

frequently: Pr
{

Pr
(
0 < L2

1(bHKB | XRR) < L2
1(bLW | XRR)

)
> 50%

} 11%

Probability that the proportion of times the squared length of the RR-estimated true coefficient vector using the
HKB RR tuning parameter is shorter than the corresponding one using the LW RR tuning parameter more

frequently: Pr
{

Pr
(
0 < L2

1
(
btrue

HKB
∣∣ XRR

)
< L2

1
(
btrue

LW
∣∣ XRR

))
> 50%

} 48%

* To the nearest integer. The operators Pr and E denote “probability” and “expectation” (a.k.a. “average”),
respectively.

3.1. Results by Collinearity Level

In contrast to Table 1, wherein all scenarios are summarized, Table 2 below summarizes
the results by ω.

The simulation results summarized in Table 2 lead us to the following conclusions:

1. RR is better than the EN at estimating true coefficients. Specifically, the double
probability,

Pr
{

Pr
(

L2
1
(
btrue

RR
∣∣ XRR

)
< L2

1
(
btrue

EN
∣∣ X
) ∣∣∣ r2, ρ

)
> 50%

}
wherein the subscript RR is either HKB or LW, is relatively high. Specifically, in rows
3 and 4 of Table 2, the average of this double probability across the 5 multicollinearity
levels (ω) can be computed as (73.6 + 73.1 + 70.6 + 65.0 + 89.0) ÷ 5 or about 74%,
wherein the first three numbers in the numerator correspond to the subscript setting of
b: RR ≡ HKB and the remaining two numbers correspond to the subscript setting (in
the double probability statement) of b: RR ≡ LW. That is, when the multicollinearity
level is low to severe, RR with the HKB values of k is better than the EN at estimating
true coefficients, and, for very severe to extreme collinearity levels, RR with the LW
values of k is better than the EN at estimating the true coefficients. For the sake of
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notational simplicity, where obvious, we will leave out terms following “|” in double
probability statements.

2. RR is better than the EN at jointly estimating both true and spurious, but “statistically
significant”, coefficients. In particular, the double probability

Pr
{

Pr
(

L2
1(bRR | XRR) < L2

1(bEN | X)
∣∣∣ r2, ρ

)
> 50%

}
is much higher than 50%. Specifically, the average probability across ω in rows 1 and
2 of Table 2 is (82.6 + 84.8 + 87.1 + 84.7 + 93.3) ÷ 5 or about 86%, wherein the first
three numbers in the numerator correspond to the subscript setting of b: RR ≡ HKB
and the remaining two numbers correspond to the subscript setting of b: RR ≡ LW.
That is, when the multicollinearity level is low to severe, RR with the HKB values
of k is better than the EN at estimating significant coefficients, and, for very severe
to extreme collinearity levels, RR with the LW values of k is better than the EN at
estimating the significant coefficients.

3. RR is better than the EN at finding true regressors. In particular, the double probability

Pr
{

Pr
(

RR f ound
(
Xtrue

RR
∣∣ XRR

)
> EN f ound

(
Xtrue

EN
∣∣ X
) ∣∣∣ r2, ρ

)
> 50%

}
takes on values that are much higher that 50% in row 5 of Table 2.

4. RR is better than the EN at finding at least one true regressor. The probabilities, by
ω, that btrue

RR and btrue
EN are empty, in rows 8 and 9 of Table 2, respectively, indicate this.

As can be noted, the probability that btrue
EN is empty is generally much higher than

the probability that btrue
RR is empty. In particular, the average probability that btrue

RR is
empty across the entire simulation space is (2.58 + 1.75 + 2.94 + 4.91 + 7.98) ÷ 5 or
about 4%, and the corresponding probability that btrue

EN is empty is about 25%, about
six multiples of 4%.

5. The conditional probability that btrue
RR is empty, given r2, ρ, and a trial (simulation)

where Xtrue
RR turns out to be empty, is denoted by:

Pr
{

btrue
RR is empty

∣∣∣ XRR, r2, ρ and ∃
(
empty Xtrue

RR
) }

where the “existential quantifier” (∃ a, b) means that “there exists at least one a and
b”, an operator borrowed from Whitehead and Russell [29]. The corresponding condi-
tional probability for bsig & true

EN is denoted similarly. The expected values (averages)
of these two conditional probabilities are shown in rows 10 and 11 of Table 2, respec-
tively. If we take the averages of these two expectations across ω, respectively, we get:
(0.54 + 1.08 + 1.22 + 0.81 + 0.33) ÷ 5 or 3.98 and (1.60 + 1.53 + 1.26 + 2.39 + 9.03) ÷ 5 or
15.81. Furthermore, 15.81 is nearly four multiples of 3.98.

6. For given combinations of r2 and ρ, the average value of the proportion of true
regressors found is calculated in the simulation, by ω. For RR and the EN, these
are E

(
RR f ound

(
Xtrue

RR
∣∣ XRR

) ∣∣∣ r2, ρ
)

and E
(

EN f ound
(
Xtrue

EN
∣∣ X
) ∣∣∣ r2, ρ

)
, respectively.

The averages (and standard deviations) of these two expectations across r2 and ρ, are
shown, by ω, in rows 12 and 13 of Table 2, respectively. They also indicate that RR is
better than the EN at finding true regressors and that RR does so with lower volatility.

7. Row 6 of Table 2 indicates that the LW value of k is better than the HKB value of
k when estimating the coefficient vector that includes both the true and spurious
coefficients. Row 7 of Table 2 indicates that, for low levels of collinearity, the HKB
value of k is better than the LW value of k when estimating the true coefficients.
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Table 2. RR vs. EN over all combinations of r2 and ρ by ω, at α = 15%.

Row Metric (Measured as Percent)
ω 1

100 300 1000 4000 Extreme

1 Pr
{

Pr
(

L2
1(bHKB | XRR) < L2

1(bEN | X)
∣∣ r2, ρ

)
> 50%

} 82.6
(79.3)

84.8
(78.0)

87.1
(74.6)

73.6
(65.1)

0.0
(0.99)

2 Pr
{

Pr
(

L2
1(bLW | XRR) < L2

1(bEN | X)
∣∣ r2, ρ

)
> 50%

} 82.6
(79.5)

84.8
(78.8)

87.1
(78.4)

84.7
(76.4)

93.3
(83.7)

3 Pr
{

Pr
(

L2
1
(
btrue

HKB

∣∣ XRR
)
< L2

1
(
btrue

EN

∣∣ X
) ∣∣ r2, ρ

)
> 50%

} 73.6
(67.0)

73.1
(66.1)

70.6
(64.4)

65.0
(58.7)

0.0
(5.5)

4 Pr
{

Pr
(

L2
1
(
btrue

LW

∣∣ XRR
)
< L2

1
(
btrue

EN

∣∣ X
) ∣∣ r2, ρ

)
> 50%

} 71.0
(66.4)

68.4
(64.8)

67.1
(64.2)

65.0
(62.0)

89.0
(76.8)

5 Pr
{

Pr
(

RR f ound
(
Xtrue

RR

∣∣ XRR
)
> EN f ound

(
Xtrue

EN

∣∣ X
) ∣∣ r2, ρ

)
> 50%

} 96.8
(75.2)

99.4
(84.8)

100
(90.1)

100
(94.3)

100
(99.8)

6 Pr
{

Pr
(

L2
1(bHKB | XRR) < L2

1(bLW | XRR)
∣∣ r2, ρ

)
> 50%

} 45.8
(43.1)

7.0
(36.8)

0.0
(26.8)

0.0
(17.7)

0.0
(0.29)

7 Pr
{

Pr
(

L2
1
(
btrue

HKB

∣∣ XRR
)
< L2

1
(
btrue

LW

∣∣ XRR
) ∣∣ r2, ρ

)
> 50%

} 78.7
(52.1)

69.0
(50.3)

51.2
(43.4)

41.7
(38.1)

0.0
(5.0)

8 Pr
(
btrue

RR is empty
∣∣ XRR, r2, ρ

)
2.58 1.75 2.94 4.91 7.98

9 Pr
(
btrue

EN is empty
∣∣ X, r2, ρ

)
4.52 8.77 24.11 28.83 58.28

10 E
(

Pr
{

btrue
RR is empty

∣∣ XRR, r2, ρ and ∃
(
empty Xtrue

RR
) }) 2 0.54

[0.9]
1.08
[1.3]

1.22
[1.6]

0.81
[1.3]

0.33
[0.7]

11 E
(

Pr
{

btrue
EN is empty

∣∣ X, r2, ρ and ∃
(
empty Xtrue

EN
) }) 2 1.60

[2.6]
1.53
[3.1]

1.26
[3.2]

2.39
[4.3]

9.03
[14.5]

12 E
{

E
(

RR f ound
(
Xtrue

RR

∣∣ XRR
) ∣∣ r2, ρ

) } 2 53.7
[12.1]

57.0
[9.9]

61.0
[8.7]

66.9
[6.6]

85.8
[5.8]

13 E
{

E
(
EN f ound

(
Xtrue

EN

∣∣ X
) ∣∣ r2, ρ

) } 2 49.0
[16.8]

47.5
[15.1]

46.3
[13.8]

44.4
[12.6]

18.4
[11.4]

14
Pr
{

Pr
(

L2
1(bLW | XRR) < L2

1(bEN | X)
∣∣ r2, ρ

)
≥ Pr

(
L2

1(bHKB | XRR) < L2
1(bEN | X)

∣∣ r2, ρ
) } 73.6 84.8 91.8 96.3 100

15
Pr
{

Pr
(

L2
1
(
btrue

LW

∣∣ XRR
)
< L2

1
(
btrue

EN

∣∣ X
) ∣∣ r2, ρ

)
≥ Pr

(
L2

1
(
btrue

HKB

∣∣ XRR
)
< L2

1
(
btrue

EN

∣∣ X
) ∣∣ r2, ρ

)} 40.0 39.2 51.2 58.9 98.2

16 Pr[ Pr
{
(RR f ound

(
btrue

RR

∣∣ XRR) < EN f ound
(
btrue

EN

∣∣ X)
}
> 50%

∣∣ Pr(hit∆) < 50% ] 3 7.41 3.85 0 0 0

1 Average values of the probability within the curly braces, i.e., {Pr (·)}, in the first column labeled “Metric” are
within parentheses. 2 The number within square brackets ([·]) is the standard deviation (as %) of the corresponding
metric. 3 ∆ ≡ HKB f or ω ∼= 100 and ∆ ≡ LW f or the remaining values o f ω.

3.2. Recognizing Failure Scenarios

In order not to clutter the body of this paper, detailed simulation outputs are saved in
the supplementary materials Excel file with tab-naming convention ω-Ti, wherein, for each
value of ω, i takes the values 1, 2 and 3. We will refer to those tabs in the supplementary
materials Excel file as necessary to highlight simulation scenarios wherein the EN does
better than RR for particular values of ρ and r2.

For example, when ω = 4000 (see table “4000-T1” in the supplementary materials Excel
file):

Pr
(

L2
1
(
btrue

LW

∣∣ XRR
)
< L2

1
(
btrue

EN
∣∣ X
)
| r2 = 300, 000, ρ ≤ 55%

)
< 50% and

Pr
(

L2
1(bLW | XRR) < L2

1(bEN | X) | r2 = 300, 000, ρ ≤ 40%
)
< 50%; but

Pr
(

RR f ound
(
Xtrue

RR
∣∣ XRR

)
> EN f ound

(
Xtrue

EN
∣∣ X
)
| r2 = 300, 000, ρ

)
> 50%

That is, EN does better than RR in terms of L2
1(·) but not in terms of true regressors

found.
More analysis of the above examples or “failure scenarios” is done next. To do so, we

define, for simplicity, the following symbols:

I(ψ) ≡
{

1, Proposition or Propositional f unction ψ is true
0, ψ is f alse
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hitΩ
∆ ≡ 0 < L2

1

(
bΩ

∆

∣∣∣ XRR

)
< L2

1

(
bΩ

EN

∣∣∣ X
)

We eyeball simulation outputs and note possible patterns. For example, if we ob-
serve the values of Pr

{
L2

1(bHKB | XRR) < L2
1(bEN | X)

}
(see column labeled “a” in tab

100-T1 in the supplementary materials Excel file), we see that the corresponding hit rate
(i.e., 0.307 < 50%) first fails when r2 = 500 and ρ = 0.05. As we go down this column
of probabilities, we notice that this hit rate tends to fail as r2 is “large” and ρ is “small”
(i.e., tends to be sparse). Furthermore, the tendency for hit rates to fail as r2 increases are
dampened as ρ increases.

3.3. Regression Modeling of Simulation Outputs to Understand Patterns

One way to conceptualize the abovementioned patterns observed in hit rate variations
in the simulation is to model how simulation output is generated by its inputs, under the
simplifying assumption that the inputs are fixed. We do this using LS linear regression and
RR as shown in Table 3.

Based on eyeballing the output, we select simulation variables, with r2 in logarithmic
scale, as regressors to see how they impact the evolution of the simulation output (i.e., the
regressand). First, a LS regression is fit to the chosen dependent variable shown in Table 3.
Because variance inflation factors (VIFs) exceeding 10 may be problematic (see Marquardt
and Snee [38]), the hypothesized regression equation is also re-estimated by RR, and the
resultant coefficient estimates are shown following the slash (/) after the corresponding
LS-estimated coefficients. In Table 3, the RR tuning parameter, k, is chosen graphically, and
conservatively, by observing where the ridge traces “stabilize” (see Hoerl and Kennard [39]),
indicating the near orthogonality of the regressors. This happens for the small value of k
of 0.02 (bias in RR is proportional to k2). Because observing the broad outlines of patterns
among simulation inputs and outputs is the focus of this exercise, algorithmic selections of
k are not pursued; nor are the RR ANOVA tables (see Hoerl and Kennard [40]) computed.
The LS absolute t, F, R-squared and root mean squared error (RMSE) values are computed.
White’s [41] t values are also examined (but not reported) to confirm that no LS t values
turn out to be statistically insignificant. Note that LS t values are relevant in RR as well (see
Obenchain [42]). The RR RMSE value is also computed, but without correcting for the RR
degrees of freedom in the RR ANOVA table.

Furthermore, for conceptualizing simulation patterns, RR is used to assess the sensitiv-
ity of the coefficients to small perturbations, because the collinearity among the simulation
variables is considered “natural”. That is, if this simulation is repeated, the expectation
is that the present correlation structure among its inputs used as regressors will persist.
Another way to think about the perturbations is that they can produce more accurate matrix
inverses when the matrices to be inverted are close to being singular. In particular, for an
ill-conditioned matrix A:

(A + kI)−1 = A−1 − k2 ×A−1
(

I + A−1 ÷ k
)−1

A

which for “small” k approximates to A−1, if we ignore second-order terms (see Piegorsch
and Casella [10]). RR is a good way to invert matrices like A using “small” values of k while
observing where coefficients stabilize as the matrix diagonal increment (k) starts increasing
from zero. For our purpose, we will consider values of k ≤ 0.1 to be “small”. Furthermore,
whether or not multicollinearity exists, some shrinkage of LS estimated coefficients may be
desirable (see Brook and Moore [13]).

For our purpose, these regression approximations are quite reasonable in revealing
broad patterns in simulation outputs and are better at revealing these patterns than simple
two-dimensional graphs of simulation outputs vs. inputs. As can be noted from the second-
to-last row of Table 3, the conditional probability of RR failing to find more of the true
regressors than EN, given that the RR hit rate is less than 50%, is only about 7%.



Mathematics 2022, 10, 3057 14 of 27

Table 3. Approximating patterns in simulated hit rates, ω ∼= 100.

Regressand (Y)

Y ≡Pr
(
L2

1(bHKB | XRR)<L2
1(bEN | X)

)
Y≡Pr(L2

1
(
btrue

HKB | XRR
)
<L2

1
(
btrue

EN | X
)
)

Simulation variables
used as regressors

LS/RR
coefficients

(LS VIF)
LS |t| value

Simulation
variables

used as regressors

LS/RR
coefficients

(LS VIF)
LS |t| value

Intercept 1.3924/1.32 38.39 Intercept 1.1454/1.12 48.56

log(r2)
−0.0296/−0.03

(8.7) 5.50 log(r2)
−0.0394/−0.04

(6.6) 8.40

ρ
−0.3842/−0.25

(5.3) 8.27 ρ Not significant

I
(
r2 > 250

) −0.4882/−0.42
(8.9) 12.08 I

(
r2 > 50

) −0.3338/−0.35
(5.0) 8.92

ρ× I
(
r2 > 250

) 0.5043/0.37
(35.4) 4.72 ρ× I

(
r2 > 50

) 0.2778/0.33
(21.6) 3.24

log(r2)× ρ× I(r2 > 250)
0.0331/0.035

(32.7) 3.35 log(r2)× ρ×
I(r2 > 50)

0.0348/0.03
(21.5) 4.14

I( ρ ≤ 20%)
−0.5394/−0.47

(5.3) 17.79 I(5% ≤ ρ ≤ 35%)
−0.4787/−0.44

(5.6) 17.04

ρ× I( ρ ≤ 20%)
1.3230/1.05

(3.2) 8.48 ρ×
I(5% ≤ ρ ≤ 35%)

1.0866/0.95
(3.0) 13.42

Sample size 155 155

LS F value 309.90 474.59

LS/RR RMSE 0.0727/0.0756 0.0727/0.0736

LS R-squared 93.7% 95.1%

Conditional probability that
RR finds fewer of the true
regressors than EN more

frequently, given the
RR-estimated coefficients are
less precise than those of EN

more frequently *

7.41% NA (not applicable)

Selected k using ridge traces 0.02 0.02

Average Y (via double
integration) in the rectangular
region bounded by ρL = 0.05,

ρU = 0.20, r2
L = 10 and

r2
U = 250, and using the

LS/RR regression coefficients

83.3%/84.7% Not computed

Average Y (via double
integration) in the rectangular
region bounded by ρL = 0.20,

ρU = 0.95, r2
L = 250 and

r2
U = 600, 000, using the

LS/RR regression coefficients

84.3%/81.0% Not computed

* Pr[ Pr
{
(RR f ound

(
btrue

RR | XRR) < EN f ound
(
btrue

EN | X)
}
> 50%

∣∣ Pr(hitHKB) < 50% ] .

One can use the equation in Table 3 to visualize movements in hit rates for different r2

and ρ combinations. Furthermore, following Fubini [43,44], we can use an iterated integral
approach to calculate the average hit rate in Table 3. For example, if the regression equation
for the regressand Pr(hitHKB) is denoted by f

(
ρ, r2), say, then:
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Average value o f Pr(hitHKB) ≡ Pr(hitHKB)

∼= 1
( ρU−ρL)×(r2

U−r2
L)
×
∫ r2

U
r2

L

∫ ρU
ρL

f
(

ρ, r2) dρ dr2

where ρL and ρU are the lower and upper bounds imposed on ρ, respectively; r2
L and

r2
U are the lower and upper bounds imposed on r2. For ρL = 0.05, ρU = 0.20, r2

L = 10 and
r2

U = 250 and using the LS (RR)-estimated coefficients for f
(

ρ, r2), the value of Pr(hitHKB)
works out to about 83.3% (84.7%); and, for ρL = 0.20, ρU = 0.95, r2

L = 250 and r2
U = 600, 000

and using the LS (RR)-estimated coefficients, the value of Pr(hitHKB) works out to about
84.3% (81.0%). These double integral values are consistent with the number in parentheses
(79.3%) in row 1 of Table 2 for ω = 100.

Pr(hitHKB) is a probability but has been modeled herein as a linear combination of
simulation inputs. A more precise approach that constrains the predictions to naturally
lie in the 0–1 range is to model the log-odds, log

(
Pr(hitHKB)

1−Pr(hitHKB)

)
, as a linear combination of

simulation inputs and estimate Pr(hitHKB). As an example, the linear regression model for
Pr(hitHKB) in log-odds form (for ω = 100) was estimated. Because some LS VIFs are high
(e.g., 198), we take the RR-estimated coefficients to do the double integration with ρL = 0.20,
ρU = 0.95, r2

L = 250 and r2
U = 600, 000. Because double integration for this case becomes a

bit more computationally intensive, we use numerical integration per Shampine [45,46]
in Matlab [47] and find that Pr(hitHKB), for this region, works out to about 81.6%. That
is, the choice of regressand transformation has little impact on the value of the double
integral. Similarly, the true regressor miss rate of RR relative to EN is modeled. The Matlab
code used for double integration is in the supplementary materials Excel file (see table
“matlab_code”).

An example is shown in Table 4. The double integral computations for miss rates are
shown in the last two rows of Table 4. For other values of ω, the regressions hold and
are included in the supplementary materials (see table “output–input regressions” in the
supplementary materials Excel file). When ω is 100 or 300, the HKB value of k is used
for regressing hit rates associated with the coefficients that are both significant and true,
because row 15 of Table 2 indicates that the HKB-prescribed k has an advantage in this
regard.

3.4. Time-Series Modeling of Simulation Output to Understand Patterns

One can go deeper into the simulation output by artificially viewing it as “ordered”
output. That is, we can think of each row of simulation output as “naturally” followed by
the next row of simulation output. This makes the simulation output an artificial “time
series”, and one can then explore the memory and persistence in simulation outputs as
they were generated.

As an example, we picked Pr
{

RR f ound

(
btrue

RR

∣∣∣ XRR) < EN f ound
(
btrue

EN
∣∣ X)

}
as the re-

gressand and modeled it. For modeling these miss rates, we note that the application of
Durbin’s [48–50] and Vinod’s [50] tests for serial correlation among the errors yields signifi-
cant serial correlations for lags 1, 2, 7 and 8. We use the unconditional least squares (ULS)
method of Spitzer [51] to re-estimate the model in order to account for these correlations
by retaining the significant ones in the model. Lags 1, 2 and 8 are significant in the model
(lag 7 drops off). No unit roots, per Elliott et al. [52], for the ULS-estimated equation are
detected. The inputs used as regressors continue to be statistically significant, and, as
expected, the regression R2 value increases to about 96%. This example is included as
supplementary materials (see the table labeled “Approximating patterns in simulated miss
rates, ω ∼= 300” in the tab “output–input regressions” of the supplementary materials Excel
file). Fitting such “time-series” models for the other regressions, on hit rates and miss rates,
is not pursued at this time, but may be an interesting topic for future research on assessing
the relationships between simulation inputs and outputs.
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Table 4. Approximating patterns in simulated miss rates, ω ∼= 100.

Y≡Pr{RRfound(btrue
RR | XRR)<ENfound(btrue

EN | X)}

Regressand Is Y Regressand Is log
(

Y
1−Y

)
Simulation variables

used as regressors

LS/RR
coefficients

(LS VIF)
LS |t| value

LS/RR
coefficients

(LS VIF)
LS |t| value

Intercept 0.2332/0.2378 11.39 −1.061/−1.074 10.93

log(r2)
0.0068/0.0051

(2.3) 4.07 0.0279/0.021
(2.3) 3.51

ρ
−0.1981/−0.1719

(2.6) 10.23 −1.259/−1.097
(2.6) 13.71

I
(
r2 < 250

) −0.1587/−0.1067
(4.8) 8.12 −0.8406/−0.57

(4.8) 9.07

ρ× I
(
r2 < 250

) 1.2296/0.6209
(18.6) 18.72 5.8716/3.015

(18.6) 18.85

log(r2)× ρ× I(r2 < 250)
−0.1918/−0.0532

(16.0) 11.41 −0.8453/−0.21
(16.0) 10.61

I( ρ ≤ 20%)
0.1205/0.1139

(2.4) 9.91 0.5044/0.49
(2.4) 8.75

ρ× I( ρ ≤ 20%) Not statistically significant at α = 5%

Sample size 155 155

LS F value 160.99 192.50

LS/RR RMSE 0.0438/0.0551 0.2076/0.2606

LS R-squared 86.7% 88.6%

Selected k using ridge traces 0.04 0.04

Average Y (via double integration) in
the rectangular region bounded

by ρL = 0.05, ρU = 0.20, r2
L = 10, and

r2
U = 250, and using the LS/RR

regression coefficients

Not computed 23.5%/28.2%

Average Y (via double integration) in
the rectangular region boundedby
ρL = 0.20, ρU = 0.95, r2

L = 250, and
r2

U = 600, 000, and using the LS/RR
regression coefficients

Not computed 19.5%/18.1%

3.5. Examining Failure Scenarios for RR Miss Rates

Over all simulation scenarios, the observed probability that RR finds fewer of the
true regressors than does the EN is greater than 50% is only 0.73%. This happens for six
observations among the 822 miss rates output by the simulation. These six observations
are shown in Table 5 and indicate that this event tends to occur when the number of true
regressors (i.e., ptrue) is “small” (i.e., ρ = 5%) and r2 is “large” or when ρ is “large” but
r2 is “small”. Both sets of failures occur when multicollinearity is “mild” (i.e., ω ≤ 300).
However, for the failures for which ρ ≥ 65%, the probabilities of all hit rates, hitRR and
hittrue

RR , where RR is HKB or LW, are nearly 100% each. When ρ < n
p = 33

89
∼= 37.1%, ptrue will

tend to be less than n. In other words, the problem in nature reduces to a classical regression
problem when the number of regressors is less than the number of observations; there is
no need for the EN. However, we have to invoke the EN because ptrue is unobservable,
and, thus, we are forced to cast “the net” wide. Therefore, it is of interest to compute the
probability (in the simulation) of the number of RR-selected regressors, pRR, being less
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than n and how miss rates conditioned on pRR look. This will give us insight into how well
RR recognizes (or fails to recognize) these scenarios. These probabilities are displayed, for
these scenarios, in Table 5.

Table 5. Input combinations for which Pr
{

RR f ound
(
btrue

RR
∣∣ XRR

)
< EN f ound

(
btrue

EN
∣∣ X
)}
≥ 50%.

ρ r2 ω Pr( pRR<n | ρ, r2, ω)
Pr
(

RRfound
(
btrue

RR | XRR
)〈

ENfound
(
btrue

EN | X
) ∣∣∣ ψ

)
ψ≡Pr( pRR<n ) ψ≡Pr( pRR≥n )

5% 200,000 100 47.1% 54.7% 49.0%

5% 600,000 100 47.6% 52.8% 46.8%

5% 600,000 300 16.9% 55.8% 52.1%

65% 10 100 57.5% 76.7% 20.0%

80% 10 100 56.5% 82.0% 17.6%

95% 10 100 56.7% 90.5% 10.5%

Furthermore, RR miss rates (i.e., Pr
{

RR f ound
(
btrue

RR
∣∣ XRR

)
< EN f ound

(
btrue

EN
∣∣ X
)}

) for
small ρ have “stabilized” at r2 = 600, 000, as shown in Table 6, wherein miss rates are
calculated by fixing ρ and ω at 5% and 100, respectively. Table 6 indicates that, as r2

increases, miss rates tend to be less than 55%.

Table 6. RR miss rate as r2 increases with ρ fixed at 5% and ω fixed at 100.

r2 Miss Rate r2 Miss Rate r2 Miss Rate r2 Miss Rate

6× 106 0.5030 6× 1018 0.5330 6× 1030 0.5235 6× 1060 0.5445

6× 109 0.5350 6× 1021 0.5415 6× 1039 0.5430 6× 1069 0.5100

6× 1012 0.5225 6× 1024 0.5260 6× 1045 0.5310 6× 1075 0.5400

6× 1015 0.5185 6× 1027 0.5265 6× 1054 0.5245 6× 1099 0.5175

The average miss rate in Table 6 is about 53%, with a standard deviation of about 1.2%,
giving a signal-to-noise (SNR) ratio (i.e., µ

σ ) of about 44, which more than satisfies the Rose
criterion [53,54] for large r2 that “ . . . to reduce the number of false alarms to below unity, we
will need . . . a signal whose amplitude is 4–5 times larger than the RMS noise . . . ”.

3.6. Examining Failure Scenarios for RR Hit Rates

Over all simulation scenarios, Pr
{

Pr(hitLW) ≤ 50%
∣∣ r2, ρ, ω

}
is 13.5%. That is, 111

of the 822 hit rates are less than or equal to 50%. Of these 111 observed probabilities, 105
(i.e., nearly 95%) are associated with ρ ≤ 20%, five are associated with ρ = 35% and the
remaining one with ρ = 40%.

Over all simulation scenarios, Pr
{

Pr
(
hittrue

RR
)
≤ 50%

∣∣ r2, ρ, ω
}

is about 26%. That is,
212 of the 822 hit rates are less than or equal to 50%; here “RR” means that HKB k values
were used when ω ≤ 1000 and LW k values otherwise, for computing the aforementioned
double probability over the simulation inputs. Of these 212 observed probabilities, 201
(i.e., nearly 95%) are associated with ρ ≤ 40%; one is associated with ρ = 45%; eight
with ρ = 50% and the remaining two with ρ = 55%. Furthermore, if Pr( hitLW) ≤ 50%,
then Pr

(
hittrue

RR
)
≤ 50% as well. However, if Pr(hitLW) > 50%, then Pr

(
hittrue

RR
)
≤ 50%

about 14.21% (i.e., 101
822−111 ) of the time; about 89% of the time this happens, it happens for

ρ ≤ 40%. These results are also shown as supplementary materials (see table “contingency
tables” in the supplementary materials Excel file).
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3.7. Examining Simulation Stability as r2 Increases

Simulation outputs are stable as r2 increases. This is illustrated for the case where
ω = 100, and the SNRs for the corresponding simulation outputs for 5 metrics, as r2

becomes large, are shown in Table 7 (simulation outputs are in tab “rsq large for omega
100” in the Supplementary Materials Excel file). Ten values are assumed by r2: 6 × 10u,
where u ∈ {6, 9, 12, 24, 36, 48, 60, 72, 84, 99}. There are only two instances in Table 7, as
expected, wherein the Rose criterion is violated; in all other cases, the SNRs are much larger
than 5. In these two instances, for ρ = 5%, Pr( hitHKB) and Pr

(
hittrue

HKB
)
, each approach

about 1% as r2 approaches 6× 1099.

Table 7. SNRs by ρ over large r2 values, where ω = 100.

Metric
ρ

5% 20% 35% 40% 50% 65% 80% 95%

Pr(L2
1(bHKB | XRR) < L2

1(bEN | X)) 1.22 42.67 60.67 78.13 140.88 297.41 188.19 318.21
Pr(L2

1
(
btrue

HKB
∣∣ XRR

)
< L2

1
(
btrue

EN
∣∣ X
)
) 0.99 32.29 30.43 51.47 72.81 108.08 176.82 260.40

E
[

EN f ound
(
btrue

EN
∣∣ X
)]

490.62 354.04 330.69 247.00 544.53 661.89 512.00 776.72

E
[

RR f ound
(
btrue

RR
∣∣ XRR

)]
320.83 378.64 244.60 284.69 387.35 269.77 271.48 333.68

Pr
(

pRR < n
∣∣ ρ, r2, ω = 100) 56.44 23.37 22.19 20.75 28.01 12.83 23.43 17.14

Finally, to confirm that the simulation itself is stable, we re-ran the entire simulation
for the 8 values of ρ, 20 values of r2 and the 5 values of ω, at an α of 15%. The resultant
8 × 20 × 5 or 800 rows of simulation outputs are shown in the supplementary materials
Excel file (see table “alpha15pct”). The conclusions remain consistent, demonstrating the
superiority of RR over the EN.

3.8. Examining Scenarios by Setting α Less than 15%

In our simulations, we have set α at 15%. There are two reasons we set α at 15%.
First, it has been shown by Bendel and Afifi [55] that an α level of 15% to 25% is generally
appropriate for variable subset selection when p < n, with an α level of 15% being “superior
overall”. Second, Gana’s [34] recent work showed that setting α at 15% is more superior
overall than setting it at 10%, when comparing RR and the Lasso. Notwithstanding
these reasons, we redid some simulations by setting α at 5% and 10%. Because this is an
illustration, we did these simulations for certain, but not all, choices of ω and r2.

For α at 5%, when ω ∈ {100, 1000, 4000}, all 20 values of r2 are used; when ω is
extreme, all values of r2 except the “small” ones, 10, 25, 50 and 100, are used. For α at 10%,
ω ∈ {300, extreme} and all 20 values of r2 are used when ω is 300; when ω is extreme, only
the smallest value of r2, 10, is dropped. For both of these α settings, all eight values of
ρ ∈ {0.05, 0.20, 0.35, 0.40, 0.50, 0.65, 0.80. 0.95} are used. Simulation outputs are included
as supplementary materials (see table “alpha_other_pct” in the supplementary materials
Excel file).

Results from this simulation are shown in Table 8. Overall results, as well as results for
ρ ≤ 20%, are shown in Table 8. A key difference between results at lower α values versus
those at α = 15% is that RR finds fewer of the true regressors than does the EN for lower
values of ω at an α setting of 5% (see row 5 of Table 8). Future research should explore how
these metrics compare, on a trial-by-trial pairwise basis, for different α values relative to
the chosen (baseline) α value of 15%.
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Table 8. RR vs. EN by ω at α settings of 5% and 10%.

Row Metric (Measured as Percent to the Nearest Integer)

α=5% α=10%

ω ω

100 1000 4000 Extreme 300 Extreme

1 Pr
{

Pr
(

L2
1(bLW | XRR) < L2

1(bEN | X)
∣∣ r2, ρ

)
> 50%

}
82 79 74 91 84 93

2 Pr
{

Pr
(

L2
1(bLW | XRR) < L2

1(bEN | X)
∣∣ r2, ρ ≤ 20%

)
> 50%

}
28 43 50 66 35 71

3 Pr
{

Pr
(

L2
1(b

true
LW | XRR) < L2

1(b
true
EN | X)

∣∣ r2, ρ
)
> 50%

}
54 55 54 85 64 89

4 Pr
{

Pr
(

L2
1(b

true
LW | XRR) < L2

1(b
true
EN | X)

∣∣ r2, ρ ≤ 20%
)
> 50%

}
13 25 30 41 20 55

5 Pr
{

Pr
(

RR f ound(Xtrue
RR | XRR) > EN f ound(Xtrue

EN | X)
∣∣ r2, ρ

)
> 50%

}
3 6 76 100 78 100

6 Pr
{

Pr
(

RR f ound(Xtrue
RR | XRR) > EN f ound(Xtrue

EN | X)
∣∣ r2, ρ ≤ 20%

)
> 50%

}
13 23 60 100 50 100

7 Pr
(
btrue

RR is empty
∣∣ XRR , r2, ρ

)
10 12 20 12 4 14

8 Pr
(
btrue

RR is empty
∣∣ XRR , r2, ρ ≤ 20%

)
18 28 55 47 15 47

9 Pr
(
btrue

EN is empty
∣∣ X, r2, ρ

)
6 22 31 48 11 57

10 Pr
(
btrue

EN is empty
∣∣ X, r2, ρ ≤ 20%

)
23 40 53 100 35 100

3.9. Results Summary

The proposed algorithm has unambiguously shown that RR has an advantage over
the EN when searching for true regressors. Additionally, RR’s computational simplicity
makes it an important competitor to the EN.

Key high-level takeaways from the simulations done herein, in mostly plain English,
are:

(1) RR finds more of the true regressors than does EN, with very high probability (≈99%).
This is critically important for linear model discovery in the sciences, when p > n.
Thus, it is advantageous to consider the set of significant regressors selected by RR
using the hard constraint of 3 OPR built into the proposed algorithm. For example,
the RR-selected regressors can be compared and contrasted with the EN-selected
regressors in the context of the science of the process driving the regressand.

(2) When RR fails to find more of the true regressors than does the EN (0.73% of the time
across all simulations), these failures occur when ρ is “small” (≤20%) and r2 is “large”
(≥200,000) or when ρ is “large” (≥65%) and r2 is “small” (≤10). All of these failures
occur under “mild” (ω ≤ 300) multicollinearity levels.

(3) The probability that the EN finds none of the true regressors is about six times higher
than the corresponding probability (≈25% vs. 4%) that RR finds none of the true
regressors. This re-emphasizes the fact that the RR-selected regressors should, at a
minimum, be compared and contrasted with those selected by the EN.

(4) The squared length of the RR-estimated coefficient vector (b̂, say) from the true
coefficient vector (b) is less than the corresponding EN b̂ with high probability (≈86%).
Note that b̂ includes the spurious coefficients that are either statistically significant
(as in RR) or are the output of the optimization process (as in the EN). This indicates
that the simpler RR-estimation process tends to produce more accurate estimates of b
with high probability. Thus, comparing and contrasting both b̂ vectors, in the context
of the underlying science of the process generating the regressand would be quite
advantageous.

(5) When the squared length of b̂ from b, yielded by RR, fails to be less than the corre-
sponding one yielded by the EN (13.5% of the time), 95% of these failures occur when
ρ ≤ 20% and 99% of them occur when ρ ≤ 35%. When ρ ≥ 35%, the failures occur
for “large” r2 (≥100,000).

(6) The squared length of the true coefficients in the RR-estimated b̂ (with the spurious
ones set to zero), from b, is less than the corresponding one from the corresponding
EN b̂ with high probability (≈74%). This re-emphasizes, again, that comparing and
contrasting the RR b̂ with the EN b̂ is quite important. We may not know a priori which
coefficients in b̂ are the true ones, but the science underlying the process generating
the regressand may provide insights regarding wherein the truth lies. Conversely, the
RR b̂ would have an advantage over the EN b̂ to alert scientists to the existence of
possible causal variables hitherto unconsidered or undiscovered.
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(7) When the squared length of the true coefficients in the RR-estimated b̂ from b fails to
be less than the corresponding one for the EN (25.79% of the time), about 95% of these
failures occur when ρ ≤ 40% and 99% of them occur when ρ ≤ 50%. These failure
rates drop steeply under extreme multicollinearity.

(8) It is observed in the simulation that, whenever the squared length of b̂ from b, yielded
by RR, fails to be less than the corresponding one yielded by the EN, so does the
corresponding squared length for the true coefficients in b̂.

(9) On the other hand, if the squared length of b̂ from b, yielded by RR, is less than
the corresponding one yielded by the EN, there is about a 14% probability that the
squared length of the true coefficients in the RR estimated b̂ from b fails to be less than
the corresponding one for the EN. Furthermore, when this event occurs, there is about
an 89% probability that it happens when ρ ≤ 40%.

(10) For low to moderate levels of collinearity among the regressors, as measured by the
traces of the respective matrices of regressors under consideration for RR estimation,
the Hoerl, Kennard and Baldwin [26]-proposed values of the RR tuning parameters
provide a good estimate of b̂. For higher levels of collinearity, the corresponding
values proposed by Lawless and Wang [27] are good. In practice, it would be best to
compare and contrast the RR b̂ solutions derived using the HKB and LW values of k,
respectively.

(11) A wide range of input parameters are covered in the simulation. Specifically, the
squared length of b from the origin (i.e., r2), the a priori probability (i.e., ρ) that an
element of b is zero and the multicollinearity level of the matrix of regressors (i.e., ω)
are varied in the simulation. For a given set of data, ω is knowable, but, r2 and ρ, in
general, are not. However, the science underlying the data being examined may yield
some insights into r2 and ρ. If so, the tables with simulation output, in the body of
this paper and those in the supplementary materials Excel file can indicate where RR
is inferior to the EN in terms of metrics such as the accuracy of b̂. Alternatively, the
regression equations relating simulation inputs and outputs (e.g., as in Table 3) can
indicate this. In such cases, the regressors found by RR and by EN can be pooled,
and another EN or RR (or both) re-estimation can be done to see how it impacts the
science underlying the data in terms of the causal relationships between the inputs
believed to generate the output.

4. Discussion

In the following sub-sections, we discuss our work at a high-level and present some of
its limitations.

4.1. This Work

Two questions of enormous importance in regression analysis (see Myers [56]), when
used as a tool for model discovery in the sciences, is how many of the true regressors gener-
ating the regressand can be found and how accurate are their coefficients. If philosophical
thinking were applied to science, a question of great importance is: what does p > n mean
in nature? In the context of our linear model, does it mean that data generation stopped
before n could reach its “natural” state of being much larger than p and, thus, make the
concept of the EN irrelevant? Or does it mean that n < p is the “natural” state and that
there will be no further data in nature (i.e., some type of “censoring” occurred in the fabric
of nature)? Or does it simply mean that n < p is, to borrow Penrose’s [57] words, just “an
arbitrary construction of the human mind” caused by the fact that, because we do not know
what the true regressors are, we simply spread our net very wide in an attempt to find
them?

Assuming that n < p is a “natural” state and the underlying model generating the
regressand is linear, the EN is a well-known procedure to estimate the regressors generating
the regressand. Under these two assumptions, we have shown that RR improves upon the
EN, with high probability, both in terms of finding the true regressors and the accuracy
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of estimated coefficients. Furthermore, to accomplish this, we have bypassed “complex”
optimization methods by using “elementary” mathematical operations within the RR
framework. We use the word “elementary” in the sense that an operation like simply
inverting a matrix in RR is much simpler than a set of operations needed to minimize a
quadratic objective function subject to linear or nonlinear constraints.

The idea of using elementary, but not necessarily “simple”, methods to tackle “com-
plex” mathematical problems is well-known to mathematicians. For others, an introduction
to this idea can be found in a fascinating paper by Levinson [58], which discusses ele-
mentary methods, not requiring more than the properties of the logarithm, to establish
the prime number theorem. For example, Hardy’s [59] keenness to find an elementary
method establishing the prime number theorem is well known to mathematicians and
reflected in the following statement of his: “ . . . if Ramanujan really had proved (2.10.12),
he would have found an elementary proof of the Prime Number Theorem, a proof involving no
function-theory at all . . . ”. Bohr [60] recognizes that despite Hardy’s keenness to find an
elementary method, Hardy concluded, in 1921, that: “ . . . No elementary proof of the prime
number theorem is known, and one may ask whether it is reasonable to expect one . . . A proof of
such a theorem, not fundamentally dependent upon the ideas of the theory of functions, seems to
me extraordinarily unlikely . . . ”. Our approach to tackling the EN has been inspired by
mathematicians’ keenness for pursuing that which is elementary. We have used two “old”
and “elementary” ideas to find an alternative to the EN: the idea of “stepwise” variable
selection, an idea which goes back to 1960, and the idea of RR, which goes back to 1970.

Furthermore, for our problem (i.e., the EN vs. RR), if a simpler method also produces
better solutions to the problem, why not use it? This, we believe, is the value added to
the practice of regression by our paper. To only rely on the EN to estimate b, when p > n,
would not be as good, in a probabilistic sense, as also relying on RR to produce an estimate
of b. Thus, using only RR to estimate b reasonably complements the EN estimate of b and,
when compared, will likely produce more insight into the process generating Y.

Although the simulation results indicate that the probability of RR doing better than
the EN is much higher than 50%, that probability is not 100%. Thus, there may be room
to incorporate the Lasso into RR and further improve the search for significant regressors
and their coefficients. This also indicates that RR can provide important feedback on the
outputs of other fashionable competitors, such as machine learning (e.g., Breiman [61,62]),
with its pervasive “black-box” focus on prediction, rather than on the process generating
the data, as an end in itself.

There are several avenues for further research as outlined below:

(i) A few simulations were done using the following “ensemble” approach to selecting
the RR tuning parameter k: when doing RR estimation by partitions, we use the
LW value of k when the ratio of the trace associated with a partition to the number
of regressors in that partition exceeds 10; otherwise, we use the HKB value of k.
However, the few simulations done in this regard did not improve upon the selections
of k considered herein. It may be of interest to pursue some variant of this idea
further by increasing the cutoff value of 10 to a higher number and see if the ensemble
approach to selecting k is beneficial.

(ii) The hard constraint of keeping 3 OPR when partitioning X can be relaxed by increasing
OPR to a higher number like 10. This can be done by running simulations on a “wider”
dataset, for example one with p = 5000 and n = 100. For the dataset used herein,
p = 89 and n = 33, which yields a p-to-n ratio of about 2.7. For the “wider” dataset,
this ratio would be 50.

(iii) Alternative selections of k can be considered, for example, those of Hoerl and Ken-
nard [63] and Inoue [64]. For RR “failure scenarios”, the conditional probability that
RR finds fewer of the true regressors than does the EN is small (see row 16 of Table 2).
However, for these failure scenarios, the RR b̂ is less accurate (in terms of squared
distance, L2

1(·)) than the corresponding EN b̂. It may be worth examining if other se-
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lections of k, such as those proposed by Hemmerle [65], can improve RR performance
in these failure scenarios.

(iv) Following up on “(iii)” above, another consideration worth pursuing is iterative RR es-
timation for regressor selection. In this paper, significant regressors are selected by iden-
tifying significant values of the RR-estimated t-ratio (i.e., t(i)RR). However, this is done
only once for each partition following Hoerl, Schuenemeyer and Hoerl [35]—i.e., all
regressors associated with insignificant RR t-ratios are dropped, and the remaining
regressors are retained as significant. Two versions of iterative RR estimation were
proposed by Gana [66]. The first version, called “backward stepwise eliminating”
(BSE), is the following: (a) we fit a LS regression to the partition under consideration;
(b) we calculate the LW k; (c) we re-estimate the LS regression with RR using the LW k
and calculate the RR t-ratio; (d) we drop the regressor having an RR t-ratio with the
highest p-value above 20%; and (e) we redo steps “a” through “d” until the p values
of the RR t-ratios of the remaining regressors are below 20% or until no regressors
meet this criterion. The second version, called “backward group eliminating” (BGE),
is the following: we follow all of the steps laid out for a BSE RR after modifying
only step, “d”, to drop all regressors with RR t-ratios whose p-values are greater than
20%. That is, in BGE RR, groups of insignificant regressors are dropped, in contrast
to BSE RR, wherein the “most” insignificant regressors are dropped one at a time
iteratively. For our problem, BSE RR may have some advantages. For example, some
initial simulation done indicate that there is a greater than 50% probability that RR b̂
will improve in terms of accuracy.

(v) Deeper explorations linking simulation outputs and inputs can be pursued. As
mentioned before, multicollinearity levels (ω) would be known a priori but not the
squared length of the true coefficient vector from the origin (r2) or the probabilities (ρ)
generating the true coefficients. Linking simulation inputs to outputs may shed light
on the nature of r2 and ρ by looking at observable outputs. For example, in Table 5, we
note that, when RR fails to find more of the true regressors than EN, the probability of
RR missing true regressors drops when RR finds more significant regressors than the
number of observations (i.e., when pRR ≥ n). Because pRR is observable, the question
is whether such results hold over the entire simulation space with high probability for
pRR or for other observable simulation outputs.

(vi) Exploring connections between simulation outputs and inputs can also be pursued by
researching whether connections exist between EN outputs and RR outputs.

4.2. Limitations

A key limitation of this study is that it is based on simulation. This limitation can be
seen from two perspectives as explained next.

This paper was motivated by the work of Gana and Vasudevan [67]. In that paper, a
search was attempted to find the true regressors (causality) driving a fundamental, and
very complex, biological process called O-glycosylation. In that paper, the problem of
finding true regressors was tackled by keeping p < n. Examining the problem under p > n
was not considered, because it was unclear how to go about that without resorting to other
fashionable, but “black-box”, methods, such as machine learning, that focus on prediction,
rather than on the process generating the data, as an end in itself. In the sciences, and to a
certain extent in economics, finding the variables that generate the data of interest (e.g., the
target variable) is of enormous importance. That is, in science, the focus of model discovery
is always on causality. This brings us to an important question: prior to the availability of
experimental evidence, what are the limits on the discovery of true regressors imposed by
the use of RR when p > n in nature? Simulation is one way to get a sense for how probable
it is to find causality. Then there arises the difficult question of how simulation results can
be used efficiently to understand how nature generates the target variable. We will touch
upon these next.
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Given the mathematical intractability of studying how one can find true regressors
in the context of the linear model, there is no obvious path to be computer-independent
with regard to this exercise. That is, there is no obvious path to analytically prove things
like the following: there exists a positive vector of GRR tuning parameters such that the
mean squared error (MSE) of the coefficients of the true regressors found by GRR is less
than the MSE of the corresponding coefficients found by the EN or there exists a positive
vector of GRR tuning parameters such that the number of true regressors found by GRR is
greater than those found by the EN. If the linear model is assumed to be true, as is (i.e., in
non-model-discovery mode), there are several theoretical studies that have explored the
properties of GRR (e.g., Ishwaran and Rao [68], Lawless [69] and Hemmerle [65]). Thus,
extensive simulation is done in this present paper to provide answers to such critically
important questions.

Because this study is simulation-based, another key limitation is that it is somewhat
unclear how the methodology can be applied to empirical data. For us, in this paper, the
matrix of potential regressor values, X, is synthetic, and we know exactly how the corre-
sponding vector Y is generated. The advantage of a simulation is that the truth is known.
For empirical data, especially in the sciences, experimental verification is of enormous
importance. As a thought experiment, we can suppose that X and Y are empirical matrices
and that the regression model linking them is linear. The multicollinearity spectrum of
X (by partition) would be easy to estimate. That is, ω can be easily calculated. How RR
estimates will behave in regions of high or low collinearity is well-known. For example,
it would be fairly easy to select appropriate alternative algorithms for calculating k by
partition. Two key unobservable parameters are ρ and r2. Without some prior information
about these two parameters, we will not be able to estimate whether or not we are applying
RR to empirical data in

(
ρ, r2) “regions” where RR fails to be better than the EN.

If we can estimate ρ and r2 given X and Y, we will have better insight for recognizing
“failure regions”. When RR fails in a particular region, EN can be used to estimate b;
otherwise, RR can be used to estimate b. Although our research in regard to this is truly in
its infancy, it appears, from several trial-and-error simulations that we have done, that there
may be some conditional probability statements we could make, such as the following one,
for the case of an X matrix with p < n (i.e., a partition):

Pr

 abs

 b̂T b̂− s2 × trace
((

XTX
)−1
)

r2 − 1

 ≤ 2

∣∣∣∣∣∣ b̂T b̂− s2 × trace
((

XTX
)−1

)
> 0

 > 50% (9)

where “abs” denotes the “absolute value” operator, the X matrix in (9) has more rows than
columns, and b̂ is the LS estimate of b such that only the statistically significant coefficients,
at α of 15%, are retained. Our experiments also indicate that the probability of the statement
following the conditional operator (“|”) in (9) is reasonably high. When p < n, it is easy to
see that (9) has a point of contact with the following corresponding result under LS for the
true model:

E
(

b̂T b̂
)
= bTb + σ2 × trace

((
XTX

)−1
)

(10)

where σ2 is the usual true residual variance, b is the true coefficient vector associated with
X and b̂ is the corresponding LS estimate of b. That is, in (10), no variable selection is
involved, because it represents the textbook case of a fully known linear model. In other
words, for this X, coefficients for all regressors are estimated. In contrast, the X in (9), is a
subset of regressors drawn from a larger set of potential regressors such that all regressors
in this X are statistically significant per LS. Because we are discussing this mostly in plain
English for now, we have not developed notation to distinguish X in (9) and (10).

A challenge posed by (9) is how to generalize it to the case of p > n. The thought
process behind (9) is only presented here as a crude example for thinking about future
research along similar lines. For example, there may be probability statements in the
spirit of (9) that hold, under GRR, when p > n with probabilities materially higher than



Mathematics 2022, 10, 3057 24 of 27

50%. Similarly, there may be statements estimating probabilistic bounds on ρ. We are
pursuing research along these lines and hope to share the results, if promising, in the future.
However, because the research in support of (9) is in its infancy, it would be rash of us to
discuss it more and unintentionally create the perception of its legitimacy.

Another limitation worth mentioning, in empirical work, is that we have to assume
that p is known. That is, we have to assume that the number of potential regressors from
which to select the causal regressors is known. This will rarely be the case in practice.

Notwithstanding these limitations, if data science is defined as the search for the causal
or true drivers of a target variable, and the resultant discovery of a theory generating the
target, both primarily depending on the data, then this paper has a point of contact with
data science. For mathematically intractable problems, such as the one to which this paper
is dedicated, computation by simulation is a powerful way to understand the merits of
new algorithms, and as stressed by Summermann et al. [70], for imparting that knowledge
to students and researchers.

It is hoped that the results herein are useful for data scientists engaged in model discov-
ery via regression analysis in the sciences, wherein causality is germane to understanding
the process generating the data.

5. Conclusions

In this paper, we have studied how well elementary methods, more than half a century
old, can successfully compete with the EN. The two key elementary methods we have
used are RR and the concept of stepwise variable selection. A computational advantage in
doing what we did is that mathematical operations more complex than matrix inversion
are not necessary for estimation. This is so because the use of these elementary methods
keeps us well within the LS framework. In contrast, because the EN uses both the Lasso
and RR to estimate the coefficients of the linear model, the EN is computationally more
“complex”. In particular, the EN requires operations outside of the LS framework for
estimation and optimization. Studying how competitive these old methods are with the EN
is a mathematically intractable problem. Thus, we had to resort to doing a comprehensive
simulation for studying this. Using elementary methods, and computer methods, for
understanding mathematical problems is well-known to mathematicians. Furthermore,
such approaches have a long and rich tradition in mathematics (e.g., see Diamond [71]).

Our simulation starts by defining the linear model using three key metrics: the squared
distance of the true coefficients from the origin (r2), the a priori probability (ρ) that a true
coefficient is zero and the correlation structure (ω) binding the regressors together. Twenty
discrete values of r2 in the closed interval [10, 6 × 105], and eight discrete values of ρ in the
closed interval [0.05, 0.95], were chosen to simulate linear models. Four values of ω were
chosen, representing low to extreme levels of multicollinearity among the regressors. We
applied these metrics to a synthetic dataset having 33 observations and 89 regressors and
created a large number of true linear models. Starting with ordinary RR, we developed a
simple algorithm for selecting statistically significant regressors. We selected significant
regressors by partitioning the matrix of potential regressors into a number of partitions,
each of which has three observations per regressor. Then, we used GRR to successfully
estimate the coefficients of all of the significant regressors jointly.

We observed that, given empirical data under the assumption of a linear model, a
formidable challenge is to estimate r2 and ρ. We conjecture that there are probability-based
inequalities lying deeper below the surface that place bounds on r2 and ρ, based on the
empirical data. However, our research regarding such bounds is in its infancy, and, thus,
we cannot, as yet, make concrete conjectures as to what such bounds may be. Thus, in
practice, a key limitation of our work is that we have offered no “optimal” estimates of r2

and ρ that can be derived from an empirical matrix of regressors and the corresponding
empirical regressand.

Our simulation results clearly show that our simple algorithm is “superior” to the EN
with high probability, in theory. Superiority is measured using four metrics: the precision
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of the estimated statistically significant coefficients (which may be either true or spurious),
the precision of the estimates of the true coefficients found, the chance that our algorithm
finds none of the true coefficients and the chance that our algorithm finds more of the true
coefficients than does the EN. Our algorithm is superior to the EN with high probability in
regard to all of these metrics. This means that, at the very least, our algorithm should be
used in conjunction with the EN for linear model discovery.
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BGE Backward group eliminating
BSE Backward stepwise eliminating
EN Elastic Net
GRR Generalized ridge regression
HKB Hoerl, Kennard and Baldwin
LS Least squares
LW Lawless and Wang
MSE Mean squared error
NLP Nonlinear programming
RR Ridge regression
SM Supplementary material
SNR Signal-to-noise ratio
VIF Variance inflation factor
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