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1. Introduction, Definitions and Preliminaries

Recently, the fractional Fourier transform of the real order α was introduced and
studied by Luchko et al. [1]. This transform plays the same role for the fractional derivatives
as the Fourier transform does for the ordinary derivatives. Moreover, in the case when
α = 1, the fractional Fourier transform reduces to the Fourier transform in the usual sense
(see, for example, [2] Chapter 3). Several important properties of the fractional Fourier
transform, including (for example) the inversion formula and the operational relations for
the fractional derivatives, together with its applications in solving some partial differential
equations of fractional order, were also given by Luchko et al. [1].

Motivated by these theoretical developments, Upadhyay and Khatterwani [3] consid-
ered the fractional Hankel transform and presented the relation between a two-dimensional
fractional Fourier transform and the fractional Hankel transform in terms of radial func-
tions. They also derived other operational properties of the Hankel transform and the
fractional Hankel transform (see also [4] Chapter 8 and [5]).

The continuous and discrete Bessel wavelet transforms were investigated by Pathak
and Dixit [6] by using Haimo’s Hankel transform theory (see, for details, [7]). More recently,
Srivastava et al. [8] studied a certain family of fractional wavelet transforms by applying
the theory of the fractional Fourier transform. In the present sequel to the works of Pathak
et al. (see [6,9]), Upadhyay and Khatterwani [3] and Srivastava et al. [8], our main objective
is to develop the theory of the fractional wavelet transform by appealing to Haimo’s Hankel
transform theory. This theory is important in the sense that we can, thereby, study the
fractional Bessel wavelet transform in a more efficient way.

We begin by giving some definitions and properties that are useful for our present
work.
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Let µ be a positive real number. Suppose also that

σ(x) =
x2µ+1

2µ+ 1
2 Γ
(
µ + 3

2
) (1)

and
j(x) = Cµx

1
2−µ Jµ− 1

2
(x), (2)

where

Cµ = 2µ− 1
2 Γ
(

µ +
1
2

)
(3)

and Jν(z) denotes the Bessel function of order ν (for details, see [10] Chapter 7 and [11]).
The space Lp

σ(I), with I = (0, ∞) and 1 5 p 5 ∞, is the space of those real measurable
functions φ on (0, ∞) for which

‖φ‖p,σ =

(∫ ∞

0
|φ(x)|p dσ(x)

) 1
p
< ∞ (1 5 p < ∞) (4)

and
‖φ‖∞,σ = ess sup

0<x<∞
{|φ(x)|} < ∞. (5)

We now recall the definition of the fractional Hankel transform.

Definition 1 (see [3,12]). For each φ ∈ L1
σ(I), the fractional Hankel transform of the function φ

is defined by

(hµ,αφ)(w) :=
∫ ∞

0
j
(

w
1
α x
)

φ(x) dσ(x) (6)

(0 5 x < ∞; 0 < α 5 1).

If φ ∈ L1
σ(I) and hµ,αφ ∈ L1

σ(I), then the inversion formula of the fractional Hankel
transform (6) is given for 0 < α 5 1 by

φ(x) =
∫ ∞

0
j
(

w
1
α x
)(

hµ,αφ
)
(w)

·
(

w
1
α−1

α

)
dσ(w) (0 < x < ∞). (7)

The definitions of the Hankel and related integral transforms that we used in this
article can be found in [13] (see also [14]).

Theorem 1 (see [13], p. 314, Theorem 1). For f (x) ∈ Lp (1 < p 5 2), let

ga(t) :=
∫ a

0
(xt)

1
2 Jµ(xt) f (x) dx.

Also let g(t) be the limit in the mean of ga(t), that is,

g(t) := l.i.m.{ga(t)}.

If

fa(x) :=
∫ a

0
(xt)

1
2 Jµ(xt) g(t) dt, (8)

then
fa(x) ∈ Lp (1 < p 5 2) and f (x) := l.i.m.{ fa(x)}. (9)
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Remark 1. Motivated by the results of Wing [13], in the present article, all of the results for the
fractional Bessel wavelet transform hold true for p = 2 by exploiting the theory of the fractional
Hankel transform. Thus, if φ ∈ L2

σ(I) and ψ ∈ L2
σ(I), then the following Parseval-Goldstein

formula holds true: ∫ ∞

0
φ(x) ψ(x) dσ(x) =

∫ ∞

0

(
hµ,αφ

)
(w)

(
hµ,αψ

)
(w)

·
(

w
1
α−1

α

)
dσ(w), (10)

provided that each member of (10) exists (see, for example, [15]).

In order to define the continuous fractional Bessel wavelet transform, we shall need
the definition of the fractional Hankel convolution, which is given below.

Definition 2 (see [12]). Let φ ∈ L1
σ(I) and ψ ∈ L1

σ(I). Then the fractional Hankel convolution is
defined by

(φ#ψ)(x) =
∫ ∞

0
φα(x, y) ψ(y) dσ(y) (0 < α 5 1), (11)

where the fractional Hankel translation φα(x, y) is given by

φα(x, y) =
∫ ∞

0
φ(z) Dα(x, y, z) dσ(z) (0 < x, y < ∞) (12)

and

Dα(x, y, z) =
∫ ∞

0
j
(

w
1
α x
)

j
(

w
1
α y
)

j
(

w
1
α z
)

·
(

w
1
α−1

α

)
dσ(w). (13)

Using (6) and (7), we obtain∫ ∞

0
j
(

w
1
α x
)

Dα(x, y, z) dσ(x) = j
(

w
1
α y
)

j
(

w
1
α z
)

(14)

(0 < x, y < ∞; 0 5 w < ∞),

which, upon setting w = 0, yields∫ ∞

0
Dα(x, y, z) dσ(z) = 1. (15)

Several properties of the fractional Hankel convolution given in Definition 2, which
involves the fractional Hankel transform given in Definition 1, are being recorded below.

(i) If φ ∈ L1
σ(I) and ψ ∈ L1

σ(I), then

‖φ#ψ]|1,σ 5 ‖φ‖1,σ · ‖ψ‖1,σ (0 < α 5 1). (16)

(ii) If φ ∈ L1
σ(I) and ψ ∈ Lp

σ(I), then

‖φ#ψ‖p,σ 5 ‖φ‖1,σ · ‖ψ‖p,σ (0 < α 5 1). (17)

(iii) If φ ∈ Lp
σ(I) and ψ ∈ Lq

σ(I), then

‖φ#ψ‖r,σ 5 ‖φ‖p,σ · ‖ψ‖q,σ

(
0 < α 5 1;

1
r
=

1
p
+

1
q
− 1
)

. (18)
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(iv) If φ ∈ L1
σ(I) and ψ ∈ L1

σ(I), then

hµ,α(φ#ψ) = (hµ,αφ) (hµ,αψ) (0 < α 5 1). (19)

Throughout this paper, the dilation is defined in the following way:

D
a

1
α

φα(x, y) = a−2µ− 1
α φα

(
x

a
1
α

,
y

a
1
α

)
. (20)

In this paper, we apply the aforementioned concepts and theories (which were de-
veloped in [6–9,13]) to introduce and investigate the fractional wavelet and the fractional
Bessel wavelet transform. We also discuss the relationship between the fractional Bessel
wavelet transform and the fractional Hankel transform. The Parseval-Goldstein formula
for the fractional wavelet transform and the inversion formula for the fractional Bessel
wavelet transform are also investigated.

It is widely recognized that various developments in wavelet theory and on the
associated families of continuous, discrete and fractional wavelet transforms provide
methods for solving several otherwise intractable problems in the mathematical, physical
and engineering sciences.

Some of their modern applications are diverse, such as wave propagation, data com-
pression, image processing, pattern recognition, computer graphics, the detection of aircraft
and submarines, the resolution and synthesis of signals and improvements in CAT scans
and other medical imaging technologies. Our present investigation is motivated essentially
by today’s remarkably greater demand for mathematical tools and techniques to provide
both the theory and applications of wavelets and wavelet transforms to interested scientists
and engineers.

Our plan in this paper is as follows. In the next section (Section 2), we introduce and
present a detailed study of the continuous fractional Bessel wavelet transform by applying
its relationship with the continuous fractional Hankel transform given by Definition 1.
Section 3 deals with some applications of the fractional Bessel wavelet transform (see
Definition 3) in a certain weighted Sobolev-type space by exploiting the theory of the
fractional Hankel transform. Finally, in our concluding section (Section 4, we give several
remarks and observations that are based upon the findings of our present investigation.

2. The Continuous Fractional Bessel Wavelet Transform

In this section, our main object is to study the continuous fractional Bessel wavelet
transform and to develop its various properties by applying the theory of the fractional
Hankel transformation.

Definition 3 (see [12]). Let the function ψ ∈ Lp
σ(I) be given for 1 5 p 5 2. If a > 0, b = 0 and

0 < α 5 1, the fractional Bessel wavelet ψ
b,a

1
α
(x) is defined by

ψ
b,a

1
α
(x) := D

a
1
α

ψα(b, x) = a−2µ− 1
α ψα

(
b

a
1
α

,
x

a
1
α

)
(21)

= a−2µ− 1
α

∫ ∞

0
Dα

(
b

a
1
α

,
x

a
1
α

, z
)

ψ(z) dσ(z), (22)

in which the integral is convergent by virtue of the developments presented by Haimo [7] and Pathak
et al. (see [6,9]).
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Definition 4 (see [12]). By taking the function ψ ∈ L2
σ(I) and the fractional wavelet ψ

b,a
1
α
(x)

given by Definition 3, the fractional Bessel wavelet transform Bψ f (b, a) is defined for 0 < α 5 1 by

Bψ f (b, a) := 〈 f (t), ψ
b,a

1
α
(t)〉 =

∫ ∞

0
f (t) ψ

b,a
1
α
(t) dσ(t) (23)

= a−2µ− 1
α

∫ ∞

0

∫ ∞

0
f (t) Dα

(
b

a
1
α

,
t

a
1
α

, z
)

· ψ(z) dσ(z) dσ(t), (24)

provided that the integral is convergent.

Theorem 2. If ψ ∈ L2
σ(I) and f ∈ L2

σ(I), then the continuous fractional wavelet transform can be
expressed as follows:

Bψ f (b, a) =
∫ ∞

0
j
(

w
1
α b
)
(hµ,α f )(w)

(
hµ,αψ

)
(aw)

·
(

w
1
α−1

α

)
dσ(w) (0 < α 5 1). (25)

Proof. Following the lines described in [6], if we use (24), we find that

Bψ f (b, a) = a−2µ− 1
α

∫ ∞

0

∫ ∞

0
f (t) Dα

(
b

a
1
α

,
t

a
1
α

, z
)

ψ(z) dσ(z) dσ(t).

Thus, upon substituting from (13), we obtain

Bψ f (b, a) = a−2µ− 1
α

[ ∫ ∞

0

∫ ∞

0
f (t)

( ∫ ∞

0
j
(

b

a
1
α

ξ
1
α

)
j
(

t

a
1
α

ξ
1
α

)

· j
(

ξ
1
α z
)( ξ

1
α−1

α

)
dσ(ξ)

)
ψ(z) dσ(z) dσ(t)

]
,

which, in view of (6) and (7), yields

Bψ f (b, a) = a−2µ− 1
α

∫ ∞

0
j
(

b

a
1
α

ξ
1
α

)
(hµ,αψ)(ξ) (hµ,α f )

(
ξ

a

)
·
(

ξ
1
α−1

α

)
dσ(ξ). (26)

Finally, upon setting ξ = aw, this last Equation (26) leads us to the result (25) as
asserted by Theorem 2.

Theorem 3. For a function ψ ∈ L2
σ(I) and, for any signal f ∈ L2

σ(I), the following relation holds
true:

hµ,α

(
Bψ f (b, a)

)
(w) =

(
hµ,α f (w)

)(
hµ,αψ

)
(aw) (27)

for 0 < α 5 1.

Proof. From (7) and (25), we have

Bψ f (b, a) = h−1
µ,α
[(

hµ,α f (w)
)(

hµ,αψ
)
(aw)

]
(b). (28)

Now, by using (6) in (28), we obtain (27). The proof of Theorem 3 is thus completed.
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Theorem 4. Let ψ ∈ L2
σ(I). Then, for any f , g ∈ L2

σ(I), the following Parseval-Goldstein formula
holds true for the fractional Bessel wavelet transform given by Definition 4:∫ ∞

0

∫ ∞

0
Bψ f (b, a) Bψg(b, a) a−2µ−1 dσ(b) dσ(a)

= Cψ,α〈 f , g〉, (29)

where
Cψ,α :=

∫ ∞

0

∣∣(hµ,αψ)(aw)
∣∣2 a−2µ−1 dσ(a) < ∞. (30)

Proof. From [6], p. 245, in conjunction with Theorem 3 and (29), we have∫ ∞

0

∫ ∞

0
Bψ f (b, a) Bψg(b, a) a−2µ−1 dσ(b) dσ(a)

=

[ ∫ ∞

0

(∫ ∞

0
Bψ f (b, a)Bψg(b, a)dσ(b)

)
a−2µ−1 dσ(a)

]

=

[ ∫ ∞

0

( ∫ ∞

0
h−1

µ,α

[
(hµ,α f )(w)

(
hµ,αψ

)
(aw)

]
(b)

· h−1
µ,α

[(
hµ,αg

)
(w) (hµ,αψ)(aw)

]
(b)dσ(b)

)
a−2µ−1 dσ(a)

]
. (31)

Now, by using the Parseval-Goldstein formula (10) for the fractional Hankel transform
in the L2

σ(I) sense, we find from (31) that∫ ∞

0

∫ ∞

0
Bψ f (b, a) Bψg(b, a) a−2µ−1 dσ(b) dσ(a)

=

[ ∫ ∞

0

( ∫ ∞

0
(hµ,α f )(w)

(
hµ,αψ

)
(aw)

(
hµ,αg

)
(aw) (hµ,αψ)(aw)

·
(w

1
α−1

α

)
dσ(w)

)
a−2µ−1 dσ(a)

]

=
∫ ∞

0

( ∫ ∞

0

∣∣(hµ,αψ)(aw)
∣∣2 a−2µ−1 dσ(a)

)
(hµ,α f )(w)

(
hµ,αg

)
(w)

·
(

w
1
α−1

α

)
dσ(w)

= Cψ,α

〈
w

1
α−1

α
(hµ,α f )(w),

(
hµ,αg

)
(w)

〉
,

which, by applying (10) in the L2
σ(I) sense, yields the Parseval-Goldstein Formula (29) as

asserted by Theorem 4.

Theorem 5. Let 0 < α 5 1, a > 0 and b > 0. If ψ ∈ L2(I), then

hµ,b,α

(
ψ

b,a
1
α
(t)
)
(w) = j

(
w

1
α t
)(

hµ,αψ
)
(aw). (32)

Proof. Our demonstration of Theorem 5 is fairly straightforward. We choose to omit the
details involved.
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Theorem 6. Let ψ ∈ L2
σ(I). Then a signal f ∈ L2

σ(I) can be reconstructed by means of the
following inversion formula:

f (t) =
1

Cψ,α

∫ ∞

0

∫ ∞

0
Bψ f (b, a) ψ

b,a
1
α
(t) a−2µ−1 dσ(b) dσ(a), (33)

where Cψ,α is given by (30) and 0 < α 5 1.

Proof. We begin by observing that

1
Cψ,α

∫ ∞

0

∫ ∞

0
Bψ f (b, a) ψ

b,a
1
α
(t) a−2µ−1 dσ(b) dσ(a)

=
1

Cψ,α

∫ ∞

0

( ∫ ∞

0
Bψ f (b, a) ψ

b,a
1
α
(t)dσ(b)

)
· a−2µ−1 dσ(a). (34)

Now, in view of the earlier work in [8], the Parseval-Goldstein Formula (10) for the
fractional Hankel transform (10) and Theorem 5, we find that

1
Cψ,α

∫ ∞

0

∫ ∞

0
Bψ f (b, a) ψ

b,a
1
α
(t) a−2µ−1 dσ(b) dσ(a)

=
1

Cψ,α

∫ ∞

0

( ∫ ∞

0
hµ,b,α

[
Bψ f (b, a)

]
(w) hµ,b,α

[
ψ

b,a
1
α
(t)
]
(w)

·
(w

1
α−1

α

)
dσ(w)

)
dσ(a)
a2µ+1 , (35)

that is, that

1
Cψ,α

∫ ∞

0

∫ ∞

0
Bψ f (b, a) ψ

b,a
1
α
(t) a−2µ−1 dσ(b) dσ(a)

=
1

Cψ,α

∫ ∞

0

( ∫ ∞

0
(hµ,α f )(w) (hµ,αψ)(aw) j

(
w

1
α t
)

· (hµ,αψ)(aw)
(w

1
α−1

α

)
dσ(w)

)
a−2µ−1 dσ(a)

=
1

Cψ,α

∫ ∞

0

( ∫ ∞

0

∣∣(hµ,αψ)(aw)
∣∣2 a−2µ−1 dσ(a)

)

· j
(

w
1
α t
)
(hµ,α f )(w)

(
w

1
α−1

α

)
dσ(w)

=
Cψ,α

Cψ,α

∫ ∞

0
j
(

w
1
α t
)
(hµ,α f )(w)

(
w

1
α−1

α

)
dσ(w)

= f (t), (36)

which evidently completes the proof of Theorem 6.

Theorem 7. Let ψ ∈ L2
σ(I). Then the discrete fractional Bessel wavelet transform of a signal

f ∈ L2
σ(I) is given by

Bψ f (m, n) =
∫ ∞

0
f (t) ψα,m,n(t) dσ(t) (0 < α 5 ∞), (37)
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where
ψα,m,n(t) = a

−m(2µ+ 1
α )

0 ψ
(

nb0, a−
m
α

0 t
)

. (38)

Proof. We can easily obtain the result (37), which is asserted by Theorem 7, from [6] by
using the equations (21) to (23).

3. Application of the Fractional Bessel Wavelet Transform in a Weighted Sobolev
Type Space

In this section, with the help of the developments in [16], we give applications of
the fractional Bessel wavelet transform in weighted Sobolev-type space by exploiting the
theory of the fractional Hankel transform.

Definition 5. The convolution product for the fractional Bessel wavelet transform is formally
defined by

Bψ( f ⊗ g)(b, a) =
(

Bψ f
)
(b, a)

(
Bψg

)
(b, a). (39)

The relation between the convolution product for the fractional Bessel wavelet trans-
form (39) and the fractional Hankel convolution (11) is now given below.

Lemma 1. If f , g, ψ ∈ L1
σ(I), then(

hµ,αψ
)
(aw)(hµ,α( f ⊗ g))(w)[(
hµ,αψ

)
(a·)(hµ,α f )(·)#

(
hµ,αψ

)
(a·)(hµ,αg)(·)

]
(w). (40)

Proof. In order to prove Lemma 1, we find from (27) that

hµ,α

(
Bψ( f ⊗ g)(b, a)

)
(w) =

(
hµ,αψ

)
(aw)

(
hµ,α( f ⊗ g)

)
(w),

which, by virtue of (39), leads us to(
hµ,αψ

)
(aw)

(
hµ,α( f ⊗ g)

)
(w) = hµ,α

[
(Bψ f )(b, a)(Bψg)(b, a)

]
(w).

Now, from (28), we find that(
hµ,αψ

)
(aw)(hµ,α( f ⊗ g))(w)

= hµ,α
[
h−1

µ,α
((

hµ,αψ
)
(aw)(hµ,α f )(w)

)
(b)

· h−1
µ,α
((

hµ,αψ
)
(aw)(hµ,αg)(w)

)
(b)
]
(w).

Finally, by applying (19), we find(
hµ,αψ

)
(aw)

(
hµ,α( f ⊗ g)

)
(w)

=
[(

hµ,αψ
)
(a·)(hµ,α f )(·)#

(
hµ,αψ

)
(a·) · (hµ,αg)(·)

]
(w), (41)

which evidently completes our demonstration of Lemma 1.

Next, motivated by the developments in the earlier work [17], p. 142, Equation (1.5),
we give the following definition of a weighted Sobolev space.

Definition 6. Let k(w) be an arbitrary weight function and suppose that H′µ(I) is the dual of
the Zemanian space Hµ(I) for I = (0, ∞). Then a function φ ∈ H′µ(I) is said to belong to the



Mathematics 2022, 10, 3084 9 of 11

weighted Sobolev space Gp
µ,k(I) for µ ∈ R and 1 5 p < ∞, if its fractional Hankel transform hµ,αφ

corresponding to a locally integrable function φ over I = (0, ∞) satisfies the following norm:

‖φ‖p,µ,σ,k =

(∫ ∞

0
|k(w)(hµ,αφ)(w)|p dσ(w)

) 1
p
< ∞ (42)

(µ ∈ R; 1 5 p < ∞).

In what follows, we first set

k(w) =
(

hµ,αψ
)
(aw)

for fixed a > 0, and we then establish the following result.

Theorem 8. Let f ∈ G1
µ,k(I), g ∈ Gp

µ,k(I) and 1 5 p < ∞. Then

‖ f ⊗ g‖p,µ,σ,k 5 ‖ f ‖1,µ,σ,k ‖g‖p,µ,σ,k. (43)

Proof. In view of (39) and (42), we have

‖ f ⊗ g‖p,µ,σ,k =

(∫ ∞

0

∣∣k(w)
(
hµ,α( f ⊗ g)

)
(w)

∣∣p dσ(w)

) 1
p

=

(∫ ∞

0

∣∣(hµ,αψ
)
(aw)

(
hµ,α( f ⊗ g)

)
(w)

∣∣p dσ(w)

) 1
p
. (44)

Now, by using (40), Equation (44) becomes

‖ f ⊗ g‖p,µ,σ,k =

( ∫ ∞

0

∣∣[(hµ,αψ
)
(a·)(hµ,α f )(·)

#
(

hµ,αψ
)
(a·)(hµ,αg)(·)

]
(w)

∣∣p dσ(w)

) 1
p

,

and, in view of (17), we find that

‖ f ⊗ g‖p,µ,σ,k 5 ‖
(

hµ,αψ
)
(a·)(hµ,α f )(·)‖1,σ‖

·
(

hµ,αψ
)
(a·)(hµ,αg)(.)‖p,σ.

Finally, by making use of (42), we obtain

‖ f ⊗ g‖p,µ,σ,k 5 ‖ f ‖1,µ,σ,k ‖g‖p,µ,σ,k,

which proves Theorem 8.

Theorem 9. Let f ∈ Gp
µ,k(I), g ∈ Gq

µ,k(I), 1 5 p, q < ∞ and

1
r
=

1
p
+

1
q
− 1.

Then
‖ f ⊗ g‖r,µ,σ,k 5 ‖ f ‖p,µ,σ,k ‖g‖q,µ,σ,k. (45)

Proof. The proof of Theorem 9 follows from (42) and (18). We choose to omit the details
involved.
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Various other characteristics and properties of the fractional Bessel wavelet transform
and the discrete fractional Bessel wavelet transform will be investigated in our next paper.

4. Concluding Remarks and Observations

In our present article, we have introduced the continuous fractional Bessel wavelet
transform and, by following the concepts and the theoretical developments presented
in [6–9], we have studied the Parseval-Goldstein formula and inversion formula for the
continuous fractional Bessel wavelet transform by applying the theory of the fractional
Hankel transform. We have also established the relationship between the fractional Hankel
transform and the continuous fractional Bessel wavelet transform. The corresponding
theory of the discrete fractional Bessel wavelet transform and its various other properties
and characteristics can also be discussed by taking the above-mentioned theory.

More precisely, we have chosen to list our findings in this investigation as follows. The
introductory section (Section 1) provides the relevant details about the preliminaries and
the background material, as well as the motivation for our study, together with a potentially
useful result (Theorem 1). In Section 2, we have defined and presented a systematic study
of the continuous fractional Bessel wavelet transform given in Definition 3 by applying its
relationship with the continuous fractional Hankel transform given by Definition 1. Our
main results in Section 2 have been stated and proven as Theorems 2 to 7.

In Section 3, we have considered some applications of the fractional Bessel wavelet
transform (see Definition 3) in a certain weighted Sobolev-type space by exploiting the
theory of the fractional Hankel transform (see Definition 1). The main results in Section 3
have been presented as Lemma 1, Theorem 8 and Theorem 9.

The theory that we have developed in this article is potentially useful for a variety
of applications of the fractional Bessel wavelet transform in signal processing, image
processing, quantum mechanics and other areas of engineering and applied sciences.
Some instances of applications have been presented in Section 3 (see also several recent
developments involving continuous and discrete wavelet transforms in [5,18–27], each of
which will presumably motivate further researches involving the continuous and discrete
fractional Bessel wavelet transforms).

We conclude this article by further remarking that our motivation for choosing the
fractional-order Bessel wavelet is that it is a potentially useful generalization of the widely-
investigated Bessel wavelet, particularly, in the case when the order α = 1, the fractional
Bessel wavelet becomes the Bessel wavelet, which was investigated in [6]. Discussions such
as those presented in this sequel were initiated by Srivastava et al. [8]. Some interesting
applications of the fractional-order Bessel wavelet transform in the areas of time-invariant
linear filters and integral equations involving the fractional wavelet in the kernel can be
found in several recent works (see, for example, [12]; see also [28–30]).
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