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Abstract: This paper is concerned with designing a distributed bounded H∞ consensus filter to
estimate an array of three-dimensional (3D) nonlinear distributed parameter systems subject to
bounded perturbation. An optimization framework based on mobile sensing is proposed to improve
the performance of distributed filters. The measurement output is obtained from a mobile sensor
network, where a phenomenon of randomly occurring sensor saturation is taken into account to
reflect the reality in a mobile networked environment. A sufficient condition is established by utilizing
operator-dependent Lyapunov functional for the filtering error system to be finite-time bounded.
Note that the velocity law of each mobile sensor is included in this condition. The effect from the
exogenous perturbation to the estimation accuracy is guaranteed at a given level by means of H∞

consensus performance constraint. Finally, simulation examples are presented to demonstrate the
applicability of the theoretical results.

Keywords: distributed consensus filter; H∞ consensus performance; finite-time stability; 3D nonlinear
distributed parameter systems; randomly occurring sensor saturation; mobile sensor networks
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1. Introduction

Many physical phenomena in the real world, such as chemical reactions [1], heat
conduction [2], fluid flow [3], and other spatially distributed processes, have states that
depend not only on time, but also on space. In general, such phenomena can be described
by partial differential equations, called distribution parameter systems (DPS). Robotic arms
and aerial refueling tubes with flexible structures, temperature distribution of catalytic
reaction rods in chemical processes, large-scale population migration, information dissemi-
nation, and population consumption in social economy can all be modeled as distributed
parameter systems [4]. Since the 1960s, the development of modern partial differential
equations and functional analysis has established a strict theoretical basis for distributed
parameter systems. The well-posed issue as well as stability, controllability [5], observabil-
ity, and optimal control of distributed parameter systems have been intensively studied.
On the other hand, the control issues of distributed parameter systems have been an active
area of research [6,7].

The filtering or state estimation issues play a critical role to signal processing and
control engineering areas [8]. For distributed parameter systems, there are essentially two
technical routes to address the challenge of filtering. One is to discretize the distributed
parameter system into a finite dimensional system using a differential approach or finite el-
ement method. Then, finite dimensional filters are designed to achieve the state estimation
of the system. A robust Kalman filter was given after discretizing the gas pipeline transient
flow equation in [9]. Moreover, a discrete-time Kalman filter [10] was designed for linear
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infinite dimensional systems that are discretized in time rather than spatially approximated
under the structure and energy preserving Crank-Nicolson framework. In [11], robust
filtering of discrete processes was studied by designing recursive filters in a finite horizon
with the use of two-dimensional Riccati-like difference equations. The advantage of this
technical route is that various filter design schemes in finite dimensional systems can
be introduced to address the filtering issue of distributed parameter systems. However,
the approximation from discretization may lead to bias in the filtering results. On the flip
side, an advanced research topic is the design of filters directly for distributed parameter
systems. The functional analysis LMI(LOI) approach [12,13] becomes an effective tool to di-
rectly solve the filtering issue of distributed parameter systems. An extended Kalman filter
for semilinear infinite dimensional systems was proposed in [14] by utilizing functional
analysis. Robust H∞ filtering is required when the system has uncertain and unknown
perturbations [15]. A network-based H∞ filter [16] was designed for a semilinear N-D dif-
fusion equation under distributed in space measurements. A reliable H∞ filtering issue [17]
was developed for switched parabolic systems. These issues regarding H∞ filtering have
been resolved simply and effectively by adopting the LMI approach. Most of the existing
filtering strategies are based on a centralized way, where information can be collected
from all sensor nodes. A natural choice to enhance effectiveness and save energy is to
introduce a distributed way. Each sensing node communicates only with its neighboring
nodes in sensor networks. Many existing results deal with the distributed filtering issue
for networked control systems such as nonlinear systems [18] and stochastic systems [19].
However, less research has been conducted on distributed filtering of distributed param-
eter systems. Some studies have shown that distributed estimation is quite effective in
reaching consensus. In recent years, special attention has been paid to the distributed H∞
consensus filtering of various network systems, such as linear systems [20], cyber-physical
systems [21], and delay systems [22].

In the practical controller design, the system control should be finished in a given
amount of time. Peter Dorato [23] introduced the short-time stability concept for this
reason in 1961. Due to its importance in the study of transient performance, the subject
of finite time stability has received a lot of attention recently. Finite-time stability differs
from the usual Lyapunov stability in that it is concerned with the evolution of the system
state over a given finite time [0,T]. In [24], the distributed H∞ filtering in a finite-time
horizon was studied for a class of Takagi–Sugeno fuzzy systems. For singular systems
with Markovian jumping, finite-time H∞ filtering was also investigated [25]. Noticeably,
distributed consensus H∞ filtering of distributed parameter systems is still lacking today.
Moreover, as mentioned before, most studies on filtering of distributed parameter systems
have used fixed static sensor networks. Therefore, this paper aims to develop a mobile
sensing approach to finite-time convergence analysis of distributed H∞ consensus filters
for a class of 3D parabolic systems.

It is well known that the nonlinearity caused by environmental circumstances is a
widely occurring factor in engineering. As of now, the processing of nonlinear terms
in the system has been concerned with allowing nonlinear functions to satisfy specific
conditions, including the Lipschitz condition [26], the Lipschitz-like condition based on
one-norm [27], and the sector bounded constraints [28]. Moreover, it is also enabled to use
the decomposition technique of nonlinearity, which divides the nonlinear function into a
linear part and a high-order nonlinear part, as proposed in [29]. In complex spatio-temporal
distribution processes, the two parts of this nonlinearity may appear in a probabilistic way,
namely, their type or intensity may have changed randomly. This model description has
been little studied, and this paper will introduce this new view to discuss the nonlinearity.

For accurate estimation of the state of the actual network, measurement outputs need
to be collected and processed to minimize the effects of possible noise and incomplete
information. However, technical limitations restrict the sensor from outputting a signal
with infinite amplitude, which makes the output subject to “sensor saturation”. Saturation
occurs not only to degrade the estimated performance, but may also lead to undesired
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oscillations or even unstable behavior. In actual network environments, probabilistic sensor
saturation is possible due to intermittent saturation brought on by intermittent sensor
failures, changeable saturation level brought on by aging sensors, and abrupt changes in
the network environment. This phenomenon is referred to as randomly occurring sensor
saturation. Due to the nonlinear characteristics of saturation, the randomly occurring
sensor saturation is actually a scenario where the linear and higher order nonlinear parts of
the nonlinearity occur in a probabilistic way.

Guiding by the arguments above, we focus on building a novel distributed H∞ con-
sensus filter for a class of 3D nonlinear distributed parameter systems such that the related
filtering error system is finite-time stable while taking into account the noise attenuation
level γ. The main contributions of this paper can be summarized as follows:

(1) A distinguishing feature of the research issue addressed is that the distributed
filtering issue of 3D distributed parameter systems is studied by using an effective mobile
sensing approach.

(2) The physical plant is under considered, nonlinear, bounded perturbation, randomly
occurring sensor saturation, which makes more practical significance of our current study.

(3) The nonlinear function used to describe the uncertainty of a complex environment
is decomposed into a part that satisfies the sector condition and a part that has the saturation
property, and these two parts appear in a random way. To the authors’ knowledge, this
nonlinear decomposition model is seldom seen in the processing of nonlinear terms in
system filtering and control problems.

(4) The proposed finite-time distributed H∞ consensus filtering technique not only
achieves state estimation in a short time, but also the estimation error satisfies the bounded
H∞ consensus performance, which serves as a fast converging robust filtering technique
suitable for complex spatially distributed processes.

(5) The system and filtering techniques are discussed in some special scenarios so that
the associated filtering issues can be solved more easily.

The rest of the manuscript is structured as follows. In Section 2, the 3D nonlinear
distributed parameter systems with a network of m mobile sensors is presented; some
preliminaries are given. In Section 3, a mobile sensing approach is used to solve the
distributed bounded H∞ consensus filter design issue. The discussion of some scenarios
related to the main results is available in Section 4. A numerical example is provided in
Section 5 to show the effectiveness of the proposed approach. In Section 6, conclusions
are drawn.

Notation 1. The notation is standard, except as otherwise specified. ζ̇(t) means the derivative
of the function ζ(t) with respect to time t. Prob{x} denotes the probability that event ′x′ will
occur. E{x} stands for the expectation of stochastic variable x. I denotes the identity matrix with
appropriate dimension; diag{x1, x2, · · · , xm} stands for an m-dimensional diagonal matrix. If M
is a matrix, MT denotes its transpose and λmax(M) means the largest eigenvalue of M. Moreover,
matrices without explicit dimensions are assumed to be the appropriate dimension ones.

Let H be a Hilbert space with inner product 〈·, ·〉 and corresponding induced norm
| · |. Let B be a reflexive Banach space with norm denoted by ‖ · ‖. It is assumed that B
is embedded densely and continuously in H . Let B∗ denotes the conjugate dual of B
with induced norm ‖ · ‖∗. It follows B ↪→ H ↪→ B∗ with both embedding dense and
continuously, the result of which is that we have |g| ≤ $‖g‖, g ∈ B, for any constant
$ > 0 [30].

2. Problem Formulation and Preliminaries

In this paper, a class of 3D nonlinear distributed parameter systems is studied. Let
η(t, ζ) denote the state of 3D distributed process at t ∈ [0,+∞) and at spatial location
ζ = (ζ1, ζ2, ζ3) ∈ Ω, whereΩ = {ζs|0 ≤ ζs ≤ ls, s = 1, 2, 3} is a bounded region with
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smooth boundary ∂Ω, and the measure of Ω is µ(Ω) > 0. The adopted target object can be
described by the following 3D nonlinear spatio-temporal distributed process.

∂η(t, ζ)

∂t
=

3

∑
s=1

∂

∂ζs

(
as(ζs)

∂η(t, ζ)

∂ζs

)
+ H f (t, η(t, ζ)) + d(ζ)ν(t)

z(t) =
∫∫∫

Ω

b(ζ)η(t, ζ)dΩ
(1)

subject to the initial condition

η(0, ζ1, ζ2, ζ3) = η0(ζ1, ζ2, ζ3), (2)

and having Dirichlet boundary conditions

η(t, 0) = 0, η(t, ·)|∂Ω = 0, t ≥ 0. (3)

The diffusion operators as(ζs) ≥ ās > 0, s = 1, 2, 3. d(ζ) denotes the spatial distribution of
perturbation; ν(t) is external perturbation; b(ζ) is the spatial distribution of the output; H is
a negative operator coefficient of nonlinear function f (t, η(t, ζ)). It is assumed that f can be
decomposed into a part fL(t, η(t, ζ)) that satisfies the sector condition and a part r(t, η(t, ζ))
that has the saturation property, and these two parts may occur in a probabilistic way.

f (t, η(t, ζ)) = ρ(t) fL(t, η(t, ζ)) + (1− ρ(t))r(t, η(t, ζ)), (4)

where the stochastic variable ρ(t) ∈ R is a Bernoulli distributed white sequence taking
values of 1 and 0 with {

Prob{ρ(t) = 1} = ρ̄
Prob{ρ(t) = 0} = 1− ρ̄

(5)

where ρ̄ ∈ [0, 1] are known positive constant. It is assumed that the stochastic variable ρ(t)
is independent mutually. We have

E{ρ(t)} = ρ̄ and E{(ρ(t)− ρ̄)2} = ρ̄(1− ρ̄). (6)

Compared to the Lipschitz condition or sector condition, the decomposition method is
another efficient method for dealing with nonlinearities. Also consider the occurrence of
the decomposition term in a probabilistic way, the model is more suitable for the effect of
environmental nonlinearity in practice.

The measurement output of m mobile sensors in 3D space are presented as follows.

y(t) =


y1(t)
y2(t)

...
ym(t)

 =


∫∫∫

Ω ψ1(ζ; ζ1(t))η(t, ζ)dΩ∫∫∫
Ω ψ2(ζ; ζ2(t))η(t, ζ)dΩ

...∫∫∫
Ω ψm(ζ; ζm(t))η(t, ζ)dΩ

, (7)

or ith measurement output can be stated as

yi(t) =
∫∫∫

Ω
ψi(ζ; ζi(t))η(t, ζ)dΩ, i = 1, 2, · · · , m, (8)

where ψi(ζ; ζi(t)) denotes the spatial distribution of ith moving sensing device. The
nonnegative function ψi(ζ; ζi(t)) is bounded. The spatial distribution function of each
mobile sensor, in the general sense, is given by

ψi(ζs; ζis(t)) =
{

ϕi(ζ) if ζ ∈ Ωi
0 otherwise,

(9)
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where ζ1 ∈ Ωi1 = [ζi1 − δi1, ζi1 + δi1], ζ2 ∈ Ωi2 = [ζi2 − δi2, ζi2 + δi2], ζ3 ∈ Ωi3 = [ζi3 −
δi3, ζi3 + δi3].

It is worth noting that the spatial distribution here implies that each mobile sensing
device can have a different spatial distribution function. (ζi1(t), ζi2(t), ζi3(t)) ∈ [0, l1]×
[0, l2]× [0, l3] denotes the location of the time-varying center of mass of the ith sensing
device. Thus, it draws the moving trajectory of the ith sensing device.

The saturation function σ(·) : Rr 7→ Rr is defined as

σ(x) = [σT
1 (x1), σT

2 (x2), · · · , σT
r (xr)]

T

with σi(xi) = sign(xi)min{Vi,max, | Vi |} where Vi,max is the ith element of the vector, and
Vmax is the saturation level.

For every i, the stochastic variable εi(t) ∈ R, i = 1, 2, · · · , m is a Bernoulli distributed
white sequence taking values of 1 and 0 with{

Prob{εi(t) = 1} = ε̄i
Prob{εi(t) = 0} = 1− ε̄i

(10)

where ε̄i ∈ [0, 1], i = 1, 2, · · · , m are known positive constants. It is assumed that the
stochastic variables εi(t) are independent mutually in all i(1 ≤ i ≤ m). Accordingly,
we have

E{εi(t)− ε̄i} = 0 and E{(εi(t)− ε̄i)
2} = ε̄i(1− ε̄i). (11)

The measurement output after considering the randomly occurring sensor saturation
can be described as

ỹi(t) = εi(t)yi(t) + (1− εi(t))σ(yi(t)), i = 1, 2, · · · , m, (12)

In order to rewrite the 3D nonlinear distributed parameter system (1) as an evolution
equation, the following notations are given, and their meanings are explained.

Consider a linear operator A : B → B∗ satisfying the following assumptions:

Assumption 1. A is bounded, that is

|〈g,Ah〉| ≤ ε0‖g‖‖h‖,

for g, h ∈ B and constant ε0 > 0.

Assumption 2. −A is coercive, that is

〈g,−Ag〉 ≥ ϑ0‖g‖2,

for g ∈ B and constant ϑ0 > 0.

The operator A is referred to as state operator. Moreover, the perturbation operator
D : R → B∗ is provided by Dν(t) = d(ζ)ν(t), which satisfies 〈g,Dg〉 ≤ µd〈g, g〉. For a

given time Tf ,
∫ Tf

0 νT(t)ν(t)dt ≤ d̄2, where µd, d̄ are positive constants. In addition, B :
R→ B∗ is given by 〈Bg, h〉 =

∫∫∫
Ω b(ζ)g(ζ)h(ζ)dΩ, which satisfies 〈g,Bg〉 ≤ µb〈g, g〉.

Then, it can be rewritten to obtain the corresponding compact form of the 3D nonlinear
distributed parameter system (1).{

η̇(t) = Aη(t) + HF(η(t)) +Dν(t)

z(t) = Bη(t)
(13)

where the state space is H = L2(Ω), where η(t, ·) = {η(t, ζ) : ζ ∈ Ω} is the state
of the system. The space B is identified by the Sobolev space B = H1

0(0, l) = {h ∈



Mathematics 2022, 10, 3134 6 of 24

H1(Ω)|h|∂Ω = 0} and its conjugate dual space B∗ is H−1(Ω). Let infinitesimal oper-
ator A = ∑3

s=1
∂

∂ζs

(
as(ζs)

∂η(t,ζ)
∂ζs

)
and its domain be given by D(A) = {h ∈ L2(Ω) :

h, h′ are absolutely continuous, h′′ ∈ L2(Ω) and h|∂Ω = 0}. The infinitesimal operator
A generates a strongly continuous semigroup T(t), t ≥ 0, and the domain D(A) of the
operator A is dense in H , [23].

The output can be expressed similarly as

ỹ(t) = ε(t)y(t) + (I − ε(t))σ(y(t)), (14)

where y(t) = Ψ(ζ(t))η(t), ε(t) = diag{ε1(t), ε2(t), · · · , εm(t)} and output operator Ψ(ζ(t))
is given by

〈Ψ(ζ(t))g, h〉 =


∫∫∫

Ω ψ1(ζ; ζ1(t))g(ζ)h(ζ)dΩ∫∫∫
Ω ψ2(ζ; ζ2(t))g(ζ)h(ζ)dΩ

...∫∫∫
Ω ψm(ζ; ζm(t))g(ζ)h(ζ)dΩ

,

where Ψ(ζ(t)) : B → R3 ×R3 × · · · ×R3︸ ︷︷ ︸
m

satisfying 〈g, Ψ(ζ(t))g〉 ≤ µc〈g, g〉.

To analyze finite-time H∞ filtering, we consider the following assumptions and definitions.

Assumption 3. There exists a constant l0 such that

(s1 − s2)
T( fL(t, s1)− fL(t, s2)) ≤ l0(s1 − s2)

T(s1 − s2) (15)

Assumption 4. r(t, η(t, ζ)) is bounded function satisfying

|r(t, η(t, ζ))| ≤ r0, (16)

where r0 is positive constant.

Assumption 5. The saturation function σ(x) is sector bounded, i.e.,

σT(x)σ(x) ≤ β (17)

where β is a positive constant.

Definition 1 (Finite-time stability). For a given time constant Tf , 3D filtering error systems
with ν(t) = 0 are said to be finite-time stable with respect to (α1, α2, Tf ,Q) if

〈x(t0),Qx(t0)〉 ≤ α2
1 ⇒ 〈x(t),Qx(t)〉 ≤ α2

2 (18)

where α2 > α1 > 0, Q is a positive definite operator.

Definition 2 (Finite-time boundedness). For a given time constant Tf , 3D filtering error systems
are said to be finite-time bounded with respect to (α2

1, α2
2, Tf , d̄,Q) if condition (18) holds, where

α2 > α1 > 0, Q is a positive definite operator.

Definition 3 (Distributed bounded H∞ consensus performance). The filters (20) are said to
be distributed bounded H∞ consensus filters if there exist w0 > 0 such that the filtering error z̃i(t)
satisfy the following inequalities

1
m

m

∑
i=1
|z̃i(t)|2 ≤ γ2|ν(t)|2 + w0α2

2 (19)

where γ > 0 are some given disturbance attenuation level, for any i ∈ {1, 2, · · · , m}. If w0 = 0,
then they are called distributed H∞ consensus filters.
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Lemma 1. Let x, y be any m-dimensional real vectors, and let q be a positive scalar. Then the
following inequality holds:

2〈x, y〉 ≤ q〈x, x〉+ q−1〈y, y〉.

3. Main Results

Consider the distributed consensus filter configuration with m mobile sensors as
shown in Figure 1, where each sensor can receive information in a distributed way. Being
aware of such a fact, we deployed the following filter structure on sensor node i.

˙̂ηi(t) = Aη̂i(t) + HF(η̂i(t)) + Ψ∗(ζi(t))ki[ỹi(t)− ε̄iΨ(ζi(t))η̂i(t)]

+ Giκ
m

∑
j=1

πijη̂j(t)

ẑi(t) = Bη̂i(t)

(20)

where η̂i(t) is the state estimate of ith mobile sensor, and ẑi(t) is the estimate for z(t) from
the filter on ith mobile sensor; ki > 0 are the observer gains, and Gi are the consensus
filter gains. Moreover, κ denotes consensus strength coefficient; η̂i(0) = η̂i0 6= η(0) for all
i = 1, 2, · · · , m. Π = (πij)m×m is irreducible, πij = πji ≥ 0, for i 6= j and ∑m

j=1 πij = 0,
for all i = 1, 2, · · · , m. It is obvious that Π has an eigenvalue of zero, and all other
eigenvalues are negative.

Figure 1. The filtering issue in mobile sensor networks.

Letting ei(t) = η(t)− η̂i(t) and z̃i(t) = z(t)− ẑi(t), the filtering error system can be
presented from (13) and (20) in the following.

ėi(t) = Aei(t) + H(F(η(t))− F(η̂i(t)))−Ψ∗(ζi(t))ki
[
εi(t)yi(t)

+ (1− εi(t))σ(yi(t))− ε̄iΨ(ζi(t))η̂i(t)
]

− Giκ
m

∑
j=1

πijη̂j(t) +Dν(t)

z̃i(t) = Bei(t)

(21)
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Then, one can obtain

ėi(t) = Aψ(ζi(t))ei(t) + H(F(η(t))− F(η̂i(t)))

−Ψ∗(ζi(t))ki(εi(t)− ε̄i)Ψ(ζi(t))η(t)−Ψ∗(ζi(t))ki(1− εi(t))σ(yi(t))

− Giκ
m

∑
j=1

πijη̂j(t) +Dν(t)

z̃i(t) = Bei(t)

(22)

where Aψ(ζi(t)) = A− ki ε̄iΨ
∗(ζi(t))Ψ(ζi(t)).

3.1. Finite-Time Bounded Analysis

Theorem 1. Under the distributed consensus filter (20) as given, the zero solution of filtering error
system (21) is finite-time bounded with respect to (α2

1, α2
2, Tf , d̄,Aψ(ζi(t)), if there exist positive

scalar λ0, nonnegative constant v and two sets of positive constants pi, qi(i = 1, 2, · · · , m) such
that the following inequalities hold:

ρ̄l0 + κλmax(Π) < 0, (23)

α2
1 + d̂ ≤ λ0α2

2e−vTf (24)

and the velocity law of mobile sensors as follows:

ζ̇is(t) = −ciski ε̄iΞis, s = 1, 2, 3. (25)

where d̂ =
µ2

d d̄2

2 ∑m
i=1 qi,

Ξis =
∫ ζis+δis

ζis−δis

dϕi(ζs)

dζs
ϕi(ζs)e2

i (t, ζ)dζs

+ ϕ2
i (ζis − δis + 0)e2

i (t, ζis − δis)− ϕ2
i (ζis + δis + 0)e2

i (t, ζis + δis), s = 1, 2, 3. (26)

with cis > 0, s = 1, 2, 3, i = 1, 2, · · · , m is velocity gain of each mobile sensor. The guidance
strategy for mobile sensors enhances the filter performance in the sense that the filtering error ei(t)
converges to zero faster. The estimated bound is presented as follows:

lim
t→∞

1
m
E
(

m

∑
i=1
|η(t)− η̂i(t)|2

)

≤

 (1− ρ̄)r0 +
√
(1− ρ̄)2r2

0 − β̂(ρ̄l0 + κλmax(Π))

−(ρ̄l0 + κλmax(Π))

2

, (27)

where β̂ = βµ2
c

2m ∑m
i=1 pik2

i (1− ε̄i)
2.

Proof. Closed-loop spatio-temporal operator Aψ(ζi(t)) is easily verified that it meets∣∣∣∣ m

∑
i=1

〈
g,Aψ(ζi(t))h

〉∣∣∣∣ = ∣∣∣∣ m

∑
i=1

〈
g,
(
A− ki ε̄iΨ

∗(ζi(t))Ψ(ζi(t))
)
h
〉∣∣∣∣

≤ ε0m‖g‖‖h‖+
〈
Kε̄Ψ(ζ(t))g, Ψ(ζ(t))h

〉
≤ ε0m‖g‖‖h‖+ λmax(Kε̄)$2µ2(Ω)‖g‖‖h‖
= ε1‖g‖‖h‖ (28)
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where ε1 = ε0m+λmax(Kε̄)$2µ2(Ω) > 0, ε̄ = diag{ε̄1, ε̄2, · · · , ε̄m}, K = diag{k1, k2, · · · , km},
‖Ψ(ζ(t))‖ = $µ(Ω).

m

∑
i=1

〈
g,−Aψ(ζi(t))g

〉
=

m

∑
i=1

〈
g,−

(
A− ki ε̄iΨ

∗(ζi(t))Ψ(ζi(t))
)

g
〉

≥ ϑ0m‖g‖2 +
〈
Kε̄Ψ(ζ(t))g, Ψ(ζ(t))g

〉
≥ ϑ0m‖g‖2 + λmin(Kε̄)|Ψ(ζ(t))g|2

> ϑ0m‖g‖2 (29)

where g, h ∈ B.
By (28) and (29), the linear operator Aψ(ζi(t)) is negative definite and invertible.

Thus, we consider the following Lyapunov functional that depends on the spatio-temporal
operator Aψ(ζi(t)).

V(t) = −1
2

m

∑
i=1
〈ei(t),Aψ(ζi(t))ei(t)〉. (30)

The infinitesimal operator L V is defined as L V(t) = lim
∆→0+

1
∆ [E

{
V(t + ∆)|t

}
−V(t)],

then along the solution of the filtering error system (22), we have

L V(t) = −
m

∑
i=1

E〈ei(t),Aψ(ζi(t))ėi(t)〉

− 1
2

m

∑
i=1

E
〈

ei(t),
dAψ(ζi(t))

dt
ei(t)

〉
. (31)

The following result was simply inferred by taking into account (10)–(12), as well as
by noting that the operator Aψ(ζi(t)) is self-adjoint.

−
m

∑
i=1

E〈ei(t),Aψ(ζi(t))ėi(t)〉

= −
m

∑
i=1

E〈ei(t),Aψ(ζi(t))Aψ(ζi(t))ei(t)〉

−
m

∑
i=1

E〈ei(t),Aψ(ζi(t))H(F(η(t))− F(η̂i(t)))〉

+
m

∑
i=1

E〈ei(t),Aψ(ζi(t))Ψ∗(ζi(t))ki(εi(t)− ε̄i)Ψ(ζi(t))η(t)〉

+
m

∑
i=1

E〈ei(t),Aψ(ζi(t))Ψ∗(ζi(t))ki(1− εi(t))σ(yi(t))〉

+
m

∑
i=1

〈
ei(t),Aψ(ζi(t))Giκ

m

∑
j=1

πijej(t)

〉

−
m

∑
i=1
〈ei(t),Aψ(ζi(t))Dν(t)〉 (32)



Mathematics 2022, 10, 3134 10 of 24

By Assumptions 3 and 4 together with (4)–(6), the following holds:

−
m

∑
i=1

E〈ei(t),Aψ(ζi(t))H(F(η(t))− F(η̂i(t)))〉

=
m

∑
i=1

E〈ei(t), F(η(t))− F(η̂i(t))〉

≤ ρ̄l0
m

∑
i=1
|ei(t)|2 + 2(1− ρ̄)r0

m

∑
i=1
|ei(t)| (33)

where H = −A−1
ψ (ζi(t)).

Here, selecting the consensus filter gains Gi = A−1
ψ (ζi(t)) out of simplicity, we obtain

m

∑
i=1

〈
ei(t),Aψ(ζi(t))Giκ

m

∑
j=1

πijej(t)

〉

= κ
m

∑
i=1

〈
ei(t),

m

∑
j=1

πijej(t)

〉

= κ
m

∑
i=1

m

∑
j=1

πij|ei(t)|2 (34)

Moreover, it is simple to deduce that

−
m

∑
i=1

E〈ei(t),Aψ(ζi(t))Dν(t)〉

≤
m

∑
i=1

qi
2
〈Dν(t),Dν(t)〉+

m

∑
i=1

1
2qi
〈Aψ(ζi(t))ei(t),Aψ(ζi(t))ei(t)〉

≤
m

∑
i=1

qi
2

µ2
d|ν(t)|

2 +
m

∑
i=1

1
2qi
|Aψ(ζi(t))ei(t)|2 (35)

By Lemma 1, the following holds:

m

∑
i=1

E〈ei(t),Aψ(ζi(t))Ψ∗(ζi(t))ki(1− εi(t))σ(yi(t))〉

≤
m

∑
i=1

pi
2
E〈Ψ∗(ζi(t))ki(1− εi(t))σ(yi(t)), Ψ∗(ζi(t))ki(1− εi(t))σ(yi(t)))〉

+
m

∑
i=1

1
2pi

E〈Aψ(ζi(t))ei(t),Aψ(ζi(t))ei(t)〉

≤ µ2
c

m

∑
i=1

pik2
i (1− ε̄i)

2

2
〈σ(yi(t)), σ(yi(t))〉+

m

∑
i=1

1
2pi
|Aψ(ζi(t))ei(t)|2 (36)
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Substituting (34)–(37) into (33) leads to

−
m

∑
i=1

E〈ei(t),Aψ(ζi(t))ėi(t)〉

≤ −
m

∑
i=1
|Aψ(ζi(t))ei(t)|2

+ ρ̄l0
m

∑
i=1
|ei(t)|2 + 2(1− ρ̄)r0

m

∑
i=1
|ei(t)|

+ µ2
c

m

∑
i=1

pik2
i (1− ε̄i)

2

2
〈σ(yi(t)), σ(yi(t))〉+

m

∑
i=1

1
2pi
|Aψ(ζi(t))ei(t)|2

+ κ
m

∑
i=1

m

∑
j=1

πij|ei(t)|2

+
m

∑
i=1

qi
2

µ2
d|ν(t)|

2 +
m

∑
i=1

1
2qi
|Aψ(ζi(t))ei(t)|2

≤
m

∑
i=1

(
−1 +

1
2pi

+
1

2qi

)
|Aψ(ζi(t))ei(t)|2

+ (ρ̄l0 + κλmax(Π))
m

∑
i=1
|ei(t)|2 + 2(1− ρ̄)r0

m

∑
i=1
|ei(t)|

+ µ2
c

m

∑
i=1

pik2
i (1− ε̄i)

2

2
β +

m

∑
i=1

qi
2

µ2
dd̄2 (37)

Furthermore, with respect to the second part of (32), we obtain

− 1
2

m

∑
i=1

E
〈

ei(t),
dAψ(ζi(t))

dt
ei(t)

〉
=

1
2

m

∑
i=1

ki ε̄i

〈
ei(t),

dΨ∗(ζi(t))Ψ(ζi(t))
dt

ei(t)
〉

=
3

∑
s=1

m

∑
i=1

ki ε̄i

〈
ψi(ζis(t))ei(t), ζ̇is(t))

dψi(ζis(t))
dζs

ei(t)
〉

=
3

∑
s=1

m

∑
i=1

ki ε̄i ζ̇is(t))
∫ lis

0
ϕi(ζs)

dϕi(ζs)

dζs
e2

i (t)dζs

=
m

∑
i=1

ki ε̄i ζ̇is(t)
3

∑
s=1

Ξis (38)

where Ξis, s = 1, 2, 3 have been defined in Theorem 1.
The choice

ζ̇is(t) = −ciski ε̄iΞis, s = 1, 2, 3. (39)

Deduce (39) negative definite, cis > 0, s = 1, 2, 3; i = 1, 2, · · · , m. Notice that
(ζ̇i1(t), ζ̇i2(t), ζ̇i3(t)) is the velocity of ith moving sensing device.
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Subsequently, from (38) and (39), it follows that:

L V(t) ≤
m

∑
i=1

vi|Aψ(ζi(t))ei(t)|2 + d̂

+ (ρ̄l0 + κλmax(Π))
m

∑
i=1
|ei(t)|2

+ 2(1− ρ̄)r0

m

∑
i=1
|ei(t)|+

βµ2
c

2

m

∑
i=1

pik2
i (1− ε̄i)

2 (40)

where vi = −1 + 1
2pi

+ 1
2qi

and d̂ is defined in Theorem 1.
Note that (

m

∑
i=1
|ei(t)|

)2

=
m

∑
i=1

m

∑
j=1
|ei(t)||ej(t)|

≤ 1
2

m

∑
i=1

m

∑
j=1

(
|ei(t)|2 + |ej(t)|2

)
= m

m

∑
i=1
|ei(t)|2 (41)

Then, it follows that

L V(t) ≤ v0

m

∑
i=1
|Aψ(ζi(t))ei(t)|2 + d̂

+ (ρ̄l0 + κλmax(Π))
m

∑
i=1
|ei(t)|2

+ 2(1− ρ̄)r0
√

m

√
m

∑
i=1
|ei(t)|2 +

βµ2
c

2

m

∑
i=1

pik2
i (1− ε̄i)

2

< vV(t) + d̂

+ (ρ̄l0 + κλmax(Π))m
[

1
m

m

∑
i=1
|ei(t)|2

+
2(1− ρ̄)r0

ρ̄l0 + κλmax(Π)

√
1
m

m

∑
i=1
|ei(t)|2

− β̂

−(ρ̄l0 + κλmax(Π))

]
. (42)

where v0 = max{vi}, i = 1, 2, · · · , m, v = 2v0ϑ0m and β̂ is defined in Theorem 1. Let

χ =
√

1
m ∑m

i=1 |ei(t)|2 and w(χ) = χ2 + 2(1−ρ̄)r0
ρ̄l0+κλmax(Π)

χ − β̂
−(ρ̄l0+κλmax(Π))

. It is simple to
observe that w(x) = 0 has two solutions

χ1,2 =
−(1− ρ̄)r0 ±

√
(1− ρ̄)2r2

0 − β̂(ρ̄l0 + κλmax(Π))

ρ̄l0 + κλmax(Π)
(43)

where χ1 < 0 and χ2 > 0. If χ ≥ χ2, then w(χ) ≥ 0.
Thus, it is not difficult to draw the following conclusion

L V(t) < vV(t) + d̂. (44)
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From (45), we can conclude that

V(t) < evTf
(

V(0) + md̂
)

= evTf

(
−1

2

m

∑
i=1
〈ei(0),Aψ(ζi(t))ei(0)〉+ md̂

)
< evTf m

(
α2

1 + d̂
)

. (45)

From the definition of V(t), there exists 0 < λ0 ≤ 1
2 such that

V(t) ≥ −λ0

m

∑
i=1
〈ei(t),Aψ(ζi(t))ei(t)〉 (46)

Therefore, we obtain

−
m

∑
i=1
〈ei(t),Aψ(ζi(t))ei(t)〉 <

1
λ0

evTf m
(

α2
1 + d̂

)
≤ mα2

2. (47)

This completes the proof.

3.2. Distributed H∞ Consensus Performance Analysis

Next, we will concentrate on studying the H∞ performance of the zero initial condition
for the filtering error system (21).

Theorem 2. Let the filter parameter ki and Gi and the perturbation attenuation level γ > 0 be
given. Then, the zero solution of the filtering error system (21) is finite-time bounded with respect
to (0, α2

2, Tf , d̄,Aψ(ζi(t))), and z̃ satisfies the bounded H∞ consensus performance constraint (19)
under the zero initial condition for all nonzero ν(t), if under Assumptiosns 1–5 such that the
following inequalities hold:

ρ̄l0 + κλmax(Π) + µ2
b < 0, (48)

− γ +
µ2

d
2m

m

∑
i=1

qi < 0, (49)

and the velocity law of mobile sensor is determined as (25) and (26). The estimated bound is given by

lim
t→∞

1
m
E
(

m

∑
i=1
|η(t)− η̂i(t)|2

)

≤

 (1− ρ̄)r0 +
√
(1− ρ̄)2r2

0 − β̂l1
−l1

2

. (50)

Proof. It is simple to prove that (23)–(25) implies the filtering error system (21) is finite-time
bounded. The H∞ consensus performance of the closed-loop system will now be the subject
of our discussion. The same functional Lyapunov candidate V(t) from Theorem 1 should
be built. As in Theorem 1, similar line calculation yields

L V(t) ≤ vm
2

α2
2 + (ρ̄l0 + κλmax(Π))mw(χ) + d̂. (51)
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In order to address the system’s H∞ consensus performance (19), we establish

J = E
m

∑
i=1

∫ Tf

0
|z̃i(t)|2 − γ2|ν(t)|2dt

= E
m

∑
i=1

∫ Tf

0
〈z̃i(t), z̃i(t)〉dt−mγ2

∫ Tf

0
〈ν(t), ν(t)〉dt. (52)

From (45) to (46), with the zero initial condition, we have

J ≤
∫ Tf

0

m

∑
i=1
〈Bei(t),Bei(t)〉dt−mγ2d̄2 +L V(t)

≤ vm
2

α2
2 + l1mw̃(χ) + ď, (53)

where l1 = ρ̄l0 + κλmax(Π) + µ2
b, w̃(χ) = χ2 + 2(1−ρ̄)r0

l1
χ− β̂

−l1
and

ď = (−γ2 +
µ2

d
2m ∑m

i=1 qi)md̄2.
It is easy to see that w̃(χ) = 0 has two solutions

χ1,2 =
−(1− ρ̄)r0 ±

√
(1− ρ̄)2r2

0 − β̂l1
l1

, (54)

where χ1 < 0 and χ2 > 0. If χ ≥ χ2, then w̃(χ) > 0. It is known with the condition (48)
and (49) that l1mw̃(χ) + ď < 0.

Letting Tf → ∞, we obtain that

m

∑
i=1

∫ Tf

0
〈z̃i(t), z̃i(t)〉dt < mγ2

∫ Tf

0
〈ν(t), ν(t)〉dt +

vm
2

α2
2,

namely,
1
m

m

∑
i=1
|z̃i(t)|2 < γ2|ν(t)|2 + v

2
α2

2,

which completes the proof of the theorem.

Remark 1. A distributed consensus filter is built in (20) based on the mobile sensing approach.
The filter can be adapted to the state estimation of complex environments. On the one hand,
the nonlinear function in the system is assumed to have two parts, including the part that satisfies
the sector condition and the part with saturation characteristics, and both parts occurred randomly.
On the other hand, the randomly occurring saturation is considered at the output measurement.
This leads to a better robustness of the filter.

Remark 2. From (27), it follows that the minimal bound increases as r0 or β increases. Thus,
a very large filter gain should not be used if the bounds r0 or β of the saturation is relatively high.

4. Discussion

Because of the generality of the conclusion given in Theorem 1, we discuss a few
special scenarios of its application in the following.

4.1. Measurement Output with Saturation

If the measurement output is sensor saturation, the output can be expressed as

y̌i(t) = σ

(∫∫∫
Ω

ψi(ζ; ζi(t))η(t, ζ)dΩ
)

, i = 1, 2, · · · , m. (55)
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Its abstract form is
y̌(t) = σ(Ψ(ζ(t))η(t)). (56)

Since the saturation function has obvious nonlinear characteristics, with the help
of techniques for dealing with nonlinear terms in the system, we can decompose the
saturation function into a sector nonlinear part and a high-order saturation part to facilitate
our analysis.

σ(y(t)) = C1Ψ(ζ(t))η(t) + R(y(t)). (57)

Considering Assumption 4, the high-order saturation part R(y(t)) satisfies

|R(y(t))| ≤ r1. (58)

For the nonlinear function f of the 3D system, take ρ̄ = 1; hence f (t, η(t, ζ)) =
fL(t, η(t, ζ)) satisfies Assumption 3.

To study the distributed H∞ consensus filtering of the 3D nonlinear distributed param-
eter systems with sensor saturation, the distributed consensus filters (20) can be modified
to the following form.

˙̂ηi(t) = Aη̂i(t) + HF(η̂i(t)) + Ψ∗(ζi(t))ki[y̌i(t)− C1Ψ(ζi(t))η̂i(t)]

+ Giκ
m

∑
j=1

πijη̂j(t)

ẑi(t) = Bη̂i(t)

(59)

The filtering error system can be given from (13) and (59) as follows.
ėi(t) = Ãψei(t) + H(F(η(t))− F(η̂i(t)))−Ψ∗(ζi(t))kiR(yi(t))

− Giκ
m

∑
j=1

πijη̂j(t) +Dν(t)

z̃i(t) = Bei(t)

(60)

where Ãψ(ζi(t)) = A− kiC1Ψ∗(ζi(t))Ψ(ζi(t)).
Similar to the proof of Theorem 1, let the Lyapunov function V(t) = − 1

2 ∑m
i=1

〈ei(t), Ãψ(ζi(t))ei(t)〉 here. The following inequality

m

∑
i=1
〈ei(t), Ãψ(ζi(t))Ψ∗(ζi(t))kiR(yi(t))〉 ≤ −r1

m

∑
i=1

ϑ̃iki|ei(t)|

where ϑ̃i = (ϑ0 + kil1µ2(Ω))µ(Ω), are available when dealing with this Lyapunov functional.
Thus, it follows that

L V(t) ≤vm

m

∑
i=1
|Ãψ(ζi(t))ei(t)|2 + d̂

+ (l0 + κλmax(Π))
m

∑
i=1
|ei(t)|2

− r1λmax
(
Θ̃K
) m

∑
i=1
|ei(t)|+ β̂, (61)

where Θ̃ = diag{ϑ̃1, ϑ̃2, · · · , ϑ̃m}.
From the above, it is not difficult to draw the following corollary.

Corollary 1. Let the filter parameter ki and Gi and the perturbation attenuation level γ > 0 be
given. Then, the zero solution of the filtering error system (60) is finite-time bounded with respect
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to (0, α2
2, Tf , d̄,Aψ(ζi(t))), and z̃ satisfies the bounded H∞ consensus performance constraint

(19) under the zero initial condition for all nonzero ν(t), if under Assumptions 1–5 such that the
following inequalities hold:

l0 + κλmax(Π) + µ2
b < 0, (62)

− γ +
µ2

d
2m

m

∑
i=1

qi < 0, (63)

and the velocity law of the mobile sensor is determined as (25) and (26). The estimated bound is
given by

lim
t→∞

1
m
E
(

m

∑
i=1
|η(t)− η̂i(t)|2

)

≤

 r1λmax
(
Θ̃K
)
+
√

r2
1λ2

max
(
Θ̃K
)
− 4β̂l̂1

−2l̂1

2

. (64)

where l̂1 = l0 + κλmax(Π) + µ2
b.

4.2. Measurement Output with Packet Losses

If sensor saturation is not taken into account in the measurement output, then the
stochastic variable εi(t) in the output expression (65) implies the scenario of missing data
in the measurement output.

ȳi(t) = εi(t)
∫∫∫

Ω
ψi(ζ; ζi(t))η(t, ζ)dΩ, i = 1, 2, · · · , m. (65)

Its abstract form can be expressed as

ȳ(t) = ε(t)Ψ(ζ(t))η(t). (66)

For the nonlinear function f of the 3D system, take ρ̄ = 0; hence f (t, η(t, ζ)) =
r(t, η(t, ζ)) satisfies Assumption 4.

Combined with the output (66), a modified distributed filter can be written as
˙̂ηi(t) = Aη̂i(t) + HF(η̂i(t)) + Ψ∗(ζi(t))ki[ȳi(t)− ε̄iΨ(ζi(t))η̂i(t)]

+ Giκ
m

∑
j=1

πijη̂j(t)

ẑi(t) = Bη̂i(t)

(67)

The filtering error system can be given from (13) and (67) in the following.

ėi(t) = Aψ(ζi(t))ei(t) + H(F(η(t))− F(η̂i(t)))

−Ψ∗(ζi(t))ki(εi(t)− ε̄i)Ψ(ζi(t))η(t)

− Giκ
m

∑
j=1

πijη̂j(t) +Dν(t)

z̃i(t) = Bei(t)

(68)

where Aψ(ζi(t)) has been defined in (22).
Similar to the proof of Theorem 1, we can obtain the following corollary.

Corollary 2. Let the filter parameter ki and Gi and the perturbation attenuation level γ > 0 be
given. Then, the zero solution of the filtering error system (21) is finite-time bounded with respect
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to (0, α2
2, Tf , d̄,Aψ(ζi(t))), and z̃ satisfies the bounded H∞ consensus performance constraint

(19) under the zero initial condition for all nonzero ν(t), if under Assumptions 1–5 such that the
following inequalities hold:

κλmax(Π) + µ2
b < 0, (69)

− γ +
µ2

d
2m

m

∑
i=1

qi < 0, (70)

and the velocity law of mobile sensor is determined as (25) and (26). The estimated bound is given by

lim
t→∞

1
m
E
(

m

∑
i=1
|η(t)− η̂i(t)|2

)

≤

 (1− ρ̄)r0 +
√
(1− ρ̄)2r2

0 − β̂l2
−l2

2

. (71)

where l2 = κλmax(Π) + µ2
b.

4.3. Measurement with Homogeneous Mobile Sensor Networks

In the following, the consensus filtering issue of system (13) is considered to be solved
in a homogeneous mobile sensor network. The spatial distribution of the homogeneous
mobile sensor network is given by

ψi(ζs; ζis(t)) =
{

φ if ζ ∈ Ωi
0 otherwise,

(72)

where ζ1 ∈ Ωi1 = [ζi1 − δi1, ζi1 + δi1], ζ2 ∈ Ωi2 = [ζi2 − δi2, ζi2 + δi2], ζ3 ∈ Ωi3 = [ζi3 −
δi3, ζi3 + δi3].

Furthermore, it is not difficult to establish that the system is mean square asymptot-
ically stable if the condition −1 + 1

2pi
+ 1

2qi
< −vi is attached in the (40) of proving the

stability of the system.
The following corollary is easily obtained from Theorem 2; hence the proof is omitted.

Corollary 3. Let the filter parameter ki and Gi and the perturbation attenuation level γ > 0 be
given. Then, the zero solution of the filtering error system (21) is mean square asymptotically stable,
and z̃ satisfies the H∞ consensus performance constraint (19) under the zero initial condition for all
nonzero ν(t), if under Assumptions 1–5 such that the following inequalities hold:

− 1 +
1

2pi
+

1
2qi

< −vi, i = 1, 2, · · · , m, (73)

ρ̄l0 + κλmax(Π) + µ2
b < 0, (74)

− γ +
µ2

d
2m

m

∑
i=1

qi < 0, (75)

and the velocity law of mobile sensor is given by

ζ̇is(t) = −ĉiski ε̄iΞ̂is, s = 1, 2, 3. (76)

where

Ξ̂is = φ2
(

e2
i (t, ζis − δis)− e2

i (t, ζis + δis)
)

, s = 1, 2, 3. (77)

with ĉis > 0, s = 1, 2, 3, i = 1, 2, · · · , m is velocity gain of each mobile sensor. The estimated bound
is determined as (50).
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4.4. Point Measurement

In engineering, point measurements are easier to achieve than distributed measure-
ments. Changing the spatial distribution of the mobile sensing device to Dirac delta
function in (4), i.e., by selecting

ψi(ζs; ζis(t)) = δ(ζ − ζ1)δ(ζ − ζ2)δ(ζ − ζ3), (78)

the measurement of the 3D distributed parameter system changes from distributed to
point measurements.

The following Corollary 4 is easily obtained from Theorem 2 and the spatial distribu-
tion of the mobile sensors (78); hence the proof is omitted.

Corollary 4. Let the filter parameter ki and Gi and the perturbation attenuation level γ > 0 be
given. Then, the zero solution of the filtering error system (21) is finite-time bounded with respect
to (0, α2

2, Tf , d̄,Aψ(ζi(t))), and z̃ satisfies the bounded H∞ consensus performance constraint
(19) under the zero initial condition for all nonzero ν(t), if under Assumptions 1–5 such that the
inequalities (48) and (49) hold, and the velocity law of mobile sensor is given by

ζ̇is(t) = čiski ε̄iΦis, s = 1, 2, 3. (79)

where

Φis = δis

(
e2

i (t, ζis − δis)− e2
i (t, ζis + δis)

)
, s = 1, 2, 3. (80)

with čis > 0, s = 1, 2, 3, i = 1, 2, · · · , m is velocity gain of each mobile sensor. The estimated bound
is determined as (50).

Remark 3. If the stochastic variable in the measurement output is taken as ε̄i = 1 and the
measurement output comes from a fixed sensor, then the output expression reduces to yψ(t) =
Ψη(t, ζ). The distributed consensus filters (20) can be simplified as

˙̂ηi(t) = Aη̂i(t) + HF(η̂i(t)) + ki[yψi(t)−Ψη̂i(t)]

+ Giκ
m

∑
j=1

πijη̂j(t)

ẑi(t) = Bη̂i(t)

(81)

It is simple to deduce the following conclusions: Let the filter parameter ki and Gi and the
perturbation attenuation level γ > 0 be given. Then, the zero solution of the filtering error
system (21) is finite-time bounded with respect to (0, α2

2, Tf , d̄,Aψ), and z̃ satisfies the bounded
H∞ consensus performance constraint (19) under the zero initial condition for all nonzero ν(t),
if under Assumptions 1–5 such that the following inequalities (49) and ρ̄l0 + κλmax(Π̃) + µ2

b < 0
where Π̃ = Π− KΨ hold. The estimated bound is given by limt→∞

1
mE
(
∑m

i=1 |η(t)− η̂i(t)|2
)
≤(

(1−ρ̄)r0+
√
(1−ρ̄)2r2

0−β̂l̃1
−l̃1

)2

where l̃1 = ρ̄l0 + κλmax(Π̃) + µ2
b.

5. Simulation Example

In this section, simulations are given to illustrate how these results can be applied
to achieve finite-time bounded in 3D filtering error system. With Dirichlet boundary
conditions, we take into consideration a class of 3D nonlinear distributed parameter sys-
tems subject to the initial condition η(0, ζ1, ζ2, ζ3) = (ζ1/l1)3(1 − ζ1/l1)3(ζ2/l2)3(1 −
ζ2/l2)3(ζ3/l3)3(1− ζ3/l3)3, where l1 = 1, l2 = 0.5, l3 = 0.8. The system parameters are
proposed as follows: a0 = 10−5 and f (t, η(t, ζ)) = arctan(0.7η(t, ζ)). The evolution of the
3D nonlinear distributed parameter system at four different times is shown in Figure 2.
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Figure 2. The evolution of the 3D nonlinear distributed parameter systems.

The coordinate system in Figure 2 represents a three-dimensional space. Hence,
the states of the system in three dimensions at time t = 0.25, 1, 2, 5 s, respectively, need to
be shown using four different spatial coordinate systems.

Two mobile sensing devices are taken into account, and their initial locations are selected
as (ζ11(0), ζ12(0), ζ13(0)) = (0.18, 0.10, 0.25) and (ζ21(0), ζ22(0),ζ23(0)) = (0.56, 0.14, 0.32).

The sensor network coupling matrix Π =

[
−1 1
1 −1

]
. Their spatial distribution is de-

fined by

ψi(ζs; ζis(t)) =
{

1 if ζ ∈ Ωi
0 otherwise.

In this simulation, the probabilities are taken as ρ̄ = 0.75, ε̄1 = 0.9 and ε̄2 = 0.85;
the perturbation attenuation level is γ = 0.95; σ(yi(t)) is a saturation function written in
the following:

σ(yi(t)) =


σ(yi(t)) = Vi,max, if yi(t) > Vi,max
σ(yi(t)) = yi(t), if −Vi,max ≤ yi(t) ≤ Vi,max
σ(yi(t)) = −Vi,max, if yi(t) < −Vi,max

The saturation values are taken as V1 = V2 = 0.07. The measurement output of mobile
sensors with randomly sensor saturation are depicted in Figure 3.

The initial condition for the distributed consensus filter is selected to be η̂1(0, ζ) =
η̂2(0, ζ) = 0. Gain for the distributed filters is determined by k1 = 10 and k2 = 30. Figures 4
and 5 illustrate how the filtering errors of the two distributed H∞ consensus filters changed
at four different times in the first 5 s. After 5 s, with increasing time, their filtering errors
converge rapidly to the bounds. Figures 6 and 7 show the estimation results of the two
distributed filters at four different times, respectively.
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Figure 3. Sensor measurement output.

Figure 4. Evolution of the filtering error system for the first filter.

Figure 5. Evolution of the filtering error system for the second filter.
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Figure 6. Estimation of first filter.

Figure 7. Estimation of second filter.

Figure 8 displays the output estimation errors for the two filters. The estimation
converges to the bounded range in a short time, as can be seen in Figure 8. The existence
of the estimation error is caused by the bounded perturbation in the system. Once the
perturbation decays or even disappears, then the estimation error converges rapidly to zero.

Figure 8. Filter output estimation errors.

To reflect the enhanced filtering performance of the motion sensing approach, we
introduce fixed sensors for comparison with mobile sensors. The two fixed sensors are
located at (ζ11, ζ12, ζ13) = (0.18, 0.10, 0.25) and (ζ21, ζ22, ζ23) = (0.56, 0.14, 0.32).These two
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locations are indicated by small circles in Figure 9. These two spatial locations are also the
initial locations before the mobile sensor moves. As a comparison with the fixed sensor,
the trajectories of the two mobile sensors under velocity constraints are also shown in
Figure 9.

Figure 9. Moving sensing device trajectory.

In Figure 10, the effect of the evolution of the L2 norm of the filtering error for the two
fixed sensors and the two mobile sensors is shown. The appreciable reduction of the state
norm is observed for the mobile case.

Figure 10. Evolution of spatial L2 norm.

6. Conclusions

This paper has addressed the issue of finite-time distributed H∞ consensus filtering
for a class of 3D nonlinear distributed parameter systems subject to bounded perturba-
tion. The considered incomplete information in measured output is randomly occurring
sensor saturation. Specialized conditions are used to treat the system and possible output
saturation. A mobile sensing approach is proposed as a new framework for optimizing
the filtering issue, thus enhancing the performance of the filter. Moreover, a novel non-
linear stochastic decomposition model is proposed. With a guaranteed H∞ consensus
disturbance rejection attenuation level and dynamics of the filtering error system that are
finite-time bounded, a novel distributed H∞ consensus filter has been developed. In light
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of the operator-dependent Lyapunov function, the finite-time bounded of the filtering
error system can be achieved. For the simplified analysis, the spatial distribution of the
selected mobile sensing devices is symmetric, and therefore, the closed-loop operator in
the evolution equation is self-adjoint. In a more general case, the spatial distribution may
not be symmetric, and even may not be derivative with respect to the location. Then the
analysis of the closed-loop operator will be a challenge and is being considered by the
authors. The filtering error system is able to converge faster, also dependent on conditions
in the form of the velocity law for the mobile sensors. It has been demonstrated through
numerical simulations that the proposed criteria are effective.
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