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Abstract: A new and flexible distribution is introduced for modeling proportional data based on
the quantile of the generalized extreme value distribution. We obtain explicit expressions for the
moments, quantiles, and other structural properties. An extended regression model is constructed as
an alternative to compete with the beta regression. Some simulations from the Bayesian perspectives
are developed, and an illustrative application to real data involving the comparison of models and
influence diagnostics is also addressed.
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1. Introduction

In recent years, we have seen a considerable interest in formulating new families of
distributions for modeling proportional data: for example, illiteracy and mortality rates,
the proportion of eggs hatched in the production of cuttings, percentage of defective items,
etc. One of the most common distributions in this context is the beta distribution [1], which
was also extended to a regression [2]. There are several extensions of the beta regression in
Simas et al. [3], Ospina & Ferrari [4], Ospina & Ferrari [5], Carrasco et al. [6], and Figueroa-
Zúñiga et al. [7].

Some other alternatives have appeared in the literature. For example, Qiu et al. [8] de-
fined a simplex regression [9], Bayes et al. [10] introduced a parametric quantile regression
from the Kumaraswamy distribution [11], Lemonte and Bazán [12] proposed a regression
based on an extended Johnson SB distribution [13,14] introduced a family by compounding
the cumulative distribution function (cdf) of a model with the quantile function (qf) of a
second one. Cancho et al. [15] constructed a regression model by extending the Johnson SB
distribution with a shape parameter controlling the asymmetry.

Let FX(x) be the baseline cdf of a random variable (rv) X with real support R, and the
transformation:

Y = G
(

X− γ

δ

)
, (1)

where G(·) is a cdf of an rv with support R, γ ∈ R, and δ > 0. Then, X = γ + δ Q(Y)
for y ∈ (0, 1), where Q(y) = G−1(Y). The probability density function (pdf) of Y follows
from (1) as:

fY(y) = δ fX(γ + δQ(y))
∣∣∣∣dQ(y)

dy

∣∣∣∣, (2)
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where fX(x) = dFX(x)/dx.
Let X ∼ N(0, 1) have the standard normal cdf Φ(x), and G(y) = 1/(1 + e−y) the

standard logistic cdf. Thus, the Johnson SB density follows from (2), for y ∈ (0, 1),

fY(y; γ, δ) =
δ φ(γ + δQ(y))

y(1− y)
, (3)

where φ(·) is the standard normal density, and:

Q(y) = log
(

y
1− y

)
, (4)

is the logistic qf [14].
We define a new family by compounding a baseline standard normal with the qf of

the generalized extreme value (GEV). Let Z be an rv having a GEV distribution [16] having
cdf with zero location and unit scale parameter, namely:

G(z; λ) =

 exp
[
−(1 + λz)−1/λ

]
, λ 6= 0;

exp(−e−z), λ = 0;
(5)

where z ∈ [−1/λ,+∞) for λ > 0, z ∈ (−∞,−1/λ] for λ < 0 and z ∈ (−∞,+∞) for λ = 0.
The qf of Z becomes:

Q(y; λ) =


[− log(y)]−λ−1

λ , λ > 0 and y ∈ [0, 1); λ < 0 and y ∈ (0, 1];

− log[− log(y)], λ = 0 and y ∈ (0, 1).
(6)

This article is organized in six sections. Section 2 defines a new model called the normal-
generalized extreme value (Normal-GEV) distribution, and provides some of its structural pro-
perties. Section 3 constructs a new regression model from this distribution, and addresses
Bayesian inferential procedures. Section 4 performs several simulations under different
scenarios to study the behavior of the estimators. An application to colorectal cancer data
in Section 5 shows the importance of the proposed regression. Some conclusions are given
in Section 6.

2. The Normal-GEV Distribution

The pdf of the rv Y ∼ Normal-GEV(γ, δ, λ) follows by inserting (6) in Equation (3):

fY(y; γ, δ, λ) =
δφ(γ + δQ(y; λ))

y[−log(y)]λ+1 , y ∈ (0, 1). (7)

Note that the above pdf includes both cases of Equation (6), i.e., the cases for λ 6= 0
and λ→ 0.

Proposition 1. The limits below hold:

lim
y→0+

fY(y; γ, δ, λ) =

{
0, λ < 0;
∞, λ > 0;

and lim
y→1−

fY(y; γ, δ, λ) =

{
δφ(γ + δ), λ = −1;
0, λ 6= −1.

Proof. Setting x = − log(y), the Normal-GEV pdf (7) can be expressed as:

fY(y; γ, δ, λ) =
δ√
2π


exp

{
− 1

2 [γ+
δ
λ (x−λ−1)]

2}
exp(−x)xλ+1 , λ 6= 0;

exp
{
− 1

2 [γ+δ(− log(x))]2
}

exp(−x)x , λ = 0.

(8)
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By using the known inequality:

exp(x) > 1 + x, x ∈ R, (9)

the expression on the right-hand side of (8) reduces to:

>
δ√
2π


1− 1

2 [γ+
δ
λ (x−λ−1)]

2

exp(−x)xλ+1 , λ 6= 0;

1− 1
2 [γ+δ(− log(x))]2

exp(−x)x , λ = 0;
= g(x; γ, δ, λ).

That is, fY(y; γ, δ, λ) > g(x; γ, δ, λ). We have limx→∞ g(x; γ, δ, λ) = ∞, ∀λ > 0, since
the exponential grows faster than the polynomial. Then, since y→ 0+⇐⇒ x → ∞ from the
squeeze (or sandwich) theorem, we get ∞ = limx→∞ g(x; γ, δ, λ) 6 limy→0+ fY(y; γ, δ, λ).
This proves that limy→0+ fY(y; γ, δ, λ) = ∞, ∀λ > 0.

Again, by using (8) and inequality (9), we have:

fY(y; γ, δ, λ) 6
δ√
2π


(

1−x
xλ+1

)
exp

{
− 1

2

[
γ + δ

λ (x−λ − 1)
]2
}

, λ 6= 0;(
1−x

x

)
exp

{
− 1

2 [γ + δ(− log(x))]2
}

, λ = 0;
= h(x; γ, δ, λ).

For λ < 0, from the inequality above and by the rapid growth of the exponential
in comparison to polynomials, we have limy→0+ fY(y; γ, δ, λ) 6 limx→∞ h(x; γ, δ, λ) = 0.
Therefore, limy→0+ fY(y; γ, δ, λ) = 0, ∀λ < 0.

On the other hand, note that y → 1− ⇐⇒ x → 0. Again, from the inequality
fY(y; γ, δ, λ) 6 h(x; γ, δ, λ) and the rapid growth of the exponential, ∀λ 6= 1, we get
limy→1− fY(y; γ, δ, λ) 6 limx→0 h(x; γ, δ, λ) = 0. Hence, limy→1− fY(y; γ, δ, λ) = 0.

Finally, if λ = −1, then fY in (7) gives:

fY(y; γ, δ,−1) =
δφ(γ + δ[log(y) + 1])

y
, y ∈ (0, 1).

Then, it is clear that (by the continuity of φ), limy→1− fY(y; γ, δ,−1) = δφ(γ + δ).

The proof of the next result is immediate and hence omitted.

Proposition 2. Let Y ∼ Normal-GEV(γ, δ, λ), and Tγ,δ,λ(y) = γ + δQ(y; λ). The cdf of Y is

FY(y) = Φ(Tγ,δ,λ(y)), y ∈ (0, 1),

where Q(y; λ) is as in (6).

2.1. Behavior of the Normal-GEV Distribution

In this subsection, some distributional properties such as unimodality and monotoni-
city of the Normal-GEV pdf are analyzed.

To determine the number of modes of a pdf, f , it is necessary to locate its critical
points. By definition, a critical point of a function f is a point on the graph of f where the
derivative is zero or infinite.

Proposition 3. All critical points y of the new pdf (7) satisfy:

[λ + 1 + log(y)][− log(y)]λ − δ[γ + δQ(y; λ)] = 0,

where Q(y; λ) is given in (6).
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Proof. Adopting the notation of Proposition 2, fY(y) = fY(y; γ, δ, λ) and T(y) = Tγ,δ,λ(y) =
γ + δ Q(y; λ), we have (dashes mean derivatives) fY(y) = φ(T(y)) T′(y). Differentiating
fY(y) with respect to y gives:

f ′Y(y) = φ(T(y))
{

T′′(y)− T(y)[T′(y)]2
}

, (10)

where:

T′(y) = δ
[− log(y)]−(λ+1)

y
and T′′(y) = T′(y)

[− log(y)]−1[λ + 1 + log(y)]
y

. (11)

By combining (10) and (11), we obtain:

f ′Y(y) =
fY(y)[− log(y)]−(λ+1)

y

{
[λ + 1 + log(y)][− log(y)]λ − δ[γ + δQ(y; λ)]

}
.

Then, the proof follows.

Theorems 1 and 2 show that λ governs the shape of the new distribution.

Theorem 1. If Y ∼ Normal-GEV(γ, δ, λ) with λ 6= 0, the pdf of Y is:

1. Decreasing-increasing-decreasing (DID) or decreasing (D) whenever λ ∈ N.
2. Unimodal whenever λ ∈ Z \ (N∪ {−1, 0}) and γ < δ/λ.

Proof. By replacing Q(y; λ) with λ 6= 0 in equation of Proposition 3, all critical points y of
the pdf of Y satisfy:

p(x) = −x2λ+1 + (λ + 1)x2λ + δ

(
δ

λ
− γ

)
xλ − δ2

λ
= 0, with x = − log(y).

If λ ∈ N, then p(x) is a polynomial of degree 2λ + 1. By Descartes’ rule of signs [17],
p(x) has two sign changes (regardless of the sign of δ/λ− γ) and then two or zero pos-
itive roots. If p(x) has two positive roots x1 and x2, the pdf of Y has two critical points
y1 = exp(−x1) and y2 = exp(−x2) in (0, 1). On the other hand, if p(x) has zero positive
roots, it has no critical points in (0, 1). Finally, since limy→0+ fY(y) = ∞ and limy→1 fY(y) = 0,
the statement of Item 1 follows.

If λ ∈ Z \ (N∪ {−1, 0}), p(x) can be written in terms of w = x−1 = [− log(y)]−1

q(w) = −w−2λ−1 + (λ + 1)w−2λ + δ

(
δ

λ
− γ

)
w−λ − δ2

λ
= 0.

In this case, q(w) is a polynomial of degree −2λ − 1. Again, by Descartes’ rule of
signs, q(w) has only one sign change, and this polynomial has only one positive root,
say w0. Then, the pdf of Y has only one critical point y0 = exp(−w−1

0 ) on (0, 1). Since
limy→0+ fY(y) = 0 and limy→1 fY(y) = δφ(γ + δ)δλ,−1, where δi,j is the Kronecker delta,
the unimodality stated in Item 2 follows.

Theorem 2 provides the explicit critical points of the Normal-GEV pdf (λ = 0) when-
ever a constraint on parameters γ and δ is imposed. Further, this theorem shows that the
form of the pdf is continuous monotone at three disjoint intervals.

Theorem 2. If Y ∼ Normal-GEV(γ, δ, λ) and λ = 0, the pdf of Y is decreasing-increasing-
decreasing (DID) whenever:

γ 6 [2 log(δ)− 1]δ +
1
δ

. (12)
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Moreover,

y1 = exp
[

δ2W−1

(
−

exp( γ
δ −

1
δ2 )

δ2

)]
and y2 = exp

[
δ2W0

(
−

exp( γ
δ −

1
δ2 )

δ2

)]
(13)

are the minimum and maximum points of the pdf of Y, respectively. For some integer k, Wk(·)
denotes the Lambert W function.

Proof. By replacing the definition of Q(y; λ) with λ = 0 in the equation of Proposition 3,
all critical points y of the pdf of Y satisfy:

1− x + δ2 log(x)− δγ = 0, with x = − log(y).

Equivalently, (
− x

δ2

)
exp

(
− x

δ2

)
= −

exp( γ
δ −

1
δ2 )

δ2 .

Since the function f (t) = t exp(t) has a (global) minimum −1/e at the point t = −1,
the above equation can be solved for −x/δ2 only if z = −exp( γ

δ −
1
δ2 )/δ2 > −1/e.

Since z < 0, assuming the condition (12), the two values y1 and y2 in (13) are obtained.
Finally, y1 and y2 are minimum and maximum points of the pdf of Y, respectively, be-
cause limy→0+ fY(y) = ∞ and limy→1 fY(y) = 0, and 0 < y1 < y2 < 1.

Figures 1 and 2 reveal different types of asymmetrical. For negative values of the
parameter λ we have positive asymmetry (and unimodality), for positive values of λ we
have decreasing, increasing and decreasing behavior.
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Figure 1. Normal-GEV density with γ = 0.2, δ = 2, and λ varying.
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Figure 2. Normal-GEV density with γ = −0.2, δ = 2, and λ varying.
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Figure 3 shows that cases of decreasing strict monotonicity can appear in the Normal-
GEV pdf.
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Figure 3. Normal-GEV density with δ = 1, λ = 1, and γ varying.

2.2. Related Distributions

Proposition 4. If Y ∼ Normal-GEV(γ, δ, λ), then (for any a > 0 and b ∈ R):

1. Normal distribution: aδQ(Y; λ) + aγ + b ∼ N(b, a2).
2. Log-normal distribution: exp[aδQ(Y; λ) + aγ + b] ∼ log[N(b, a2)].
3. Folded normal distribution: |aδQ(Y; λ) + aγ + b| ∼ N f (b, a2).
4. χ distribution with one degree of freedom (df): |aδQ(Y; λ) + aγ|/a ∼ χ1.
5. Noncentral χ2 distribution: [aδ Q(Y; λ) + aγ + b]2/a2 ∼ χ2

1(b
2/a2).

6. Lévy distribution: [aδQ(Y; λ) + aγ]−2 ∼ Levy(0, a−2).

Proof. The proof of this proposition follows by using well-known properties of the normal
distribution with Equation (1). Hence, details are omitted.

Proposition 5.
1. χ2 distribution with n df: If Yk ∼ Normal-GEV(γk, δk, λk), k = 1, . . . , n, are independent

rvs, then:

[δ1Q(Y1; λ1) + γ1]
2 + · · ·+ [δnQ(Yn; λn) + γn]

2 ∼ χ2
n.

2. Student t-distribution with n− 1 df: If Yk ∼ Normal-GEV(γk, δk, λk), k = 1, . . . , n, are
independent rvs, then:

X√
1

n(n−1) [(δ1Q(Y1; λ1) + γ1 − X)2 + · · ·+ (δnQ(Yn; λn) + γn − X)2]
∼ tn−1,

where X = {[δ1Q(Y1; λ1) + · · ·+ δnQ(Yn; λn)] + (γ1 + · · ·+ γn)}/n.
3. F-distribution with (n, m) df: If Yk ∼ Normal-GEV(γk, δk, λk), k = 1, . . . , n, Y′j ∼

Normal-GEV(γ′j, δ′j, λ′j), j = 1, . . . , m, are independent rvs, then:

{[δ1Q(Y1; λ1) + γ1]
2 + · · ·+ [δnQ(Yn; λn) + γn]2}/n

{[δ′1Q(Y′1; λ′1) + γ′1]
2 + · · ·+ [δ′mQ(Y′m; λ′m) + γ′m]2}/m

∼ Fn,m.

Proof. The proof follows by combining known properties of the normal distribution with
Equation (1).
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2.3. The New Model as a Limit Distribution

Let X be the sample mean of n samples drawn from a population with mean µ and
standard deviation σ ∈ (0, ∞). The central limit theorem leads to the well-known result:

X− µ

σ/
√

n
D−→ Z ∼ N(0, 1),

where “ D−→” denotes convergence in the distribution. Let Tγ,δ,λ be the transformation
defined in Proposition 2. Since T−1

γ,δ,λ is a continuous map, by applying the continuous
mapping theorem, we have:

T−1
γ,δ,λ

(
X− µ

σ/
√

n

)
D−→ Y := T−1

γ,δ,λ(Z).

From Equation (1), Y = T−1
γ,δ,λ(Z) ∼ Normal-GEV(γ, δ, λ), where T−1

γ,δ,λ(z) = G((z−
γ)/δ; λ) and G(·) is the GEV cdf given in (5).

Then, for λ 6= 0:

exp

−(1 +
λ

δ

(
X− µ

σ/
√

n
− γ

))−1/λ
 D−→ Y ∼ Normal-GEV(γ, δ, λ);

and, for λ = 0,

exp

[
−exp

(
−1

δ

(
X− µ

σ/
√

n
− γ

))]
D−→ Y ∼ Normal-GEV(γ, δ, 0).

2.4. Moments, Quantile and Other Measures

Proposition 6. The rth real moment of Y ∼ Normal-GEV(γ, δ, λ) is (whenever it makes sense):

E[Yr] = Mϕλ(Z)(r), Z ∼ N(0, 1), (14)

where,

ϕλ(z) =

−(1−
λγ
δ + λ

δ z)−1/λ, if λ 6= 0;

− exp( γ−z
δ ), if λ = 0,

and MX(·) is the generating function of X. For example, for λ = −1, E[Yr] = exp( λγ
δ + r2λ2

2δ2 − 1).

Proof. The proof is immediate since Y follows Equation (1) with G(·) given in (5).

The moments of Y are finite since its support is limited, and the integral in (14) can
be numerically computed via the software R, Mathematica, and Maple, among others.
Specifically, the mean and variance are calculated using the integrate function of the R
software. This approximation is based on the adaptive quadrature of functions of one
variable over a finite interval; for more details, see Piessens et al. [18].

Table 1 reports the mean and variance of Y for some parameters obtained numerically
using the integrate function of the R software. We note in the second and third columns
that the mean and variance do not change for different values of λ. However, there is
some variation of the variance for different values of γ with the other parameters fixed. So,
the parameter γ is responsible for the location of the model and the parameter δ for the
dispersion.



Mathematics 2022, 10, 3198 8 of 17

Table 1. Mean and variance of the Normal-GEV distribution.

Parameter Mean Variance Parameter Mean Variance Parameter Mean Variance

λ = 0.5 λ = 0.1 λ = 0.5
γ = 0.2 0.3212 0.0279 γ = 2 0.0921 0.0100 γ = 0.2 0.3047 0.0622
δ = 2 δ = 2 δ = 1

λ = 0.1 λ = 0.1 λ = 0.5
γ = 0.2 0.3341 0.0266 γ = 1 0.2105 0.0213 γ = 0.2 0.3212 0.0279
δ = 2 δ = 2 δ = 2

λ = 0 λ = 0.1 λ = 0.5
γ = 0.2 0.3373 0.0265 γ = 0.5 0.2856 0.0254 γ = 0.2 0.3359 0.0144
δ = 2 δ = 2 δ = 3

λ = −0.2 λ = 0.1 λ = 0.5
γ = 0.2 0.3437 0.0267 γ = 0.2 0.3341 0.0266 γ = 0.2 0.3532 0.0038
δ = 2 δ = 2 δ = 6

λ = −0.5 λ = 0.1 λ = 0.5
γ = 0.2 0.3538 0.0281 γ = 0 0.3666 0.0269 γ = 0.2 0.3573 0.0021
δ = 2 δ = 2 δ = 8

Proposition 7. Let Y ∼ Normal-GEV(γ, δ, λ). Then, the qth quantile of Y is:

yq =


exp

{
−[1 + λ

δ (xq − γ)]−
1
λ

}
, λ 6= 0;

exp
{
− exp

[
−( xq−γ

δ )
]}

, λ = 0,

where xq is the qth standard normal quantile (for 0 < q < 1).

Proof. The proof is immediate and then omitted.

The median ν of the Normal-GEV distribution follows from Proposition 7:

ν =


exp

{
−
(

1 + λ
δ (−γ)

)− 1
λ

}
, λ 6= 0;

exp
{
−exp

(
−γ
δ

)}
, λ = 0;

(15)

where x0.5 is the median of the standard normal distribution. Furthermore, from Proposi-
tion 7, the random values for Y can be easily generated.

Further, the Bowley’s skewness of Y is:

B =
y0.75 + y0.25 − 2ν

y0.75 − y0.25
,

where y0.25, ν and y0.75 are the quantile values.
Figure 4 displays the skewness of Y for some parameters, which indicates that the

distribution is symmetric when λ −→ 0 and γ −→ 0. Thus, the parameters λ and γ govern
the skewness of Y.
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Figure 4. The skewness of Y. (a) δ = 2, γ = 0.5, (b) δ = 2, γ = 0.2, (c) δ = 4, γ = 0, (d) δ = 2,
γ = −0.2.

3. Bayesian Inference for the Normal-GEV Regression

The Normal-GEV median can be expressed from (15) as:

γ = −δ Q(ν; λ),

where Q(y; λ) is given by (6). Therefore, it has a simple form to construct a regression
model. In this context, we obtain a reparameterized density of Y by replacing the above
expression in Equation (2),

f (y; λ, ν, δ) =
δ φ(δ [Q(y; λ)−Q(ν; λ)])

y[−log(y)]λ+1 , y ∈ (0, 1), (16)

where λ ∈ R, ν ∈ (0, 1), and δ > 0 works as a dispersion parameter.
Let y = (y1, . . . , yn)> be n observations from Yi ∼ Normal-GEV(λ, νi, δi), where two

systematic components are constructed for the median νi and dispersion δi. The Normal-
GEV regression model is defined by (16) and the systematic components:

η1i = h1(νi) = w>i β and η2i = h2(δi) = z>i τ,

where wi = (w1i, . . . , wpi)
> and zi = (z1i, . . . , zqi)

> are vectors of covariates, β ∈ Rp,
τ ∈ Rq are vectors of unknown coefficients (p + q < n), and h1 : (0, 1) −→ R and
h2 : (0, ∞) −→ R are strictly monotonic and twice differentiable link functions. There are
several possible choice for the link functions h1 and h2. For example, some useful link
functions for the median are: logit h1(ν) = log

(
ν

1−ν

)
; probit h1(ν) = Φ−1(ν), where Φ−1(·)

is the standard normal quantile function; complementary log–logh1(ν) = log[−log(1− ν)];
log–log h1(ν) = −log[−log(ν)]; and Cauchy h1(ψ) = tan[π(ψ− 0.5)]. Some possible
choice dispersion link are: logarithmic h2(δ) = log(δ); square root h2(δ) =

√
δ; identity

h2(δ) = δ (with δ > 0); among others. The relationship between ν and β and δi and τ is
equivalent to a canonical link for νi ( location parameter) and δi (dispersion parameter) in
setting generalized linear model.
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Further, let W = (w1, . . . , wn)> and Z = (z1, . . . , zn)> be matrices of full ranks p
and q, respectively. The likelihood function for the parameters given the observed data
D = (y, W , Z) has the form:

L(λ, β, τ|D) =
n

∏
i=1

δi φ(δi[Q(yi; λ)−Q(νi; λ)])

[
n

∏
i=1

yi

]−1[ n

∏
i=1

(−log(yi))
λ+1

]−1

. (17)

Maximizing (17) provides the maximum likelihood estimates (MLEs) of the parameters.
However, we consider the Bayesian method with the common proper prior distributions:

β j ∼ Nl(0, 100), j = 1, . . . , p, τj ∼ N(0, 100), j = 1, . . . q, and λ ∼ N(0, 1), (18)

where β, τ, and λ are assumed independent. Combining (17) and (18), the joint posterior
density for ϑ = (λ, β, τ) ∈ Rp+q+1 reduces to:

π(ϑ|D) ∝
n

∏
i=1

δi φ(δi[Q(yi; λ)−Q(νi; λ)])

[
n

∏
i=1

(−log(yi))
λ+1

]−1

π(λ)π(β)π(τ).

The Metropolis–Hastings algorithm consists of the steps:

(1) Initialize from trial ϑ(0) and set j = 0;
(2) Construct the transitional kernel K(ϑ′, ϑj) = Np+q+1

(
ϑj, Σ̃

)
to generate a new point

ϑ′, where Σ̃ is evaluated at ϑj;
(3) Update ϑ(j) to ϑ(j+1) = ϑ′ with probability pj = min{1, π(ϑ′|D)/π(ϑ(j)|D)}, or set

ϑ(j) with probability 1− pj;
(4) Steps (2) and (3) are repeated until the process becomes stationary.

The script can be obtained from the authors upon request. For more details on the
Metropolis–Hastings algorithm, we refer to Chib et al. [19].

4. Simulation Study

We determine the accuracy of the Bayesian estimates in the new regression model.
One thousand samples of sizes n = 50, 100, 200, and 400 are generated from yi ∼ Normal−
VEG(λ, νi, δi) under the systematic components hi(νi) = log( νi

1−νi
) = β0 + β1wi and

h2(δi) = log δi = τ0 + τ1wi, and λ = −0.4, 0.4. The covariate wi is produced from the
uniform U(0, 1) distribution with β0 = −3, β1 = −2, τ0 = 1, and τ1 = 1.

We obtain the posterior summaries and 95% highest probability density (HPD) in-
tervals of the parameters for each trial. We generate 25,000 MCMC posterior samples for
the parameters, from which 5000 observations are discarded to eliminate the effect of the
initial values. To avoid correlation between the generates values, we took a spacing of size
5, leading to samples of size 2000. Therefore, the final sample has size 2000 to record the
convergence of the Gibbs samples [20]. For each configuration, we perform 1000 replicates
to determine from the estimates: the average (MC mean), standard deviation (SD), mean
root square error (MC RMSE), and coverage probability (CP).

Table 2 reports the simulations results, which reveal that the RMSEs decay when n
increases (as expected), and the coverage probabilities approximate the nominal level.



Mathematics 2022, 10, 3198 11 of 17

Table 2. Simulation results of the Normal-GEV regression model from 1000 trials.

λ = −0.4 λ = 0.4
n Parameter MC Mean SD Bias MC RMSE CP MC Mean SD Bias MC RMSE CP

λ −0.368 0.820 0.032 0.821 0.983 0.345 0.292 −0.055 0.297 0.961
β0 −3.008 0.190 −0.008 0.190 0.935 −3.140 0.545 −0.140 0.562 0.938

50 β1 −1.990 0.272 0.010 0.272 0.945 −1.899 0.826 0.101 0.832 0.947
τ0 1.032 0.953 0.032 0.953 0.980 0.942 0.417 −0.059 0.421 0.959
τ1 1.030 0.558 0.030 0.558 0.965 0.966 0.408 −0.034 0.409 0.952

λ −0.36 0.575 0.040 0.576 0.969 0.370 0.206 −0.031 0.208 0.954
β0 −3.00 0.131 0.004 0.131 0.940 −3.057 0.366 −0.057 0.370 0.943

100 β1 −2.00 0.194 −0.005 0.194 0.936 −1.969 0.583 0.031 0.583 0.939
τ0 1.05 0.672 0.049 0.673 0.953 0.969 0.292 −0.031 0.294 0.945
τ1 1.01 0.391 0.015 0.391 0.955 0.981 0.283 −0.019 0.283 0.932

λ −0.355 0.388 0.045 0.391 0.963 0.383 0.133 −0.017 0.134 0.953
β0 −3.002 0.090 −0.003 0.090 0.944 −3.031 0.255 −0.031 0.256 0.944

200 β1 −1.996 0.131 0.004 0.131 0.941 −1.986 0.390 0.014 0.390 0.949
τ0 1.047 0.450 0.047 0.452 0.966 0.980 0.187 −0.020 0.188 0.965
τ1 1.022 0.263 0.022 0.264 0.960 0.987 0.192 −0.013 0.192 0.950

λ −0.394 0.289 0.006 0.289 0.939 0.388 0.101 −0.012 0.101 0.941
β0 −3.004 0.067 −0.004 0.067 0.930 −3.022 0.177 −0.023 0.178 0.949

400 β1 −1.995 0.095 0.005 0.095 0.943 −1.983 0.271 0.017 0.271 0.955
τ0 1.008 0.337 0.008 0.337 0.938 0.981 0.142 −0.019 0.143 0.939
τ1 1.000 0.189 0.000 0.189 0.945 1.003 0.129 0.003 0.129 0.952

5. Application: Colorectal Cancer Data

We analyze data on patients with colorectal cancer [21] from 50 American States, where
the mortality rate is the response variable. We consider n = 220 observations after deleting
states with incomplete data. The variables below were collected:

• yi: mortality rate (i = 1, . . . , 220);
• x1i: sex (0 = man, 1 = woman);
• x2i: race (non-Hispanic white, non-Hispanic black, Hispanic).

Figure 5 displays boxplots of mortality rate by sex (left panel) and race (right panel).
They indicate that it is different for men and women, and Hispanic patients have a lesser
mortality rate than the other patients.
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Figure 5. Boxplots of the mortality rates by sex (left panel) and race (right panel).



Mathematics 2022, 10, 3198 12 of 17

We fit the regression mode described in Section 3 to these data with all covariates on
the median of the mortality rate (ν), and dispersion parameter (δ) with the link functions:
logistic, probit, complement log–log for the median, and logarithmic for the dispersion, i.e.,

h1(νi) = β0 + β1x1i + β21 x21i + β22 x22i, and

h2(νi) = log(δi) = τ0 + τ1x1i + τ21 x21i + τ22 x22i,

where the race covariate (x2) requires two dummy variables:

x21i =

{
1, if non-hispanic white;
0, otherwise,

and x22i =

{
1, if non-hispanic black;
0, otherwise.

We consider 250,000 MCMC posterior samples from which 50,000 were excluded to
eliminate the effect of the initial values. The autocorrelations of theses sampled values are
reduced by taking a spacing of size five, yielding a final sample of size 4000. The trace plots
for parameters of the new regression model with complementary log–log link are reported
in Figure 6, thus indicating convergence of the chains [20].
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Figure 6. Trace plots for the parameters of the GEV-CLL regression model for colon rectal data.

For model comparison, we consider the deviance Information criterion (DIC [22]), the
expected Akaike information criterion (EAIC, [23]), the expected Bayesian (or Schwarz)
information criterion (EBIC, [24]), and the log pseudo marginal likelihood (LPML [25]).
The last criteria is the one derived from the Conditional Predictive Ordinate (CPO) [26].
The Monte Carlo estimates of the DIC, EAIC, EBIC, and LPML criteria in Table 3 confirm
that the proposed regression with complementary log–log link (com-log-log) (short Normal-
GEV-CLL) is the best model.
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Table 3. Some criteria for Normal-GEV regression models.

Criteria

Link Function DIC EAIC EBIC LPML

Logistic −995.926 −986.771 −956.228 497.039
Probit −993.660 −984.603 −954.061 496.038
Cauchy −995.063 −985.563 −955.020 496.579
Com−log−log −996.674 −987.814 −957.271 497.283
Log−Log −991.124 −981.603 −951.060 494.889

The Bayesian estimates under quadratic and absolute losses of the parameters of the
Normal-GEV-CLL and Johnson’s SB regression models and the 95% HPD intervals are
reported in Table 4. All covariates are statistically significant at the significance level of
5% for all models. Figure 7 (left panel) displays the marginal posterior density of λ in the
Normal-GEV-CLL regression model, which is symmetric. Table 4 reveals that the posterior
mean of λ is 1.088, and a 95% HPD interval is (0.0110, 2.103). We fit the GJS-Student-t
regression model [12] with four degrees of freedom and log–log link to the current data.
Table 5 reports the Monte Carlo estimates of DIC, EAIC, EBIC, and LPML for Jhonson’s
SB and GJS-Student-t regression models. They indicate that the second regression is better
than the first for these data, but it does not provide a better fit than the Normal-GEV-CLL
regression model. The quantile–quantile (QQ) plot of the posterior normalized randomized
quantile residuals for the last regression in Figure 7 (right panel) proves an acceptable
fit [27,28].

Table 4. Estimates and 95% HPD intervals for the Johnson’s SB and Normal–GEV regression models
with com-log-log link function.

Normal-GVEV Johnson’s SB

Parameter Mean Median HPD (95%) Interval Mean Median HPD (95%) Interval

β0 −1.879 −1.877 (−1.966, −1.796) −1.905 −1.906 (−1.993, −1.826)
β1 −0.398 −0.397 (−0.444, −0.363) −0.391 −0.391 (−0.430, −0.348)
β21 0.343 0.342 ( 0.265, 0.430 ) 0.359 0.361 (0.277, 0.440)
β22 0.797 0.795 (0.716, 0.894) 0.801 0.802 (0.713, 0.888)
τ0 2.641 2.644 (1.906, 3.352) 1.045 1.051 (0.810, 1.266)
τ1 0.671 0.674 (0.376, 0.968) 0.336 0.339 (0.123, 0.513)
τ21 0.545 0.544 (0.225, 0.846) 0.846 0.842 ( 0.596, 1.099)
τ22 0.545 0.544 (0.225, 0.846) 0.846 0.842 (0.596, 1.099)
λ 1.088 1.088 (0.011, 2.103)
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Figure 7. Marginal posterior density for λ (left panel) and QQ plot of the posterior normalized
randomized quantile residuals (right panel) for the Normal-GEV-CLL regression model.
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Table 5. Monte Carlo estimates of DIC, EAIC, EBIC, and LPML for Jhonson’s SB and GJS-Student-t
regression models.

Criteria

Model DIC EAIC EBIC LPML

GJS-t Student −984.764 −976.786 −949.637 492.665
Jhonson’s −986.343 −978.375 −951.226 491.750

We consider a Bayesian global influence methodology to identify the presence of
outliers and/or influential observations under the general divergence measure [29]. Let
Dψ(π, π(−i)) be the ψ-divergence between π and π(−i), where π denotes the posterior
distribution of ϑ for the full dataset , and π(−i) the posterior distribution of ϑ without the
ith observation, namely:

Dψ(π, π(−i)) =
∫

ψ

(
π(ϑ|D(−i))

π(ϑ|D)

)
π(ϑ|D) dϑ = Eϑ|D

[
ψ

(
CPOi

f (yi; ϑ)

)]
,

where ψ is a convex function with ψ(1) = 0. Different choices of ψ are addressed by Dey
and Birmiwal [30] and Pardo [31]. Here, ψ(z) = − log(z) defines the Kullback–Leibler
(K-L) divergence, ψ(z) = (z− 1) log(z) gives the J-distance, ψ(z) = 0.5|z− 1| provides L1
norm, and ψ(z) = z(1/z− 1)2 yields the χ2-square divergence. The divergence measure to
verify whether a small subset of observations from the full data is influential or not follows
the criterion by Peng and Dey [29] and Weiss [32]; see also Cancho et al. [15,33,34].

We calculate the Monte Carlo estimates of the divergence measures K-L, J, L1, and χ2

for the posterior distribution of the parameters of the Normal-GEV-CLL regression models
to detect possible influential points.

They are plotted in Figure 8 and identify the cases 39, 54, and 122 as possible influential
observations in the posterior distribution.
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Figure 8. Index plot of ψ-divergence measures.

Table 6 presents subjects having large K-L, J, L1, and χ2.
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Table 6. ψ-divergence measures for the Normal-GEV-CLL regression model.

Case Mortality Rate Sex Race State K-L J L1 χ2

39 0.11 Men non-Hispanic white Dist-Columbia 1.081 2.422 0.563 5.004
54 0.05 Women Hispanic Georgia 0.449 1.057 0.392 1.193

122 0.29 Women non-Hispanic black Nebraska 0.769 2.301 0.575 2.861

For some cases, we refit the regression model to determine the impact of these ob-
servations on the posterior distribution of the parameters [15]. We eliminate each case
individually and then two and three cases. The relative change (RC) of each estimate is
RCϑj = (ϑ̂j − ϑ̂j(I))/ϑ̂j × 100%, where ϑ̂j(I) is the posterior mean of θj (for j = 1, . . . , 9)
when the set I of observations is removed.

Table 7 reports the RCs after removing some observations, and the lower (L) and upper
(U) limits of the 95% HPD intervals of the new estimates. In general, the significance of the
parameter estimates does not change after removing set I at the level of 5%.

Table 7. RCs (in %) and the L and U limits of the 95% HPD intervals after removing some cases.

Dropped λ β0 β1 β21 β22 τ0 τ1 τ21 τ22

none Mean 1.088 −1.879 −0.398 0.343 0.797 2.641 0.671 0.545 −0.424
L 0.011 −1.966 −0.444 0.265 0.716 1.906 0.376 0.225 −0.951
U 2.103 −1.796 −0.363 0.430 0.894 3.352 0.968 0.846 0.101

{39} RC −39.0 −0.0 0.9 0.9 −0.3 −9.7 −21.4 25.2 −44.0
L −0.391 −1.960 −0.439 0.266 0.704 1.609 0.217 0.341 −0.744
U 1.822 −1.797 −0.364 0.425 0.879 3.135 0.819 0.974 0.309

{54} RC −35.8 0.1 0.8 1.5 −0.1 −8.6 −20.7 22.4 −41.5
L −0.343 −1.964 −0.437 0.261 0.715 1.751 0.232 0.382 −0.777
U 1.763 −1.802 −0.363 0.423 0.882 3.196 0.828 0.998 0.225

{122} RC 23.3 −0.2 1.2 0.0 −1.4 5.2 17.2 −7.5 7.3
L 0.305 −1.961 −0.442 0.260 0.692 2.040 0.475 0.195 −0.950
U 2.324 −1.798 −0.363 0.420 0.867 3.435 1.059 0.801 0.050

{39,54} RC −50.7 −0.7 0.5 −3.2 −2.4 −10.3 −20.6 13.9 −37.8
L −0.528 −1.938 −0.436 0.251 0.693 1.693 0.262 0.333 −0.777
U 1.602 −1.790 −0.363 0.402 0.859 3.179 0.835 0.929 0.243

{39,122} RC −17.0 −0.4 2.1 0.1 −1.8 −4.7 −5.2 17.1 −35.6
L −0.277 −1.955 −0.444 0.268 0.700 1.779 0.328 0.321 −0.807
U 1.927 −1.794 −0.370 0.426 0.869 3.253 0.924 0.937 0.202

{54,122} RC 12.1 −1.1 0.8 −5.6 −4.0 4.4 16.9 −17.5 11.8
L 0.246 −1.933 −0.439 0.248 0.686 2.077 0.492 0.149 −0.978
U 2.201 −1.789 −0.359 0.388 0.842 3.449 1.052 0.734 −0.034

{39,54,122} RC −29.7 −1.0 1.8 −3.7 −3.6 −5.5 −5.6 4.7 −31.0
L −0.388 −1.930 −0.444 0.261 0.694 1.782 0.338 0.270 −0.830
U 1.848 −1.787 −0.370 0.402 0.846 3.323 0.947 0.883 0.223

We estimate the median of the mortality rate for eight patients A, B, C, D, E, and F with
specified characteristics in Table 8. These numbers refer to the Bayes estimates under the
quadratic and absolute loss functions and the 95% HPD intervals for the median mortality.
For example, the median mortality rates are 0.147 and 0.276 for patient A of gender male
and race Hispanic and patient E of gender male and race Hispanic, respectively. This
difference can be seen in Figure 9, and in the posterior distribution of the median mortality
rate of the other patients.
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Figure 9. Posterior density of median of mortality rate for six hypothetical patients.

Table 8. Mortality rate estimates and the 95% HPD intervals for six colorectal cancer patients.

Mortality Rate

Patient Sex Race Mean Median HPD (95%) Interval

A Men Hispanic 0.142 0.142 (0.131, 0.153)
B Women Hispanic 0.098 0.098 (0.090, 0.105)
C Men non-Hispanic white 0.194 0.194 (0.188, 0.200)
D Women non-Hispanic white 0.135 0.135 (0.131, 0.138)
E Men non-Hispanic black 0.287 0.287 (0.275, 0.299)
F Women non-Hispanic black 0.204 0.204 (0.195, 0.212)

6. Conclusions

We provided some mathematical properties of the new normal-generalized extreme
value (Normal-GEV) distribution, and proposed a new and flexible regression model for
proportional variables. This regression model is an alternative to the well-known beta
regression model [2]. Some simulation studies and Bayesian procedures were developed to
analyze a real dataset and they showed that the proposed regression is very competitive
and useful for inferential and diagnostic problems involving bounded response variables
and covariate variables.
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