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Abstract: In this paper, we study the generalized Johnson distributions’ class and its applications in
finance and risk theory. The recent literature on Johnson distributions displays a better gooodness of
fitting for data coming from financial markets, such as portfolio returns. However, a gereral question
in risk theory and finance is the following: Which class of distributions is more appropriate in order
to determine the behaviour of data coming from financial markets and insurance claims? Another
question is the following one: Is ther any class of distributions that is appropriate for calculations
related to any kind of risk faced by financial isntitutions and insurance companies? The answer
proposed to these questions is the use of generalized Johnson’s distributions. The parameters of
such distributions are estimated by the order statistics of a single or more samples. Risk functionals
represent a unified approach comprising every kind of risk metric. Risk functionals include value-at-
risk and expected shortfall, coherent risk measures, and endpoints and thresholds. We deduce that
the risk functionals sastisfy convexity—like properties with respect to finitely-mixed distributions.
We also prove in detail that the empirical distribution is a reasonable way for the estimation of the
above risk functionals. In the Appendix, we provide two numerical examples for fitting samples of
portfolio returns under the Johnson’s transformation.

Keywords: Johnson distributions; random variables’ transformations; sample-fitting; tail properties;
risk functionals; risk measures
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1. Introduction: Generalized Johnson Distributions and Their Use

In the present paper, we may consider (Ω,F ,P) to be a non-atomic probability
space. A random variable is some element of L0(Ω,F ,P), which is the vector space
of F -measurable real-valued functions, being defined on Ω. The portfolio returns’ behavior
is an initial motivation for the introduction of the class of generalized Johnson’s distribu-
tions. Such a motivation appears in the Appendix A. Specifically, the Johnson distribution
with respect to the normal distribution may be used for this aim. As it is well-known, the
Johnson transformation for Y with respect to the normal distribution W is as follows:

W :=
Z− µ

σ
= log(

Y− ξ

ξ + λ−Y
),

where Z∼N(µ, σ2) and ξ, λ > 0.
There are two seminal papers for the usual Johnson’s distributions, being [1,2]. The

initial motivation for this section is that many data sets obtained from financial markets
may be not well-fitted on some well-known distributions. Random variables that determine
the behaviour of financial markets are usually called financial risk. variables. Under the
Johnson transformation, these data-sets are well-fitted on a well-known distribution. In
the Appendix A, we provide two examples of this. In [3], authors propose such a non-
parametric approach. The goodness-of-fit testing we propose here is described below.
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We also prove that the generalized Johnson’s distributions and the maxima domains of
attraction have the same tail behaviour. The maxima domains of attraction are usually used
in order to estimate the ruin probability in life and non-life insurance. If W∼G, such that
the moments E(|W|),E(W2) are finite, then the distribution of Y is called the generalized
Johnson’s distribution with respect to W. G is the cumulative distribution function of W.
We may notice that the class of Cauchy distributions does not admit such a transformation
since mean and variance are not well-defined in this case. Specifically, we have:

X :=
W −E(W)

σ(W)
= log(

Y− ξ

ξ + λ−Y
),

where ξ, λ > 0 and σ(W) is the standard deviation of W. A random variable S : Ω→ R is a
continuous random variable, if and only if the cardinal number of the values of X is equal
to the cardinal number of R. The cumulative distribution function of Y is denoted by FY.
X corresponds to the normalization of W. W may not be normalized, and this is the case
with the examples in the Appendix A at the end of the paper. Risk functionals include
any real-valued function, whose domain is the cointinous distributions. For example,
value at risk, expected shortfall, thresholds, and endpoints are examples of risk functionals.
The endpoint and the threshold of a distribution are quite important in actuarial science
because they estimate the size of a single large claim. The present paper may be compared
to Ref. [4]. In the present paper, a specified distribution class is not considered.
Ref. [4] also refers to the introduction of Johnson distributions, in order to achieve the
“goodness-of-fit” for data coming from financial markets. The class of generalized John-
son distributions in the present paper is a non-parametric approach to this point. This
is true since we require that first and second moments of G be finite. This assumption
is required for the scope of “normalization” for G. A four-moments’ treatment estima-
tion appears in [5,6] as well. In [7], the authors refer to the generalized Johnson distri-
bution with respect to a normal distribution. Ref. [7] is important, since the authors
apply the above distribution in credit risk modeling. Additionally, in [7] the assump-
tion of the fact that both E(|W|),E(W2) are not equal to infinity arises from the fact
that W is normally distributed. This assumption is a little restrictive since in actuarial
science and finance the distributions of claims and returns are not always normally dis-
tributed. Throughout the present paper, we assume that these moments are finite. Since
in [7] is devoted to credit risk modeling, X may be a linear combination of other random
variables, namely, X = ∑I

i=1 aiCi, i = 1, 2, . . . , I. Ci may be either the variables used by
credit rating institutions, or the more significant principal components arising form them.
This approach is under examination due to the fact that some of these variables may be
caterogical. Credit risk is actually the risk arising from the inablity of either a state or
some other institution to pay the amount of money received by another financial institu-
tion. Finally, we have to mention that the seminal paper about coherent risk measures
is [8]. In [9], the authors provide a complete review of every expected shortfall estimation
method. A precise approach on estimating expected shortfall by using re-sampling methods
arises in [10]. The convergence results arising in the present paper establish an estimation
practice that is non-parametric, in the sense that is “distribution-free”. For a specified
error bound ε > 0, the size of the sample needed for the estimation of any risk functional
is determined from the empirical cumulative distribution function. Risk management
practice usually refers to a variety of risk ‘components’. The notion of risk functionals
provides a unified approach of these risk components and their estimation by the notion
of convergence as it arises in real analysis, together with the “convexity”-like properties,
under finitely-mixed distributions. These properties are true for finitely-mixed generalized
Johnson distributions since the corresponding random variables’ values are positive. Some
recent literature related to thresholds and endpoints of finitely -mixed Lognormal Pereto
distributions in [11–13]. Obviously, the risk functionals may be used in study of other
sorts of risk, like liquidity risk and operational risk, which may included in the class of
risk factors. The risk factors correspond to a ’holistic’ approach, including any kind of
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risk being faced by enterprises, banks, and insurance companny. The ’loading weights’
may be updated, relying, for example, on historical data. The distribution of such a risk
factor corresponds to a time-dependent risk fuctional, which is under use for a specific kind
of risk. This is the motivation for the use of finitely-mixed distributions and specifically
for their risk functionals, while this expert systems’ aproach in risk management issues
appears in [14–16]. The inequalities appearing in the last part of the section before the
section related to the empirical distribution function show that, in any case, risk functionals
mentioned here are very “close” to each other. Hence, for any risk factor, the same risk
functional may be used for the quantification of it.

2. Parameter Estimation

As it is mentioned above, Y = ξ+ξQ+λQ
Q+1 = ξ + λ Q

Q+1 = ξ + λR, where R = Q
Q+1 and

Y is Q = eX and X = W−E(W)
σ(W)

.
The parameters ξ and λ for a specific sample may be estimated by the order statistics

of a sample. Let us consider a sample of m observations: (Y1, Y2, . . . , Ym) and the corre-
sponding ordered sample: (Y(1), Y(2), . . . , Y(m)). We also consider some ε, δ ∈ R, such that
ξ1 = Y(m) + ε > 0 and λ1 = Y(1) + δ > 0, such that

Yj − ξ1 > 0,

and

λ1 + ξ1 −Yj > 0,

for any j = 1, 2, . . . , m. Then, we may use the well-known Anderson–Darling test,
see [17,18]. As we mentioned in the introduction, generalized Johnson distributions may be
used in order to achieve a better “goodness-of-fit” for data coming from financial markets.
We show it by a numerical example described at the Appendix A. After the references, we
included the corresponding tables. For the data processing, we used the Minitab Software.
In these examples, we suppose that ξ, λ take specific values. For this reason, we may call
the Johnson transformation any transformation of the form Y = ξ + λR, where ξ, λ are
non-negative real numbers and λ > 0. R = Q

Q+1 and Y is Q = eX , X = W−E(W)
σ(W)

, while the
cumulative distribution fuction of W is G. The “goodness-of-fit” results are quite similar
both in the cases of ξ = 0 and ξ > 0. In the first example of the Appendix A ξ = 0, while in
the second one ξ = 1. In both of the examples, we pose λ = 1.

3. Thresholds and Endpoints

Definition 1. A risk functional is any f : D → R, where D is the set of cumulative distribution
functions of continuous random variables.

Definition 2.
xF := inf{x ∈ R|F(x) < 1}.

If this infimum is a real number, then it is called F-threshold.

Lemma 1. For any continuous random variable whose support is a subset of positive real numbers,
xF is a real numeber.

Proof. If the support of F is a subset of the positive real numbers, then {x ∈ R+|F(x) < 1}
is a lower bounded subset of the real numbers. This set is non-empty. This is true since if
we suppose that for any x ∈ R+ F(x) ≥ 1, this implies that for any x ∈ R+, F(x) = 1. If
this is true, P(X ≤ x) = 1, for any x ∈ R+. This is true if X takes negative values, which is
a contradiction.
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Corollary 1. For any Y, whose distribution is some generalized Johnson’s Distribution, xFY is
well-defined.

Proof. Let us suppose that for any ε > 0, then FY(ε) = 0. This is a contradiction because it
implies that P(Y ≤ 0) = 1, namely, that P( ξ+ξQ+λQ

Q+1 ≤ 0) = 1.

Definition 3.
xE,F := inf{x ∈ R|F(x) = 1}.

If this infimum is real number, it is called F-endpoint.

The above definition of the F-endpoint appears in [19].
If the significance level a is equal to 1, we notice that xE,F = VaR1(F), according to the

above definition.
Both thresholds and endpoints are risk functionals, and they are related to value at risk

and expected shortfall. We recall the definition of value at risk VaRa, under a significance
level a ∈ (0, 1):

VaRa(X) = inf{t ∈ R|FX(t) ≤ a},

or more exactly

VaRa(FX) = inf{t ∈ R|FX(t) ≤ a}.

Expected shortfall ESa under a significance level a ∈ (0, 1) is a risk functional since
any random variable X ∈ L0(Ω,F ,P) corresponnds to the cumulative distribution function
FX of X. Hence, ESa(X) = ESa(FX).

Definition 4. A finitely-mixed distribution is a distribution whose cumulative distribution
function is F(x) = ∑k

i=1 qiFi(x), where qi > 0 and ∑k
i=1 qi = 1.

Theorem 1. If the support of Fi is a subset of the positive real numbers for any i = 1, 2, . . . , k„
then xF = ∑k

i=1 qixFi .

Proof. Since if xFi ≥ 0 for any i = 1, 2, . . . , k,

xF = inf{x ∈ R+|F(x) < 1} =

inf{x ∈ R+|
k

∑
i=1

qiFi(x) < 1} =

= inf{(
k

∑
i=1

qi)x ∈ R+|
k

∑
i=1

qiFi(x) < 1} =

=
k

∑
i=1

qi inf{x ∈ R+|Fi(x) < 1} =

=
k

∑
i=1

qixFi .

The above result refers to the threshold of finitely mixed distributions. We deduce the
equivalent result for the endpoint of finitely-mixed distributions:

Theorem 2. If the support of Fi is a subset of the positive real numbers for any i = 1, 2, . . . , k, then
xE,F = ∑k

i=1 qixE,Fi .
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Proof. Since if xE,Fi ≥ 0 for any i = 1, 2, . . . , k,

xE,F = sup{x ∈ R+|F(x) = 1} =

= sup{x ∈ R+|
k

∑
i=1

qiFi(x) = 1} =

= sup{(
k

∑
i=1

qi)x ∈ R+|
k

∑
i=1

qiFi(x) = 1} =

=
k

∑
i=1

qi sup{x ∈ R+|Fi(x) = 1} =

=
k

∑
i=1

qixE,Fi .

Theorem 3. If the support of Fi is a subset of the positive real numbers for any i = 1, 2, . . . , k, then
VaRa(F) = ∑k

i=1 qiVaRa(Fi) for any a ∈ (0, 1).

Proof. Since if VaRa(Fi) ≥ 0 for any i = 1, 2, . . . , k,

VaRa(F) = inf{x ∈ R+|F(x) ≤ a} =

inf{x ∈ R+|
k

∑
i=1

qiFi(x) ≤ a} =

= inf{(
k

∑
i=1

qi)x ∈ R+|
k

∑
i=1

qiFi(x) ≤
k

∑
i=1

qia} =

=
k

∑
i=1

qi inf{x ∈ R+|Fi(x) ≤ a} =

=
k

∑
i=1

qiVaRa(Fi).

Theorem 4. If the support of Fi is a subset of the positive real numbers for any i = 1, 2, . . . , k
and Fi are cumulative distribution functions of random variables lying in L1(Ω,F ,P), then
ESa(F) = ∑k

i=1 qiESa(Fi) for any a ∈ (0, 1).

Proof. From the above theorem, by using the relation ESa(Fi) = − 1
a
∫ a

0 VaRu(Fi)du, for
any i = 1, . . . , k.

The above results are also valid if Fi, i = 1, . . . , k are cumulative distribution functions
of generalized Johnson distributions since they actually take positive values.

Theorem 5. If the support of F is a subset of the positive real numbers, then xF ≤ VaRa(F), for
any a ∈ (0, 1).

Proof. The conclusion is a consequence of the properties of real numbers. {t ∈ R+|F(t) ≤ a}
is a subset of {t ∈ R+|F(t) < 1}, for any a ∈ (0, 1).
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Theorem 6. If the support of F is a subset of the positive real numbers and F is the cumulative
distribution functions of a random variables lying in L1(Ω,F ,P), then

ESa(F) ≥ −xF,

for any a ∈ (0, 1).

Proof. The conclusion is a consequence of the equality ESa(F) = − 1
a
∫ a

0 VaRu(F)du.

We may also appent to seminal literature about law-invariance of expected shortfall.
Such a reference is [20]. Another risk functional related to Orlicz spaces is the entropic
value at risk, which is established in [21].

Risk functionals are kinds of so-called risk factors. A linear combination of risk
functionals ∑d

j=1 aj f j, d ∈ N, aj ∈ R+, j = 1, . . . , d and f j, j == 1, . . . , d is a risk functional
defined on the same probability space mentioned initially. This probability measure
is related to the information obtained by anyone of these risk factors. As we may
notice, the set A + B = {c ∈ R+|c = a + b, a ∈ A, b ∈ B} if A, B are non-empty
subsets of positive real numbers, while tA = {c ∈ R+|a ∈ A} if t is also a positive
real number.

4. Approximation of Risk Functionals

In the previous section, we discussed the notion of risk functionals. A question
regarding risk functionals is how we may estimate them, using a specific sample. We
remind the defintition and the properties of empirical cumulative distribution. If we consider
a sample from the distribution of some continuous random variable X, which is denoted
by (X1, X2, . . . , Xn), the empirical distribution of it is defined as follows:

F̂n(t) =
1
n

n

∑
i=1

1{Xn≤t}.

The indicator function of the event A is denoted by 1A. The Glivenko–Cantelli theorem
is the following result, concerning an empirical distribution function:

lim
n→∞

‖F̂n(t)− F(t)‖∞ = 0.

Hence, the Glivenko–Cantelli theorem meaning is that the empirical distribution
function F̂n converges to the (cumulative) distribution function of the random variable
X, under the supremum norm. Hence, the above convergence is uniform, hence it is also
point-wise. The Glivenko–Cantelli theorem may be used for the approximation of both
F-threshold and F-endpoint. The Glivenko–Cantelli theorem is also true, if F is replaced by
the tail function F = 1− F. The empirical distribution function is replaced by the empirical
tail function F̂n = 1− F̂n. The natural number n ∈ N in the next definitions, and the results
denote the size of the sample, being used for the calculation of the empirical distribution’s
values. The Glivenko–Cantelli theorem is seminally established in [22,23]. There exist two
papers appeared under the same title and they were published in the same Journal in 1933.
The one was written by V. Glivenko and the other one was written by F.P. Cantelli.

Definition 5. xE,F̂n
= inf{t ∈ R|F̂n(t) = 1} is the F-empirical endpoint for any n ∈ N.

Definition 6. VaRa(F̂n) = inf{t ∈ R|F̂n(t) ≤ a} is the F-empirical value-at-risk, for any
a ∈ (0, 1) and any n ∈ N.

Definition 7. ESa(F̂n) = −1
a
∫ a

0 VaRu(F̂n)du is the F-empirical expected shortfall, for any
a ∈ (0, 1) and any n ∈ N.
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From the Glivenko–Cantelli theorem, we obtain the validity of the following propositions:

Proposition 1. xE,F̂n
→ xE,F.

Proof. The uniform convergence of the empirical distribution function implies the point-
wise convergence of it to the cumulative distribution function F. Moreover, xE,F̂n

are real
numbers for any n ∈ N.

Proposition 2. For any a ∈ (0, 1), VaRa(F̂n)→ VaRa(F).

Proof. The uniform convergence of the empirical distribution function implies the point-
wise convergence of it to the cumulative distribution function F. VaRa(F̂n) are real numbers
for any n ∈ N.

Proposition 3. For any a ∈ (0, 1), ESa(F̂n)→ ESa(F).

Proof. For the proof of the above proposition, we use the dominated convergence theorem,
with respect to the Lebesgue measure on the closed interval [0, 1] of the real numbers.

Definition 8. A risk measure ρ : L1(Ω,F ,P) → R, is law-invariant if X =d Y, implies
ρ(X) = ρ(Y). X =d Y means that FX = FY almost everywhere, with respect to the Lebesgue
measure on R.

Remark 1. A law-invariant risk measure is a risk functional, under the definition given in the
previous sections.

Proposition 4. For any law-invariant, coherent risk measure ρ : L1(Ω,F ,P) → R, ρ(F̂n
X) →

ρ(FX), for any X ∈ L1(Ω,F ,P). F̂n
X is the empirical distribution function of X, as it is defined above.

Proof. From the above proposition and [10], where any law-invariant coherent risk measure
ρ : L1(Ω,F ,P)→ R is a convex combination of expected shortfall risk measures. Hence,
the sequence of real numbers (ρ(F̂n

X), n ∈ N) is well-defined in this case. If ri > 0 and ESai

are such that ρ = ∑k
i=1 riESai , where ∑k

i=1 ri = 1 and ai ∈ (0, 1) for any i = 1, . . . , k. Then,
ρ(X) = ρ(FX) for any X ∈ L1(Ω,F ,P). ρ(F̂n

X) = ∑k
i=1 riESai (F̂n

X, where F = FX for any
n ∈ N.

Corollary 2. For any law invariant coherent risk measure ρ : L1(Ω,F ,P) → R and any X ∈
L1(Ω,F ,P), then ρ(F̂n

X)→ ρ(FX).

Proof. From the previous proposition and the propoerties of convergent real-valued
sequences.

The above results imply the ‘intuition’ that both value-at-risk and the expected shortfall
of the empirical distribution approximate both value-at-risk and expected shortfall for the
distribution of any continuous random variable. We notice that such considerations hold
for a random variable whose distribution is actually a generalized Johnson distribution,
especially if this lies in L1(Ω,F ,P).



Mathematics 2022, 10, 3200 8 of 12

5. Recommendations and Conclusions

Coming back to both of the initial questions. The first one is Which class of distribu-
tions is more appropriate in order to determine the behaviour of data coming from financial
markets and insurance claims. The second question is if there any class of distributions
that is appropriate for calculations related to any kind of risk faced by financial isntitutions
and insurance companies. We proposed that the class of Generalized Johnson Distributions
is the appropriate class for both of the above questions. We also propose the notion of
risk functional as a unified approach on law-invariant risk metrics. The main question for
further study is how to modify an algorithmic approach for the calculations’ part. Namely,
how is it possible for the risk management part of either a bank or an insurance company to
accept or to reject an internal model and coonsequently the whole of quantification of a risk
factor. Such an approach, where internal risk management, external risk management, and
enterprise risk management are the main risk factors for an enterprise having a positive
effect on any performance index of it, specifically appears in [15]. We point out that to
measure these factors’ values, the specific risk functionals may be changed or may lead to a
certain type of value similar to value-at-risk for some distribution of them. This separation
comprises three subsignificant factors: internal models are related to forecasting the default
risk, and external risk factors refer to the situation of the economy as a whole. By the word
‘economy’, we may understand either a branch of enterprise or a national economy lending
money to these enterprises. Enterprise risk management may be understood as a situation
of improving the balance sheet/accounting variables of an enterprise. Generalized Johnson
distribution may be useful for the quantification of these risk factors.

Author Contributions: All authors have equally contributed in the published version of the manu-
script’s formulation. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
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Appendix A

We present two examples for goodness-of-fit, in order to deduce that generalized
Johnson distributions are appropriate for this purpose. We obtained a portfolio of stocks
comming from the Athens’ Stock Exchange, consisting of the “closing-of-the-date-value”
per share for the stock of National Bank of Greece and the National Electricity Company
of Greece. The data refer to dates between 31 March 2020 and 20 January 2021. As a
return-per-date, we consider the portfolio value V(t+1)

V(t) . Since the portfolio weights are

θ1 = 2
3 and θ2 = 1

3 , the daily value of the portfolio is equal to

V(t) = θ1S1(t) + θ2S2(t),

where S1(t) is the closing-per-date value for one shere of the stock of National Bank of
Greece and S2(t) is the closing-per-date for one share of the stock of the National Electricity
Company of Greece. We tested the goodness-of-fit for the returns on the Exponential
Distribution. The goodness-of-fit test being used is the Anderson–Darling test. Both the
value of it and the corresponding probability plot appear after the References. We may
observe that the exponential distribution is not well-fitted on it. Note that the Johnson
transformation Y = Q

Q+1 , where Q = eX and X corresponds to the random variable of the

returns X, which corresponds to the sample V(t+1)
V(t) , for any t = 1, . . . , 200. We apply the

Anderson–Darling test on the data of coming from Y. As it appears from the corresponding
value of the test and the probability plot, the greatest part of the sample is well-fitted to
the normal distribution. The normal distribution arises as a consequence of the goodness-
of-fit testing. We also note that both distributions are non-heavy-tailed, and the support
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of the exponential distibrution is unbounded. The graphs for the goodness-of-fit are at
the end of the manuscript. We have to mention that Minitab Software was used for this
data processing.

Another example is the following one, whose corresponding probability plots and
Anderson–Darling test values appear at the last pages of the paper: we notice that the
Johnson transformation Y = 1 + Q

Q+1 , where Q = eX and X corresponds to the random

variable of the returns X, which corresponds to the sample V(t+1)
V(t) , for any t = 1, . . . , 300.

We notice that Y is one among the random variables arising from the corresponding
Johnson transformation. The portfolio of stocks comming from the Athens’ Stock Exchange
consisted of the “closing-of-the-date-value” per share for the stock of Lamda Real Estate
and the National Betting Company of Greece (OPAP). The data refer to dates between 8
August 2017 and 18 October 2018. As a return-per-date, we consider the portfolio value
V(t+1)

V(t) . Since the portfolio weights are θ1 = 1
4 and θ2 = 3

4 , the daily value of the portfolio is
equal to

V(t) = θ1S1(t) + θ2S2(t),

as well. As it is noticed through the corresponding probability plots and the associated
values of the Anderson–Darling test:

1. The sample of the returns’ variable X is ’marginally’ well-fitted on any normal
distribution.

2. The sample of the returns’ variable X is out-of-fit, with respect to the exponen-
tial distribution.

3. The sample of the Johnson transformation Y = 1 + Q
Q+1 , where Q = eX is well-fitted

on the logistic distribution. X is the random variable of the sample above, namely, the
sample of the returns’ variable.

Probability  Plots  fot  the Example 1 in the Appendix 
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Probability  Plots  fot  the Example 1 in the Appendix 
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