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Abstract: The Lie symmetry analysis for the study of a 1 + n fourth-order Schrödinger equation
inspired by the modification of the deformation algebra in the presence of a minimum length is
applied. Specifically, we perform a detailed classification for the scalar field potential function where
non-trivial Lie symmetries exist and simplify the Schrödinger equation. Then, a qualitative analysis
allows for the reduced ordinary differential equation to be analysed to understand the asymptotic
dynamics.
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1. Introduction

The Lie symmetry analysis is a systematic approach to the study of nonlinear differen-
tial equations [1,2]. The existence of a symmetry vector for a given differential equation
indicates the existence of invariant functions, which are then used to simplify the dif-
ferential equation and, when it is possible, determine exact or analytic solutions [3–13].
Moreover, symmetries can be used for the determination of conservation laws and also
identify equivalent dynamical systems [14–17]. Finally, the Lie symmetry analysis covers
a wide range of applications in all areas of applied mathematics. In this work, we are
interested in the symmetry classification of a higher-order differential equation.

Consider the fourth-order partial differential equations, known as the Schrödinger
equation

i
∂Ψ
∂t

+ α∆Ψ + γ∆2Ψ + V(Ψ) = 0, (1)

with γ 6= 0, ∆ the Laplace operator ∆ = 1√
|g|

∂
∂xµ

(√
|g|gµν

)
∂

∂xν , gµν is the metric tensor,

which describes the physical space. The fourth-order Schrödinger equation was introduced
in [18,19] in order to investigate the effects of the presence of small fourth-order disper-
sion terms in the propagation of laser beams in a bulk medium with Kerr nonlinearity.
For V(Ψ) = |Ψ|2pΨ, the stability of solitons was investigated by Karpman in [18]. It was
found that when gµν is the Euclidian manifold, then for p dim(g) < 4, the soliton solutions
are stable. Since then, the fourth-order Schrödinger equation has been the subject of study
in various articles in the literature (see, for instance, [20–27]). Indeed, the soliton instabilities
of the equation for V(Ψ) = |Ψ|2pΨ are related to nonlinear fibre optics and optical solutions
in gyrotropic media [28]. Moreover, optical and other soliton solitons have been constructed
with the use of Equation (1) to describe localised electromagnetic waves that spread in
nonlinear dispersive media [29]. In [29], the Ricatti–Bernoulli sub-ODE method and the
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modified Tanh-Coth method are applied for the derivation of solitons for Equation (1) and
V(Ψ) = V0

(
|Ψ|2p + ε|Ψ|4p

)
Ψ. For more physical applications and the relation of the free

parameters α, γ and p to physical phenomena, see reference [29]. Equation (1) has also
been used for the description of bright and grey/dark soliton-like solutions in the context
of Madelung’s fluid [30]. The orbital stability of standing wave solution in the context of
Hamiltonian systems was investigated in [31] by constructing a Lyapunov function. Finally,
the Cauchy problem for an inhomogeneous equation constructed by (1) was studied in [32].

Last but not least, we recall that for γ→ 0, the usual Schrödinger equation of quantum
mechanics is recovered.

However, Equation (1) also describes the modified Schrödinger equation for a particle
in the context of the Generalised Uncertainty Principle (GUP). Indeed, GUP can be used for
the construction and derivation of Equation (1).

GUP has its origin in the existence of a minimal length of the order of the Planck
length (lPL). The latter is a standard prediction of different quantum physics and gravity
approaches, that is, from string theory, noncommutative geometry, and others [33–36].
Specifically, the minimal length in Heisenberg’s Uncertainty Principle [37] is introduced.
For a review on GUP, we refer the reader to [38].

In the simplest case of quadratic GUP, the modified Heisenberg’s Uncertainty Principle
reads

∆Xµ∆Pν >
h̄
2
[δij(1 + βP2) + 2βPµPν]. (2)

Consequently, the deformed algebra follows [39,40],

[Xµ, Pν] = ih̄[δij(1− βP2)− 2βPµPν], (3)

where β is the parameter of deformation defined by β = β0/M2
Plc

2 = β0`
2
Pl/2h̄2, where

MPl is the Planck mass, `Pl (≈ 10−35 m) is the Planck length and MPlc2 (≈1.2 × 1019 GeV)
the Planck energy, such that β2 → 0. Thus, we can consider the coordinate representation
of the modified momentum operator Pµ = pµ(1 − βp2) [40], while keeping Xµ = xµ

undeformed. Thus, the time-independent Schrödinger equation reads(
gµνPµPν − (mc)2

)
Ψ = 0. (4)

That is,

− 2βh̄2∆2Ψ + ∆Ψ +
(mc

h̄

)2
Ψ = 0, (5)

assuming terms with β2 → 0. The fourth-order Equation (5) is the static version of (1) for
V(Ψ), which is a linear function. For some recent applications of GUP in physical theories,
see [41–45] and references therein.

In the following, we perform a complete classification of function V(Ψ) according
to the admitted Lie point symmetries of Equation (1). Such a classification scheme was
proposed in the previous century by Ovsiannikov, where the Lie point symmetries for the
nonlinear equation ut = ( f (u)ux)x were classified [46], leading to new interesting problems
in applied mathematics and physics [47–52]. Apart from the analysis of symmetries,
the concept of asymptotic solutions and boundary layers is essential in this context [53].

The plan of the paper is as follows. In Section 2, we present the basic properties and
definitions for the theory of Lie symmetries of differential equations, and we introduce the
concept of the boundary layer. In Section 3, we present our classification scheme for the Lie
point symmetries of the fourth-order Schrödinger equation. We present some applications
of the Lie point symmetries for the construction of similarity solutions in Section 4. Finally,
in Section 5, we summarise our results.
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2. Preliminaries

A differential equation may be considered as a function H = H(xi, uA, uA
,i , uA

,ij, . . . ) in

the space B = B(xi, uA, uA
,i , uA

,ij, . . . ), where xi are the independent variables, and uA are the

dependent variables. In our consideration for Equation (1) xi = (t, xµ) and uA(xi) = Φ
(

xi).
2.1. Lie Symmetry Vector

Consider now the infinitesimal transformation

x̄i = xi + εξ i(xk, uB) , (6)

ūA = ūA + εηA(xk, uB) , (7)

with the generator of the vector field

X = ξ i(xk, uB)∂xi + ηA(xk, uB)∂uA . (8)

The generator X of the infinitesimal transformation (6), (7) is a Lie point symmetry for
the function H if there exists a function λ such that the following condition holds [1,2]

X[N](H) = λH , mod H = 0, (9)

where
X[N] = X + ηA

[i]∂uA
i
+ ηA

[ij]∂uA
ij
+ · · ·+ ηA

[ij...jN ]∂uA
ij...jN

(10)

is the nth prolongation vector

ηA
[i] = ηA

,i + uB
,i ηA

,B − ξ
j
,iu

A
,j − uA

,i uB
,j ξ

j
,B (11)

with

ηA
[ij] = ηA

,ij + 2ηA
,B(iu

B
,j) − ξk

,iju
A
,k + ηA

,BCuB
,i uC

,j − 2ξk
,(i|B|u

B
j)u

A
,k

− ξk
,BCuB

,i uC
,j uA

,k + ηA
,BuB

,ij − 2ξk
,(ju

A
,i)k − ξk

,B

(
uA

,k uB
,ij + 2uB

(,ju
A
,i)k

)
, (12)

and in general
ηA
[ij...jN ] = Djn

(
ηA

ij...jn−1

)
− uA

ij...kDjN ξk. (13)

The existence of a Lie point symmetry in a given differential equation is essential for
simplifying the differential equation through the similarity transformations. Indeed, from
a specific Lie symmetry vector, one may define the following Lagrange system

dxi

ξ i =
duA

ηA =
duA

i
ηA
[i]

=
duA

ij

ηA
[ij]

= . . . (14)

whose solution provides the characteristic functions W [0]
(

xk, uA
)

, W [1]
(

xk, uA, uA
i

)
, etc.

These functions can be used to define the corresponding similarity transformation.

2.2. The Concept of a Boundary Layer

In the following, we briefly discuss the concept of boundary layers to investigate the
asymptotic behaviour of nonlinear differential equations, following the notation presented
in [53].

Assume the function ψε(τ) is defined on a domain D ⊂ Rn where ε is a small parameter.
Consider now that there exists a connected subset S ⊂ D with dimensions less or equal to
n, such that ψε(τ) has no regular expansion in each subset E ⊂ D with E ∩ S 6= ∅. Then,
a neighbourhood of S in D, with a size to be determined, is a boundary layer of the function
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ψε(τ) [53]. Suppose n = 1 and let τ0 ∈ S, and suppose that near τ0 the boundary layer is
characterised in size by the order function δ(ε). For the analysis of the behaviour of ψε near
the boundary layer, we consider the map ψε(τ) = ψε(τ0 + δ(ε)ξ) = φ∗ε (ξ), where ξ = τ−τ0

δ(ε)
.

When δ(ε) = O(1), parameter ξ is called a local variable. Hence, the concept is based on
the construction of the approximation of function φ∗ε (ξ) as φ∗ε (ξ) = ∑n δ∗n(ε)ψn(ξ) with
δ∗n(ε), n = 0, 1, 2, . . . an asymptotic sequence.

For more details on the method and various applications, we refer the reader to [53].

3. Symmetry Classification for the Fourth-Order Schrödinger Equation

Before we proceed with the symmetry classification, we set without loss of generality
γ = 1, and by a change in transformation on the variable t, we can remove the coefficient i.
Hence, Equation (1) can be written in the equivalent form

∂Ψ
∂t

+ α∆Ψ + ∆2Ψ + V(Ψ) = 0. (15)

Moreover, with the use of the new variable Φ = ∆Ψ, the fourth-order differential
Equation (15) is written as the following Schrödinger–Poisson system

∂Ψ
∂t

+ ∆Φ + αΦ + V(Ψ) = 0, (16)

Φ− ∆Ψ = 0. (17)

Assume now the generic vector field

X = ξt(t, xµ.Ψ, Φ)∂t + ξµ(t, xµ, Ψ, Φ)∂µ + ηΨ(t, xµ, Ψ, Φ)∂Ψ + ηΦ(t, xµ, Ψ, Φ)∂Φ, (18)

where in order to be the generator of a one-parameter point transformation in the space of
variables {xµ, Ψ}, it should be ξt

,Φ = 0, ξ
µ
,Φ = 0 and ηΨ

,Φ = 0.
The 2nd prolongation vector reads

X[2] = X + ηΨ
[t]∂Ψt + ηΨ

[µ]∂Ψµ + ηΦ
[t]∂Φt + ηΦ

[µ]∂Φµ + ηΨ
[µν]∂Ψµν + ηΦ

[µν]∂Φµν . (19)

Consequently, we apply the symmetry condition (9), and by using the geometric ap-
proach described in [54], we summarise the classification scheme in the following theorem.

Theorem 1. The generic Lie point symmetry vector for the Schrödinger–Poisson system (16), (17)
in an arbitrary background space gµν, and for arbitrary function V(Ψ) is

XG = a1∂t + aσK(xκ)∂µ, (20)

where K(xµ) is an isometry for the metric tensor gµν, that is
[
K(xκ), gµν(xκ)

]
= 0.

However, for specific functional forms of the potential V(Ψ), the classification scheme
is described as follows.

Theorem 2. Let the metric tensor gµν(xκ) and K(xκ) describe the isometries of gµν(xκ), and H(xκ)
is a proper Homothetic vector of gµν(xκ), i.e.,

[
H(xκ), gµν(xκ)

]
= 2gµν(xκ). Then, for special

functional forms of V(Ψ), the generic symmetry vector for the Schrödinger–Poisson system (16),
(17) is:

For α 6= 0,
I: For V(Ψ) = V0Ψ, the symmetry vector is X I

G = a1∂t + aσK(xκ)∂µ +
a2(Ψ∂Ψ + Φ∂Φ) + a3

(
F(t, xκ)∂U + F,µν(t, xκ)∂Φ

)
, where F(t, xκ) is a solution of the original

system. The new coefficients in the vector field indicate the linearisation of the system.
For α = 0,
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II: For V(Ψ) = 0, the generic symmetry vector is X I I
G = a1∂t + aσK(xκ)∂µ +

a2(Ψ∂Ψ + Φ∂Φ) + a3
(

F(t, xκ)∂U + F,µν(t, xκ)∂Φ
)
+ a4

(
4t∂t + H(xκ)∂µ − 2Φ∂Φ

)
.

III: For V(Ψ) = V0Ψ, the generic symmetry vector is X I I I
G = a1∂t + aσK(xκ)∂µ +

a2(Ψ∂Ψ + Φ∂Φ) + a3
(

F(t, xκ)∂U + F,µν(t, xκ)∂Φ
)

+
a4
(
4t∂t + H(xκ)∂µ − 2Φ∂Φ − 4V0t(Ψ∂Ψ + Φ∂Φ)

)
.

IV: For V(Ψ) = V0ΨP+1, P 6= −1, 0, the generic symmetry vector is X IV
G = a1∂t +

aσK(xκ)∂µ + a4

(
4t∂t + H(xκ)∂µ − 2Φ∂Φ − 4

P (Ψ∂Ψ + Φ∂Φ)
)

.

V: For V(Ψ) = V0 exp(PΨ), P 6= 0, the generic symmetry vector is X IV
G = a1∂t +

aσK(xκ)∂µ + a4

(
4t∂t + H(xκ)∂µ − 2Φ∂Φ − 4

P (∂Ψ)
)

.

It is easy to observe that the collineations of the underlying geometry generate the
symmetries for the dynamical system of our study. Indeed, the isometries and the homo-
thetic vectors construct the Lie symmetries. If a background geometry has no isometries
and homothetic vector, then the admitted Lie symmetries for the dynamical system are
the trivial symmetries. That connection of the Lie symmetries with the elements of the
background geometry has been observed before for various differential equations [55,56].
Indeed, for the second-order Schrödinger equation, the Lie symmetries are constructed
by the elements of the homothetic algebra of the geometry [56]. Thus, a similar physical
interpretation can be given. The Lie symmetries generated by the isometries are related to
the construction of differential operators generated by the conservation law of momentum
for the classical particle. In contrast, the Lie symmetry constructed by the homothetic vector
field is related to the derivation of scaling solutions. For more details, we refer the reader
to [56].

We proceed with our analysis by considering specific metric tensor gµν.

4. Application

Consider now that the metric tensor gµν is maximally symmetric and admit a ho-
mothetic vector field. Hence, gµν is necessary for the flat space. For simplicity of our
calculations, assume further that dim gµν = 1. The one-dimensional flat space with line
element ds2 = dx2 admits the isometry ∂x and the proper Homothetic field x∂x.

Therefore the Schrödinger–Poisson system reads

∂Ψ
∂t

+
∂2Φ
∂x2 + αΦ + V(Ψ) = 0, (21)

Φ− ∂2Ψ
∂x2 = 0. (22)

In the case where α 6= 0, the generic vector field is X I = a1∂t + a2∂x, for arbitrary
potential function V(Ψ). From the elements of X I , we can reduce the dynamical system
into the static and the stationary cases. However, from the vector field ∂t + c∂x we reduce
the dynamical system as follows

−c
∂Ψ
∂ξ

+
∂2Φ
∂ξ2 + αΦ + V(Ψ) = 0, (23)

Φ− ∂2Ψ
∂ξ2 = 0, (24)

where ξ = x− ct is the new independent variable, and c describes the speed of the travelling
wave. For a linear function V(Ψ), the closed-form solution of the system (23), (24) can be
expressed in terms of exponential functions.
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However, for V(Ψ) = V0Ψ, there exist the additional possible reduction ∂t + c∂x +
β(Ψ∂Ψ + Φ∂Φ), which provides the similarity transformation Ψ = eβtψ(ξ), Φ = eβtφ(ξ),
ξ = x− ct with a reduced system

−c
∂ψ

∂ξ
+

∂2φ

∂ξ2 + αφ + βψ + V0ψ = 0, (25)

φ− ∂2ψ

∂ξ2 = 0. (26)

Let us focus now on the case where α = 0 and assume V(Ψ) = V0ΨP+1 and V(Ψ) =
V0 exp(PΨ).

4.1. Power-Law Function V(Ψ) = V0ΨP+1, P 6= 0

For the power-law potential function, from the vector field(
4t∂t + x∂x − 2Φ∂Φ − 4

P (Ψ∂Ψ + Φ∂Φ)
)

, we define the similarity transformation

Ψ(t, x) = ψ(σ)t−
1
P , Φ(t, x) = φ(σ)t−

2+P
2P , σ(t, x) =

x

t
1
4

,

and if P 6= 0, with reduced system

∂2φ

∂σ2 + V0ψP+1 − 1
4

σ
∂ψ

∂σ
− 1

P
ψ = 0, (27)

φ− ∂2ψ

∂σ2 = 0. (28)

If φ = 0, we have
ψ = ψ1σ + ψ0. (29)

Then, from compatibility conditions, the only possible solution is the constant solution
ψ = ψ0, such that

V0ψP+1
0 − ψ0

P
= 0 =⇒ ψ0 = (PV0)

−1/P. (30)

Therefore, we assume the non-trivial case φ 6= 0. Then, we have the fourth-order
equation

∂4ψ

∂σ4 + V0ψP+1 − 1
4

σ
∂ψ

∂σ
− 1

P
ψ = 0. (31)

We introduce the logarithmic independent variable

τ = ln(σ), (32)

and redefine

ψ(σ) = ψ̄(ln(σ)). (33)

That is, for any function f (σ), define

f̄ (τ) = f (eτ). (34)
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Then, using the chain rule and the relation σ = eτ , we obtain

∂ f
∂σ

= e−τ f̄ ′(τ), (35)

∂2 f
∂σ2 = e−2τ

(
f̄ ′′(τ)− f̄ ′(τ)

)
, (36)

∂3ψ

∂σ3 = e−3τ
(

f̄ (3)(τ)− 3 f̄ ′′(τ) + 2 f̄ ′(τ)
)

, (37)

∂4ψ

∂σ4 = e−4τ
(

u(4)(τ)− 6u(3)(τ) + 11u′′(τ)− 6u′(τ)
)

. (38)

Then, (31) becomes

ψ̄(τ)
(

PV0ψ̄(τ)P − 1
)

P
+

(
−6e−4τ − 1

4

)
ψ̄′(τ) + 11e−4τψ̄′′(τ)− 6e−4τψ̄(3)(τ) + e−4τψ̄(4)(τ) = 0. (39)

Assuming that ψ̄ is bounded with bounded derivatives as τ → +∞, we obtain the
asymptotic equation

ψ̄+(τ)
(

PV0ψ̄+(τ)P − 1
)

P
− 1

4
ψ̄′+(τ) = 0, (40)

which admits the first integral

c1
ψ̄+(τ)P

(1− PV0ψ̄+(τ)P)
= e−4τ =⇒ ψ̄+(τ) =

(
PV0 + c1e4τ

)
−1/P. (41)

Defining

z+(τ) :=
ψ̄+(τ)P

(1− PV0ψ̄+(τ)P)
, (42)

z+(τ) is monotone decreasing as τ → +∞ for P > 0 and monotone increasing as τ → +∞
for P < 0. In other words, the asymptotic states of ψ̄+(τ) are

lim
τ→+∞

ψ̄+(τ) = 0 if P > 0, V0 > 0, (43)

lim
τ→−∞

ψ̄+(τ) = ψ0 := (PV0)
−1/P if P > 0, V0 > 0, (44)

and

lim
τ→+∞

ψ̄+(τ) = ψ0 := (PV0)
−1/P if P < 0, V0 < 0, (45)

lim
τ→−∞

ψ̄+(τ) = 0 if P > 0, V0 > 0. (46)

The cases of interest are as τ → +∞. That is, the monotonic function z+ unveils the
asymptotic behaviour as τ → +∞.

Now, assuming that ψ̄ is bounded with bounded derivatives as τ → −∞, we obtain
the asymptotic equation

− 6ψ̄′−(τ) + 11ψ̄′′−(τ)− 6ψ̄
(3)
− (τ) + ψ̄

(4)
− (τ) = 0, (47)

with solution

ψ̄−(τ) = c2eτ +
1
2

c3e2τ +
1
3

c4e3τ + c5, (48)
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such that
lim

τ→−∞
ψ̄−(τ) = c5. (49)

Substituting ψ(τ) = ψ̄−(τ) in (39) and taking limit τ → −∞, we obtain the compati-
bility condition

c5

(
−1 + PV0c5

P
)
= 0. (50)

That is, c5 ∈
{

0, (PV0)
−1/P

}
. The choice c5 = (PV0)

−1/P gives the proper matching
condition

lim
τ→−∞

ψ̄+(τ) = lim
τ→−∞

ψ̄−(τ) = (PV0)
−1/P. (51)

In summary, integrating from τ → −∞ to τ > 0, we obtain that ψ(τ) ≈ ψ̄−(τ) for
large τ close the boundary layer, whereas, integrating backwards from τ → +∞ to τ < 0,
we obtain that ψ(τ) ≈ ψ̄+(τ) as τ → −∞. These results are illustrated in Figure 1.

Let us define the new time variable s = (1 + tanh(τ))/2 that brings the interval
(−∞, ∞) to (0, 1). Then, the original layer problem becomes a two-point problem, with end-
points 0 and 1. The asymptotic solutions can be found as

Φ−(s) = ψ̄−(−arctanh(1− 2s)), (52)

that is,

Φ−(s) = (PV0)
−1/P +

c3s
2− 2s

+

(
c2

(
1
s
− 1
)
+

c4

3

)
e−3arctanh(1−2s). (53)

As s→ 0+, we have the asymptotic behaviour Φ− → (PV0)
−1/P.

Moreover,
Φ+(s) = ψ̄+(−arctanh(1− 2s)), (54)

becomes

Φ+(s) =
(

PV0 +
c1s2

(1− s)2

)−1/P

, (55)

such that

lim
s→1−

Φ+(s) = 0 if P > 0, V0 > 0. (56)

We have the matching condition

lim
s→0+

Φ−(s) = lim
s→0+

Φ+(s) = (PV0)
−1/P. (57)

The next step is to introduce the stretched variables κ = s/ε and λ = (1 − s)/ε,
and write a solution

Φ(s, ε) = ζ(κ, ε) + η(λ, ε) (58)

where
ζ → (PV0)

−1/P as κ = s/ε→ ∞ (59)

and
η → 0 as λ = (1− s)/ε→ ∞. (60)

Near s = 0, η and its derivatives will be asymptotically negligible, so djΦ(s, ε)/dsj ∼
(1/εj)

[
djζ(κ, ε)/dκ j]. Take, for example,

ζ0(κ, ε) = (PV0)
−1/P +

c3κε

2− 2κε
+

(
c2

(
1
κε
− 1
)
+

c4

3

)
e−3arctanh(1−2κε). (61)
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Using the notation

ψ̄(τ, ε) = Φ(κ, ε), κ =
tanh(τ) + 1

2ε
(62)

the approximated Equation (47) becomes

6ε(4κε(4κε− 3) + 1)Φ′(κ, ε)

+ (κε− 1)
[
3(24κε(2κε− 1) + 1)Φ′′(κ, ε)

+ 4κ(κε− 1)
(

κΦ(4)(κ, ε)(κε− 1) + 3Φ(3)(κ, ε)(4κε− 1)
)]

= 0, (63)

where primes mean derivatives with respect to κ, which admits the exact solution (61).
Since we are taking ε as a small parameter, we see that the initial layer problem is of type(

−3Φ′′(κ)− 4κ
(

κΦ(4)(κ) + 3Φ(3)(κ)
))

+ ε
(

6Φ′(κ) + 3κ
(

25Φ′′(κ) + 4κ
(

κΦ(4)(κ) + 6Φ(3)(κ)
)))

+ O
(

ε2
)
= 0. (64)

Taking the expansion

Φ(κ) = Φ0(κ) + εΦ1(κ) + . . . (65)

we obtain at first-order

−3Φ′′0 (κ)− 4κ
(

κΦ(4)
0 (κ) + 3Φ(3)

0 (κ)
)
= 0. (66)

Hence,

Φ0(κ) =
4
3
√

κ(d2κ − 3d1) + d4κ + d3. (67)

At second-order, we have

60d2
√

κ + 6d4 − 4κ2Φ(4)
1 (κ)− 12κΦ(3)

1 (κ)− 3Φ′′1 (κ) = 0. (68)

Hence,

Φ1(κ) = 2d2κ5/2 +
4
3

d6κ3/2 + d4κ2 + d8κ − 4d5
√

κ + d7, (69)

and so on. Finally, we replace the leading order and second-order terms (67) and (69),
respectively, in (65) with the replacement (62).

Near s = 1, ζ and its derivatives will be asymptotically negligible, so djΦ(s, ε)/dsj ∼
(1/εj)

[
djη(λ, ε)/dλj]. Take, for example,

η0(λ, ε) =
(

PV0 + c1e4arctanh(1−2λε)
)−1/P

. (70)

Using the notation

ψ̄(τ, ε) = Φ(λ), λ =
1− tanh(τ)

2ε
, (71)

the approximated Equation (40), becomes

2V0Φ(λ)P+1 + λ(1− λε)Φ′(λ) =
2Φ(λ)

P
, (72)

which admits the solution (70).
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Figure 1. Comparison of exact solution ψ̄ of (39) with initial conditions ψ̄(0) = 0, ψ̄′(0) = 0, ψ̄′′(0) =
0, ψ̄(3)(0) = −1 and the asymptotic solutions ψ̄± for V0 = 6P/P, P > 0.

Figure 1 shows the exact solution ψ̄ of (39) with initial conditions ψ̄(0) = 0, ψ̄′(0) =
0, ψ̄′′(0) = 0, ψ̄(3)(0) = −1 and the asymptotic solutions ψ̄− = 1

6 −
eτ

2 + e2τ

2 −
e3τ

6 and

ψ̄+ =
(
6P + e4τ

)−1/P for V0 = 6P/P, P > 0. This plot illustrates the accuracy of our
analysis by selecting ψ̄− as the inner solution for τ < τ0, closing the boundary layer.

4.2. Exponential Function V(Ψ) = V0 exp(PΨ), P 6= 0

On the other hand, for the exponential potential V(Ψ) = V0 exp(PΨ), P 6= 0, the simi-
larity transformation, which corresponds to the vector field

(
4t∂t + x∂x − 2Φ∂Φ − 4

P (∂Ψ)
)

,
is

Ψ(t, x) =
ln t
P

+ ψ(σ) , Φ = t−
1
2 φ(σ) , σ(t, x) =

x

t
1
4

,

where the reduced system is

∂2φ

∂σ2 + V0ePψ − 1
P
− 1

4
σ

∂ψ

∂σ
= 0, (73)

φ− ∂2ψ

∂σ2 = 0. (74)

We introduce the logarithmic independent variable (32) and define ψ(σ) by (33). Then,
using the chain rule and the relation σ = eτ , we obtain

V0ePψ̄(τ) +

(
−6e−4τ − 1

4

)
ψ̄′(τ) + 11e−4τψ̄′′(τ)− 6e−4τψ̄(3)(τ) + e−4τψ̄(4)(τ)− 1

P
= 0. (75)

Assuming that ψ̄ is bounded with bounded derivatives as τ → +∞, we obtain the
asymptotic equation

V0ePψ̄+(τ) − 1
P
− 1

4
ψ̄′+(τ) = 0, (76)
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with solution
ψ̄+(τ) = ln

((
PV0 + e4τ+c1P

)
−1/P

)
. (77)

Assuming that ψ̄ and V0ePψ̄(τ) are bounded with bounded derivatives as τ → −∞,
we obtain, as in Section 4.1, the asymptotic Equation (47), with solution (48). Substituting
ψ(τ) = ψ̄−(τ) in (75), and taking limit τ → −∞, we obtain

− 1
P
+ V0ec5P = 0 =⇒ c5 = ln

[
(PV0)

−1/P
]
. (78)

That is, we have the matching condition

lim
τ→−∞

ψ̄+(τ) = lim
τ→−∞

ψ̄−(τ) = ln
[
(PV0)

−1/P
]
. (79)

As in Section 4.1, integrating from τ → −∞ to τ > 0, we obtain that ψ(τ) ≈ ψ̄−(τ)
for large τ, whereas, integrating backwards from τ → +∞ to τ < 0, we obtain that
ψ(τ) ≈ ψ̄+(τ) as τ → −∞. These results are illustrated in Figures 2 and 3. Nevertheless,
when the term V0ePψ̄(τ) in (75) is not negligible, the approximation of ψ̄ by the solution of the
asymptotic Equation (47) is not accurate as τ → +∞. Then, the asymptotic Equation (47) is
replaced by

V0ePψ(τ)+4τ + ψ(4)(τ)− 6ψ(3)(τ) + 11ψ′′(τ)− 6ψ′(τ) = 0, (80)

which cannot be solved analytically.
Using the same method, we define the new time variable s = (1 + tanh(τ))/2 that

brings the interval (−∞, ∞) to (0, 1). Then, the original layer problem becomes a two-point
problem, with endpoints 0 and 1. The asymptotic solutions can be found as

Φ−(s) = ln
[
(PV0)

−1/P
]
+

c3s
2− 2s

+

(
c2

(
1
s
− 1
)
+

c4

3

)
e−3arctanh(1−2s). (81)

As s→ 0+, we have the asymptotic behaviour eΦ− → (PV0)
−1/P.

Similarly, we have

eΦ+(s) =

(
PV0 +

c1s2

(1− s)2

)−1/P

, (82)

such that

lim
s→1−

eΦ+(s) = 0 if P > 0, V0 > 0. (83)

Finally, by introducing the stretched variables κ = s/ε and λ = (1− s)/ε, we write a
solution

Φ(s, ε) = ζ(κ, ε) + η(λ, ε), (84)

where
ζ → ln

[
(PV0)

−1/P
]

as κ = s/ε→ ∞, (85)

and
η → 0 as λ = (1− s)/ε→ ∞. (86)

Then, the layer problem becomes a two-point problem, with endpoints 0 and 1, and we
obtain the asymptotic solutions following similar approaches as in Section 4.1.

Figure 2 shows the exact solution ψ̄ of (75) with initial conditions ψ̄(0) = 0,
ψ̄′(0) = 0, ψ̄′′(0) = 0, ψ̄(3)(0) = 1 and the asymptotic solutions ψ̄− = eτ

2 −
e2τ

2 + e3τ

6 −
1
6
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and ψ̄+ = − ln(eP+4τ+eP/6)
P for V0 = eP/6

P , P < 0. In this example, the approximations are
accurate.
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Figure 2. Comparison of exact solution ψ̄ of (75) with initial conditions ψ̄(0) = 0, ψ̄′(0) = 0,
ψ̄′′(0) = 0, ψ̄(3)(0) = 1 and the asymptotic solutions ψ̄± for V0 = eP/6
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Figure 3 shows the exact solution ψ̄ of (75) with the same initial conditions, and the
asymptotic solutions ψ̄± for V0 = eP/6

P , P > 0. The approximation of ψ̄ by the solution of the
asymptotic Equation (47) is not accurate as τ → +∞. Then, the asymptotic Equation (47) is
replaced by (80). The numerical solution ψ̄approx of (80) is represented by a dot-dashed line
in Figures 2 and 3.

5. Conclusions

Lie symmetry analysis is a powerful method for analysing nonlinear differential equa-
tions. In this study, the Lie symmetry analysis was applied to solve the group classification
problem for a 1 + n-dimensional nonlinear higher-order Schrödinger equation inspired
by GUP. The partial differential equation of our analysis admits an arbitrary potential
function, which was a constraint according to the admitted Lie point symmetries. For an
arbitrary potential function, we found that the admitted Lie symmetries are the Killing
vectors of the n-dimensional space in addition to the vector field ∂t. However, a new
symmetry vector presented in Theorems 1 and 2 can be found for specific function forms
of the potential function. To demonstrate the application of the Lie symmetry vectors,
we used the corresponding Lie invariants to define similarity transformations and reduce
the partial-differential equation into an ordinary differential equation. Because of the
nonlinearity of the reduced equation, we studied the asymptotic dynamics and evolution.

Concerning asymptotic analysis, we have obtained asymptotic solutions

ψ̄−(τ) = c2eτ +
1
2

c3e2τ +
1
3

c4e3τ +

{
(PV0)

−1/P power-law function
ln
[
(PV0)

−1/P
]

exponential function
,

ψ̄+(τ) =

{ (
PV0 + c1e4τ

)−1/P power-law function
ln
((

PV0 + e4τ+c1P)−1/P
)

exponential function
,

with the proper matching condition

lim
τ→−∞

ψ̄+(τ) = lim
τ→−∞

ψ̄−(τ) =

{
(PV0)

−1/P power-law function
ln
[
(PV0)

−1/P
]

exponential function
.

For the power-law potential, it is confirmed numerically that as τ → −∞, ψ(τ) ≈
ψ̄+(τ), whereas, for large τ, ψ(τ) ≈ ψ̄−(τ). However, in the exponential case, when the
term V0ePψ̄(τ) is not negligible, the approximation by ψ̄−(τ) is not accurate as the boundary
layer is approached and has to be replaced by ψ̄approx(τ).

Finally, the layer problem becomes a two-point problem, with endpoints 0 and 1
by introducing the stretched variables κ = s/ε and λ = (1− s)/ε, and writing a formal
solution

Φ(s, ε) = ζ(κ, ε) + η(λ, ε), (87)

where

ζ →
{

(PV0)
−1/P power-law function

ln
[
(PV0)

−1/P
]

exponential function
, as κ = s/ε→ ∞, (88)

and
η → 0 as λ = (1− s)/ε→ ∞. (89)

Then, it is interesting to analyse possible asymptotic solutions for different initial/
boundary conditions, but this numerical treatment is out of the scope of the present research.
In general, when solving the problem of approximating a function ψε(τ) depending on a
small parameter ε in a domain D, the algorithm presented in [53] can be applied.

This work contributes to the subject of the application of Lie point symmetries on
nonlinear differential equations. In this study, we considered a Schrödinger equation
constructed by the deformation algebra of the quadratic GUP. However, that is not the
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unique proposed GUP, and other deformations algebras exist. Therefore, in future work,
we plan to perform a detailed classification of the higher-order Schrödinger equations for
different models of GUP. Finally, we will present formal expansions, representing valid
asymptotic approximations of the function ψε(τ) for other initial conditions that we set out
to study by singular perturbation methods, boundary layers, and multiple time scales.
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