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Abstract: The Method of Auxiliary Sources (MAS) is an established technique for the numerical
solution of electromagnetic (EM) scattering and radiation problems. This paper presents a hybrid of
MAS with the Fast Multipole Method (FMM), which provides a strategy for reducing the computa-
tional cost and for solving large-scale problems without notable accuracy loss (and in a reasonable
time). The hybrid MAS-FMM scheme is applied to the problem of EM scattering from an arbitrarily
large array of lossless/lossy dielectric cylinders. Numerical results are presented to verify the MAS
and MAS-FMM schemes, as well as to illuminate the improvements stemming from the proposed
hybridization (especially the ones regarding the associated complexity and computational cost). A
few concluding remarks offer a summary of this work, along with a list of possible future extensions.
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1. Introduction

The Method of Auxiliary Sources (MAS) is an established numerical method in Com-
putational Electromagnetics (CEM), and it has been applied extensively to a large variety
of scattering and radiation problems [1]. The standard MAS can be classified in the
so-called Generalized Multipole Techniques (GMTs) [2]. Among frequency-domain nu-
merical methods, the MAS avoids time-consuming numerical integrations; its algorithmic
implementation is essentially straightforward, and it is characterized by relatively low com-
putational cost [3]. However, despite these advantageous features, certain issues related to
the implementation of the MAS undermine its applicability and effectiveness [4,5]. These
include difficulties associated with the selection of the location(s) and number(s) of the
auxiliary sources, occasionally severe ill-conditioning effects of the associated matrices, as
well as moderately slow convergence of the computed fields and possible divergence of
the currents involved [4–10].

Despite the fact that the MAS is often considered to have a lower computational cost
compared to the Method of Moments (MoM) and the Finite-Element Method (FEM), its
complexity remains high (i.e., the complexity is calculated asymptotically as the number
of unknowns approaches infinity). For this reason, the relative advantages of MAS may
be weakened in applications requiring increased numerical stability and accuracy, which
inevitably involve large numbers of unknowns. One possible alternative to reduce the MAS
complexity and computational cost would be to somehow group the interactions between
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auxiliary sources and matching points and subsequently to approximate them by simpler
formulas. This precisely constitutes the fundamental concept behind the Fast Multipole
Method (FMM) and related strategies [11]. Exploiting such an alternative, hybridizations
between MAS and FMM were proposed in [12] for perfectly conducting 2-D scatterers,
in [13] for internal problems corresponding to single Helmholtz resonators, and in [14] for
perfectly conducting 3-D scatterers.

In this paper, a MAS-FMM scheme is presented for the problem of electromagnetic
scattering from and propagation through a large array of parallel lossless/lossy dielectric
(circular) cylinders. An array of this type can stand as a two-dimensional (2D) model of a
forest or an orchard. Admittedly, such an approximation may look naive at a first glance;
however, exact simulation of EM propagation through vegetation is a formidable task. First
of all, the actual geometry itself is almost arbitrary, including trunks, branches, and foliage
with random orientation and variable dielectric properties. Moreover, the large number
of scatterers involved implies that standard integral-equation methods are not applicable,
due to the exorbitant number of unknowns required. Therefore, modeling tree trunks as
infinite dielectric cylinders, where, additionally, the number of unknowns is somehow
compressed, is a tractable way to go, producing fairly accurate and sufficiently realistic
results for engineering purposes. Besides, problems involving arrays of dielectric cylinders
occur in other areas pertaining to applied electromagnetics, including in optics for the
analysis of modes excited in photonic fibers and gratings [15–17].

The simpler case of arrays of perfectly electric conducting (PEC) cylinders was pre-
sented and evaluated in [18]. In this work, pertaining to lossless/lossy dielectric cylinders, a
standard MAS formulation is used as a starting point. Then, according to the FMM concept,
far-field interactions are approximated as perturbations of a central interaction between
the centroids of properly selected clusters encompassing neighboring auxiliary sources
and matching points. The accuracy and efficiency of the proposed methods are examined
and assessed. The credibility of both the MAS and MAS-FMM schemes is highlighted
via representative numerical examples. Regarding the computational cost required for
analyzing large arrays of cylinders via MAS and MAS-FMM, substantial savings are indeed
achieved when applying the latter. Furthermore, the procedure for proper selection of the
basic parameters affecting the performance of the hybrid scheme is also discussed. Finally,
a few concluding remarks are outlined, and possible extensions of the work conducted so
far are pointed out.

2. Problem Description

As already stated, the problem at hand shown in Figure 1 involves an arbitrarily large
array of parallel circular cylinders, which are excited by either a plane wave or an infinite
line source parallel to their axes. The cylinders are located at the nodes of a Nx × Ny lattice

with arbitrary coordinates given by
→
r
(nx ,ny)

cyl =
(

x
(nx ,ny)
cyl , y

(nx ,ny)
cyl

)
, for nx = 1, 2, . . . , Nx and

ny = 1, 2, . . . , Ny. Obviously, the number of cylinders is Nx Ny, each of which is uniquely

identified by the pair
(
nx, ny

)
. The radius of each cylinder is denoted by a

(nx ,ny)
cyl . Non-

uniform and non-orthogonal lattices of cylinders can be treated in a similar manner and
with only minor modifications, as discussed below. The incident electromagnetic field,
either plane wave or that radiated by the infinite line source discussed above, is assumed
to be a continuous wave of frequency f and wavelength λ = c/ f , where c is the speed of
light. A time convention exp(j2π f t) is assumed and suppressed throughout this work.

The aforementioned cylinders can be modeled either as PEC or as lossless/lossy
dielectric, which are closer to real-world tree trunks. The former case has been studied
in [18]. The cases of lossless and lossy dielectric cylinders are studied below. For brevity,
only the case of transverse magnetic TMz incidence is presented in this work. Given
the polarization of the incident field, the auxiliary sources are selected to be infinite line
sources of impulsive electric currents, which are aligned parallel to the axes of the cylinders
under study. Therefore, the field components Ez, Hx, and Hy are the only non-zero ones
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considered hereinafter [19]. The pertinent formulation can be readily modified for the case
of transverse electric TEz incidence, in which the non-zero field components are Ex, Ey, and
Hz [20].
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Figure 1. An arbitrarily large, rectangular array of circular dielectric cylinders, excited by either a
plane-wave field or by an infinite line source parallel to their axes. Non-uniform lattices of cylinders
can be readily constructed by removing certain cylinders and leaving their positions empty. Non-
orthogonal lattices of cylinders are possible by letting their centers be arbitrarily located.

The array of cylinders considered so far seems rather suitable for predicting electro-
magnetic fields inside and close to orchards. With some small compromise, propagation
through or inside forests can also be predicted with ease. This is further discussed in the
concluding section of this paper.

3. Formulation
3.1. Standard MAS Formulation

According to standard MAS, a finite number of auxiliary sources are placed on ficti-
tious (auxiliary) circular curves, both inside and outside the boundaries of the cylinders
comprising the array under study, for the description of the unknown EM fields in the
regions outside and inside these boundaries, respectively. The locations of the auxiliary
curves are selected to ensure convergent solutions (e.g., see [4–10,19–23]). The convergence
in the strict sense can be investigated analytically only for certain canonical geometries;
nevertheless, when analytical investigations are not possible, the convergence is most
often examined numerically [i.e., by carefully checking the pertinent boundary condition(s)
errors and the numerical stability of the solutions]. Given the selected locations of the
auxiliary sources and the matching points, the currents of the auxiliary sources are solved
for in order to satisfy the boundary conditions of the electric and/or the magnetic fields in
a point-matching fashion.

For the description of the unknown scattered field in the air between cylinders and
outside the lattice of cylinders, N(nx ,ny) auxiliary sources are uniformly distributed at a

circle of radius a
(nx ,ny)
in < a

(nx ,ny)
cyl inside each cylinder. Similarly, for the description of

the unknown field induced inside each cylinder, N(nx ,ny) auxiliary sources are uniformly

distributed at a circle of radius a
(nx ,ny)
out > a

(nx ,ny)
cyl outside the cylinder. The auxiliary sources

are placed at

→
r
(nx ,ny)

in,n =(
x
(nx ,ny)
cyl + a

(nx ,ny)
in cos

(
2π n−1

N(nx ,ny)

)
, y

(nx ,ny)
cyl + a

(nx ,ny)
in sin

(
2π n−1

N(nx ,ny)

))
n = 1, 2, . . . , N(nx ,ny)

(1)
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→
r
(nx ,ny)

out,n =(
x
(nx ,ny)
cyl + a

(nx ,ny)
out cos

(
2π n−1

N(nx ,ny)

)
, y

(nx ,ny)
cyl + a

(nx ,ny)
out sin

(
2π n−1

N(nx ,ny)

))
n = 1, 2, . . . , N(nx ,ny)

(2)

The total number of auxiliary sources for all cylinders is given by

NT = 2
Nx

∑
nx=1

Ny

∑
ny=1

N(nx ,ny) (3)

When the cylinders are identical (i.e., of equal radius acyl), one can simply assume
N(nx ,ny) = N and (3) yields NT = 2Nx NyN.

Then, the electric field in the air (i.e., outside the cylinders) is expressed as superposi-
tion of the incident field Einc

z , and the fields generated by the sets of auxiliary sources inside
the cylinders as follows:

Ez

(→
r
)
= Einc

z

(→
r
)
− k0ζ0

4

Nx

∑
nx=1

Ny

∑
ny=1

N(nx ,ny)

∑
n=1

w
(nx ,ny)
in,n H(2)

0

(
k0

∣∣∣∣→r −→r (nx ,ny)

in,n

∣∣∣∣) (4)

where w
(nx ,ny)
in,n are the unknown (complex) currents pertaining to the inner set of auxiliary

sources associated with the cylinder denoted by
(
nx, ny

)
and

∣∣∣∣→r −→r (nx ,ny)

in,n

∣∣∣∣ are the distances

between their positions and the arbitrary observation point
→
r = (x, y) in the air. The

special function H(2)
ν denotes the Hankel function of the second kind and order ν. In (4),

k0 = 2π f
√

µ0ε0 (or k0 = 2π f /c) is the wavenumber and ζ0 =
√

µ0/ε0 is the intrinsic
impedance of vacuum. The respective magnetic field is given by

Hx

(→
r
)
= Hinc

x

(→
r
)

+ jk0
4

Nx
∑

nx=1

Ny

∑
ny=1

N(nx ,ny)

∑
n=1

w
(nx ,ny)
in,n

(
→
r −→r

(nx ,ny)
in,n

)
·→e y∣∣∣∣→r −→r (nx ,ny)

in,n

∣∣∣∣ H(2)
1

(
k0

∣∣∣∣→r −→r (nx ,ny)

in,n

∣∣∣∣) (5)

Hy

(→
r
)
= Hinc

y

(→
r
)

− jk0
4

Nx
∑

nx=1

Ny

∑
ny=1

N(nx ,ny)

∑
n=1

w
(nx ,ny)
in,n

(
→
r −→r

(nx ,ny)
in,n

)
·→e x∣∣∣∣→r −→r (nx ,ny)

in,n

∣∣∣∣ H(2)
1

(
k0

∣∣∣∣→r −→r (nx ,ny)

in,n

∣∣∣∣) (6)

where
→
e x and

→
e y are the unit vectors in the x and y directions, respectively. The dot

between vectors denotes the inner product. Similarly, the fields inside each cylinder are
expressed as superimpositions of the fields generated by the respective set of auxiliary
sources outside the cylinder

E
(nx ,ny)
z

(→
r
)
= − kζ

4

N(nx ,ny)

∑
n=1

w
(nx ,ny)
out,n H(2)

0

(
k
∣∣∣∣→r −→r (nx ,ny)

out,n

∣∣∣∣) (7)

H
(nx ,ny)
x

(→
r
)
=

jk
4

N(nx ,ny)

∑
n=1

w
(nx ,ny)
out,n

(
→
r −→r

(nx ,ny)

out,n

)
·→e y∣∣∣∣→r −→r (nx ,ny)

out,n

∣∣∣∣ H(2)
1

(
k
∣∣∣∣→r −→r (nx ,ny)

out,n

∣∣∣∣) (8)
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H
(nx ,ny)
y

(→
r
)
=

− jk
4

N(nx ,ny)

∑
n=1

w
(nx ,ny)
out,n

(
→
r −→r

(nx ,ny)
out,n

)
·→e x∣∣∣∣→r −→r (nx ,ny)

out,n

∣∣∣∣ H(2)
1

(
k
∣∣∣∣→r −→r (nx ,ny)

out,n

∣∣∣∣) (9)

where w
(nx ,ny)
out,n are the unknown (complex) currents pertaining to the outer set of auxiliary

sources associated with the cylinder denoted by
(
nx, ny

)
and

∣∣∣∣→r −→r (nx ,ny)

out,n

∣∣∣∣ are the distances

between their positions and the arbitrary observation point
→
r = (x, y) inside the said

cylinder. In (7)–(9), k = 2π f
√

µ0ε is the wavenumber and ζ =
√

µ0/ε is the intrinsic
impedance associated with the dielectric medium of the cylinders. Lossy homogeneous
media with relative permittivity εr and conductivity σ have complex dielectric constant
ε = [εr − jσ/(2π f µ0)]ε0. When electric losses are absent (σ = 0), the last expression
simplifies to ε = εrε0. In the case of PEC cylinders, the fields inside them vanish and the
analysis is simplified to that presented in [18]. The formulation and results of [18] have
been regenerated using the generalized formulation and the code developed in the present
paper. However, these results are not included here to avoid unnecessary overlapping
between the two papers.

Next, the unknown currents w
(nx ,ny)
in,n and w

(nx ,ny)
out,n are obtained by enforcing the bound-

ary conditions of the tangential electric and the tangential magnetic field at N(mx ,my) discrete
matching points on each cylinder, hereby denoted by

(
mx, my

)
with mx = 1, 2, . . . , Nx and

my = 1, 2, . . . , Ny (so as to distinguish between counters pertaining to auxiliary sources and
matching points), which are placed at

→
r
(mx ,my)

cyl,m =(
x
(mx ,my)
cyl + a

(mx ,my)
cyl cos

(
2π m−1

N(mx ,my)

)
, y

(mx ,my)
cyl + a

(mx ,my)
cyl sin

(
2π m−1

N(mx ,my)

))
m = 1, 2, . . . , N(mx ,my)

(10)

Standard boundary conditions imply that the tangential components of the electric
and magnetic fields must be continuous across the boundaries of all cylinders. Thus, the
following equations are readily obtained:

− k0ζ0
4

Nx
∑

nx=1

Ny

∑
ny=1

N(nx ,ny)

∑
n=1

w
(nx ,ny)
in,n H(2)

0

(
k0

∣∣∣∣→r (mx ,my)

cyl,m −→r
(nx ,ny)

in,n

∣∣∣∣)
+ kζ

4

N(nx ,ny)

∑
n=1

w
(nx ,ny)
out,n H(2)

0

(
k
∣∣∣∣→r (mx ,my)

cyl,m −→r
(nx ,ny)

out,n

∣∣∣∣) = −Einc
z

(
→
r
(mx ,my)

cyl,m

)
mx = 1, 2, . . . , Nx, my = 1, 2, . . . , Ny

(11)

− jk0
4

Nx
∑

nx=1

Ny

∑
ny=1

N(nx ,ny)

∑
n=1

w
(nx ,ny)
in,n

(
→
r
(mx ,my)
cyl,m −→r

(mx ,my)
cyl

)
·
(
→
r
(mx ,my)
cyl,m −→r

(nx ,ny)
in,n

)
a
(mx ,my)
cyl

∣∣∣∣→r (mx ,my)
cyl,m −→r

(nx ,ny)
in,n

∣∣∣∣
×H(2)

1

(
k0

∣∣∣∣→r (mx ,my)

cyl,m −→r
(nx ,ny)

in,n

∣∣∣∣)

+ jk
4

N(nx ,ny)

∑
n=1

w
(nx ,ny)
out,n

(
→
r
(mx ,my)
cyl,m −→r

(mx ,my)
cyl

)
·
(
→
r
(mx ,my)
cyl,m −→r

(nx ,ny)
out,n

)
a
(mx ,my)
cyl

∣∣∣∣→r (mx ,my)
cyl,m −→r

(nx ,ny)
out,n

∣∣∣∣
×H(2)

1

(
k
∣∣∣∣→r (mx ,my)

cyl,m −→r
(nx ,ny)

out,n

∣∣∣∣) = −Hinc
t

(
→
r
(mx ,my)

cyl,m

)
mx = 1, 2, . . . , Nx, my = 1, 2, . . . , Ny

(12)
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The Equations of (11) and (12) constitute a linear system of NT equations with NT
unknowns (i.e., the aforesaid currents) of the form Z ·w = −b, where Z is the interaction
matrix, w is the vector containing the unknown currents, and b is the excitation vector. For
convenience, these can be written in the form of sub-matrices similar to those provided
in [18]. From the solution of this system, one can directly compute the electric and magnetic
fields at any observation point using the expressions of (4)–(9).

As already discussed, non-uniform arrays of cylinders can be treated using the method
at hand by zeroing the contributions pertaining to certain pairs

(
nx, ny

)
. This approach

is rather simple and straightforward and is omitted for brevity. It is further stressed that
non-orthogonal cylinder lattices are also within the capabilities of both schemes, as long as
the centers of the cylinders are arbitrary, with the proviso that the cylinders do not overlap.
Therefore, the MAS/MAS-FMM schemes of this work are essentially capable of coping
with uniform/non-uniform and orthogonal/non-orthogonal cylinder arrays.

After solving the system for the currents w
(nx ,ny)
in,n and w

(nx ,ny)
out,n , the boundary conditions

utilized for solving the problem are satisfied exactly only at the collocation points. As an
indicative error metric, one can adopt the (normalized) boundary-condition error, which is
given by the ratio of the tangential electric or magnetic field difference across the boundary
over the corresponding incident field. Obviously, this error is expected to be zero (or very
close to zero due to the finite accuracy of computers) at the collocation points and non-zero
between them, reaching local maxima at or very close to the respective mid-points. The
occurrence of fairly small error peaks and means (small compared to what may be expected
empirically), which decrease steadily as NT is increased, is a strong indication that the
numerical solutions are numerically stable and trustworthy.

In order to validate the MAS model discussed so far, extensive numerical tests were
conducted and evaluated. In all cases in which the auxiliary sources were placed according
to the findings of [4–10,18], the errors in the boundary conditions were indeed found to
diminish steadily with increasing NT. Moreover, the solutions obtained were compared
to those of other methods in order to independently check the validity of the results.
Exemplary cases are presented below. At this point, it is noted that N(nx ,ny) should be
selected so that the distance between neighboring sources belonging to each auxiliary curve

is comparable to the respective distance from the boundary, which is δ
(nx ,ny)
in = a

(nx ,ny)
cyl −

a
(nx ,ny)
in for the inner set and δ

(nx ,ny)
out = a

(nx ,ny)
out − a

(nx ,ny)
cyl for the outer one. Therefore, as a

quite safe choice for good conditioning of the system and overall behavior of the numerical

solutions, one can start with N(nx ,ny) close to 2πa
(nx ,ny)
in /δ

(nx ,ny)
in or 2πa

(nx ,ny)
out /δ

(nx ,ny)
out , and

progressively increase them until some error/stability criterion is met. One should also
bear in mind that severe ill-conditioning problems typically occur when N(nx ,ny) becomes

quite larger than 2πa
(nx ,ny)
in /δ

(nx ,ny)
in or 2πa

(nx ,ny)
out /δ

(nx ,ny)
out . These issues can be identified

and isolated using higher-precision arithmetic, various system solvers, and alternative
routine implementations.

3.2. Hybrid MAS-FMM Formulation

The standard MAS model discussed so far is quite simple and capable of treating
arbitrarily large arrays of cylinders. However, as NT gets larger, the computational cost
of the matrix formation ensuing from the system of (11) and (12) becomes excessively
high. As a first improvement, one can simply utilize the large-argument approximations
H(2)

0 (u) ∼
√

2/(πu) exp(−ju + jπ/4) and H(2)
1 (u) ∼

√
2/(πu) exp(−ju + j3π/4) as

u→ ∞ , which can be used for computing the interactions involving internal auxiliary
sources and matching points pertaining to different cylinders (i.e., for nx 6= mx and/or
ny 6= my). Note that the auxiliary sources located outside each cylinder do not contribute to
interactions between cylinders and, therefore, their fields should be approximated using the
aforesaid large-argument expressions only in cases of electrically large cylinders. Roughly
speaking, these simple approximations alone can save up to about 70% of the execution
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time required for computing Z [18]. Nevertheless, as discussed below, the computational
cost for filling Z can be further reduced.

Although often less costly than MoM, the complexity of MAS is still of order O
(

N2
T
)

for filling Z and O
(

N3
T
)

for solving Z ·w = −b via conventional methods (e.g., LU de-
composition), meaning that the relative advantages of MAS, at least with respect to the
execution time, may become less pronounced for very large NT. To reduce the complex-
ity and the computational cost, the interactions between fairly distant auxiliary sources
and matching points can be properly grouped together into clusters as in [18], which is
exactly the fundamental idea behind the FMM. Direct implementations of FMM reduce the
complexity for obtaining Z ·w = −b from O

(
N2

T
)

to O
(

N3/2
T

)
, while more sophisticated

implementations (e.g., recursive clustering schemes and preconditioning) can lead to even
lower complexity down to O(NT log NT) [11].

The FMM essentially consists in the decomposition Z = Z’ + Z”, where Z’ contains
the near-field part of Z and Z” contains the respective far-field part. The computation of

the latter is accelerated via the decomposition of the form Z” = VT · T ·
~
V (the superscript

‘T’ denotes the transpose matrix/vector), in which V, T, and
~
V are all sparse matrices. The

cluster grouping is accomplished via V, whereas
~
V performs the necessary disaggregation.

The translation matrix T essentially contains the interactions between clusters. The afore-
said decomposition is based on the addition theorem for Hankel functions (e.g., see Section
10.23 in [24])

H(2)
ν

(
k0

∣∣∣∣→r 0 +
→
δ

∣∣∣∣) exp(jν(χr − χ0)) =
∞

∑
l=−∞

H(2)
l+ν

(
k0

∣∣∣→r 0

∣∣∣)Jl

(
k0

∣∣∣∣→δ ∣∣∣∣) cos(lη) (13)

where η is the angle between
→
r 0 and

→
δ , whereas χr and χ0 are the angles of the vectors

→
r 0 +

→
δ and

→
r 0 measured from the x axis, respectively. Here,

→
r 0 connects the center

of a cluster of auxiliary sources with the center of a cluster of matching points, while
→
δ =

→
δ MP −

→
δ AS so that the vector

→
r 0 +

→
δ connects the location of any auxiliary source

with any matching point. In (13), H(2)
l+ν(·) and Jl(·) denote Hankel (of the second kind) and

Bessel functions of order l respectively. As long as Jl practically vanishes for l > k0

∣∣∣∣→δ ∣∣∣∣, the

summation in (13) can be truncated so as to include only the terms with |l| ≤ L, where

L ∼ k0max
{∣∣∣∣→δ ∣∣∣∣}. This parameter can be readily estimated from the radii of the cylinders

yielding the rough upper bound k0max
{∣∣∣∣→δ ∣∣∣∣} < 2k0max

{
a
(nx ,ny)
cyl

}
. Alternatively, it could

be heuristically selected via trial and error. Furthermore, one can proceed using

Jl(u) cos(lη) =
j−l

2π

∫ 2π

0
exp(ju cos ξ) cos(l(ξ − η))dξ (14)

which yields the following integral:

Jl

(
k0

∣∣∣∣→δ ∣∣∣∣) cos(lη) =
j−l

2π

∫ 2π

0
exp

(
jk0

_
ξ ·
→
δ

)
cos(lγ)dξ (15)

where
_
ξ is the unit vector pointing towards the direction of integration, which is normal to

the unit circle, and γ is the angle between
→
r 0 and

_
ξ . The integral in (15) can be computed
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numerically over a finite set of P uniformly distributed angles on the unit circle. Then,
using (13)–(15), one can write

H(2)
ν

(
k0

∣∣∣∣→r 0 +
→
δ

∣∣∣∣) exp(jν(χr − χ0)) ≈∫ 2π
0 exp

(
jk0

_
ξ ·
(→

δ MP −
→
δ AS

))
L
∑

l=−L

j−l

2π H(2)
l+ν

(
k0

∣∣∣→r 0

∣∣∣) cos(lγ)dξ

(16)

The integral in (16) can be estimated numerically by the summation

H(2)
ν

(
k0

∣∣∣∣→r 0 +
→
δ

∣∣∣∣) ≈
exp(−jν(χr − χ0))

P
∑

p=1
VAS

(
_
ξ p

)
T
(
_
ξ p

)
ṼMP

(
_
ξ p

)
∆ξ

(17)

where ∆ξ = 2π/P,VAS

(
_
ξ p

)
= exp

(
−jk0

_
ξ p ·

→
δ AS

)
and ṼMP

(
_
ξ p

)
= exp

(
jk0

_
ξ p ·

→
δ MP

)
are the elements of the one-dimensional matrices V and

~
V, respectively, whereas T

(
_
ξ p

)
are the elements of the matrix T obtained from

T
(
_
ξ p

)
=

L

∑
l=−L

j−l

2π
H(2)

l+ν

(
k0

∣∣∣→r 0

∣∣∣) cos
(
lγp
)

(18)

Note that (18) can be used for the computation of both electric-field (ν = 0) and
magnetic-field (ν = 1) interactions. When the distances between cylinders are significantly
larger than their radii, (18) can be simplified to

T
(
_
ξ p

)
≈

L

∑
l=−L

j−l

2π

√√√√ 2

πk0

∣∣∣→r 0

∣∣∣ exp
(
−jk0

∣∣∣→r 0

∣∣∣+ j
(2l + 2ν + 1)π

4

)
cos
(
lγp
)

(19)

This approximation further accelerates the procedure for filling the matrix T and
can achieve additional cost reductions. The number of terms in the summation of (17)

should be selected in the order of k0max
{∣∣∣∣→δ ∣∣∣∣}. In practice, one can simply start with

P = L and increase (independently) P and/or L so that the results of interest are found to
be numerically stable and trustworthy—this point is further discussed below. When the
distances between cylinders are sufficiently larger than their radii—note that this condition
holds for tree trunks in orchards/forests and for many other practical purposes—the
clusters coincide with the sets of auxiliary sources and matching points associated with
each cylinder. As a result, Z’ contains the sub-matrices corresponding to nx = mx and
ny = my, with its other entries set to zero. With regard to the non-diagonal entries of Z”,
these are computed with the aid of (17) and (18), whereas its diagonal ones can be set to
zero. This sort of matrix decomposition yields sparse matrices and facilitates the efficient
storage and the fast inversion for the linear system at hand, leading to significant savings
with respect to the overall computational cost.

4. Numerical Results and Discussion

Representative numerical results are provided here for the validation of the numerical
schemes discussed so far and, also, for their comparison from the viewpoints of accuracy,
complexity, and computational cost. Though the formulation presented in this work was
written down explicitly and thoroughly tested for plane-wave and line-source excitations, the
results that follow regard only the former case, for the sake of simplicity and for making direct
comparisons with results from the existing literature and others obtained via other methods.
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In order to validate the MAS model described above, exhaustive numerical tests
were conducted. In all cases, at least when the auxiliary sources were properly placed as
described above, the errors in the boundary conditions of the tangential electric/magnetic
fields were found to be fairly small (see below) and, also, to diminish steadily as the
numbers of auxiliary sources (and matching points) was increased. Moreover, the numerical
solutions were compared to those of analytical [25] and numerical methods [26–32], in
order to independently check their validity. A few exemplary cases are presented below.

First, the simple case of an isolated dielectric cylinder (comprising a trivial 1×1
lattice) was examined. The parameters were ε = 5ε0, acyl = 0.2 m, ain = 0.75acyl, and
aout = 1.25acyl. Given that only one cylinder was considered in this case, the MAS-FMM
hybrid was not applied, and the tests were run for MAS in its original, naive form. The
incident field was a plane wave with frequency f = 1 GHz, impinging from the left
(i.e., coming from the direction φ0 = 180◦). Several numerical tests have shown that
the numerical stability and the convergence behavior of the MAS solutions were just as
anticipated from [4–10]. Moreover, the computed near and far fields were found to be
virtually identical to those of the exact solution [25] (for sufficiently large N). The relative
difference between the electric-field magnitude as obtained from MAS with N = 40 and
the respective analytical solution are depicted in Figure 2, as a function of the observation
angle φ at a distance r = 10acyl from the center of the cylinder at hand. Apparently, the
relative differences are symmetric and small, as they do not exceed 0.07%. The symmetric
behavior of the difference between numerical and exact solution is a strong indication
that the computations have not been corrupted by any significant numerical noise and
roundoff errors. Furthermore, in order to examine the credibility of the developed code for
coping with lossy dielectrics, the same problem was solved after changing the dielectric
constant of the cylinder to the complex-valued one ε = (5− j3)ε0. Again, the numerical
results were found to be virtually identical to those of the respective analytical solution,
as also shown in Figure 2. In this latter case, the relative differences are lower than 0.01%.
The respective peak (max) and average (mean) errors associated with the continuity of the
electric and magnetic fields are reported in Table 1. These percentage errors correspond to
the magnitude of the field difference (across the boundary) normalized to the magnitude of
the incident plane wave. To further illustrate the very good agreement between numerical
and exact solutions, Figure 3 exhibits the electric-field magnitude as obtained from MAS
and the respective exact solutions for the two cases examined so far.
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Figure 2. Relative difference in the electric-field magnitude obtained from MAS and the respective
analytical solution, as a function of the observation angle in the azimuth plane, for an isolated
dielectric cylinder without and with losses (comprising a trivial lattice). The parameters pertaining to
the cylinder and the incident field are provided in Table 1.
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Table 1. Peak (max) and mean boundary-condition errors for various exemplary cases of lattices of
dielectric cylinders.

Case Parameters
Max Errors (%) Mean Errors (%)

E-Field H-Field E-Field H-Field

1 × 1 lattice
Nx = 1
Ny = 1

f = 1 GHz
ε = 5ε0

acyl = 0.2 m
ain = 0.75acyl
aout = 1.25acyl

N = 40

0.023 0.154 0.007 0.059

1 × 1 lattice
Nx = 1
Ny = 1

f = 1 GHz
ε = (5− j3)ε0
acyl = 0.2 m

ain = 0.75acyl
aout = 1.25acyl

N = 40

0.029 0.253 0.010 0.087

1 × 5 lattice
Nx = 1
Ny = 5

f = 0.3 GHz
ε = 5ε0

acyl = 0.1λ
ain = 0.75acyl
aout = 1.25acyl

d = 0.75λ
N = 40

0.023 0.152 0.007 0.057

5 × 5 lattice
Nx = 5
Ny = 5

f = 1 GHz ε = 5ε0
acyl = 0.2 m

ain = 0.75acyl
aout = 1.25acyl

d = 2 m
N = 40

0.027 0.189 0.005 0.039
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Figure 3. Electric-field magnitude, as a function of the observation angle in the azimuth plane, for
an isolated dielectric cylinder (comprising a trivial lattice). The continuous lines correspond to the
MAS results, whereas the dots show the results obtained from the respective analytical solutions. The
parameters pertaining to the cylinder and the incident field are provided in Table 1. (a) corresponds
to the lossless cylinder, whereas (b)corresponds to the lossy one.

As another example, the 1 × 5 lattice studied in [29] was examined. The parame-
ters pertaining to the five identical cylinders taken from [29] were ε = 5ε0, acyl = 0.1λ,
ain = 0.75acyl, and aout = 1.25acyl. The distance between adjacent cylinder centers was
set to d = 0.75λ and the incident field was a plane wave with frequency f = 0.3 GHz,



Mathematics 2022, 10, 3211 11 of 16

impinging from the direction φ0 = 180◦. Again, the results shown herein were obtained
with N = 40. To justify this choice, the convergence of the numerical solutions is exhibited
in Figure 4, which shows the logarithm (with base 10) of the computed peak electric-field
and magnetic-field boundary-condition errors for 10 ≤ N ≤ 100. Such logarithmic curves
are often used for convergence/stability assessments when applying frequency-domain
numerical methods (e.g., see [33]). Obviously, the errors decrease rapidly and steadily, as
one could expect from the findings and discussions in [4–10]. It is particularly stressed
that no ill-conditioning issues were encountered in the range 10 ≤ N ≤ 100 and, therefore,
the results of Figure 4 (and Figure 5 below) are believed to be free of numerical noise and
roundoff errors. The respective mean boundary-condition errors were found to exhibit
a similar behavior and are not shown here for the sake of brevity. The computed radar
cross-section or (RCS), which is analogous to the square of the scattered electric-field mag-
nitude in the far-field region, is shown in Figure 5 as a function of the observation angle φ
at a distance r = 1000λ from the center of the lattice. For clarity, the RCS is shown in dBm
(i.e., in decibels normalized to 1 m). Evidently, the results of MAS/MAS-FMM in Figure 5
are in very close agreement with those obtained from [29], which are shown as rhombic
dots. In particular, the forward and backward RCS tabulated in [29] almost coincide with
those of MAS/MAS-FMM, as long as they differ by (only) about 1–1.5%. Certain other RCS
values estimated from ([29], Figures 5 and 6) are also shown in Figure 5. The results from
MAS and MAS-FMM are virtually identical at the scale of the plot. The latter were obtained
with the FMM parameters set to L = P = 8. These values were selected after extensive
numerical experimentation regarding the convergence behavior of the series involved
in (16)–(19) and the numerical stability of the MAS-FMM solutions. Specifically, for the

5 × 5 lattice case, the upper bound 2k0max
{

a
(nx ,ny)
cyl

}
of the estimator L ∼ k0max

{∣∣∣∣→δ ∣∣∣∣} is

(roughly) 8.3, which is consistent with the choice L = P = 8.
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Figure 4. Logarithm (with base 10) of the computed peak (max) electric-field and magnetic-field
boundary-condition errors as a function of the number of auxiliary sources in each set of sources
inside/outside each cylinder for a 1× 5 lattice of cylinders. The parameters pertaining to the cylinders
and the incident field are provided in Table 1.
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Figure 5. RCS (in dBm) as a function of the observation angle in the azimuth plane for a 1 × 5 lattice
of cylinders. The parameters pertaining to the cylinders and the incident field are provided in Table 1.
The rhombic dots correspond to the forward and backward RCS tabulated in [29], and to certain other
RCS values estimated from [29].
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Figure 6. Execution times required by the MAS and MAS-FMM schemes for forming and solving
the linear system for the MAS currents as a function of the (total) number of unknowns. The results
correspond to lattices of increasing size up to 20 × 20. The number of unknowns in the horizontal
axis changes as an outcome of the increase in the number of cylinders in the lattice. The number of
auxiliary sources per cylinder remained unaltered.

Next, the MAS and MAS-FMM schemes are compared from the aspect of the com-
putational cost (in terms of the execution time and the memory usage). To this end, the
total execution time for forming and solving the respective linear system for the MAS
currents is shown in Figure 6 as a function of the total number of unknowns. The results
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depicted in Figure 6 were obtained for various numbers of cylinders comprising lattices
of increasing size from 2 × 2 and up to 20 × 20, which required 32,000 auxiliary sources
(and matching points) for its adequate modeling (without altering N, so as for the error
to remain unchanged). The execution times have been measured on the same personal
computer and are indicative of the associated computational cost. As it is obvious, the
MAS-FMM scheme is indeed notably faster than the naïve MAS scheme, an advantage that
becomes even more pronounced as the array becomes larger. From the results of Figure 6,
the MAS curve exhibits a polynomial behavior of order 3, whereas the MAS-FMM curve
increases with a much lower rate (order 2 or slightly lower). Apparently, the savings in
the execution time reach and even exceed 80% for NT > 25, 000. Important savings in the
memory consumption were also documented during the exhaustive runs conducted and
performed. While small lattices (e.g., 2 × 2 and 4 × 4) seemed not to increase the memory
usage during the execution of the conventional MAS code, larger lattices appeared to be
quite demanding in terms of memory; namely, the memory usage reached 16% for the 8× 8
lattice, 30% for the 12× 12, 60% for the 16× 16, and 95% for the 20× 20. On the other hand,
the memory usage during the execution of the MAS-FMM code did not exceed 12–13%
for all these lattices. Besides, numerous runs for various large lattices have shown that
these savings in the execution time and memory consumption are absolutely representative
and feasible and should be anticipated for lattices with dimensions pertaining to actual
orchards or forests and for frequencies in the UHF band.

Finally, the MAS-FMM scheme proposed and examined in this paper is compared
to the well-established package COMSOL using FEM [34]. The aim of this comparison is
twofold: to validate the results of MAS-FMM in a quite demanding case and to further
illustrate the applicability of the MAS-FMM scheme to large-scale problems. At this point,
it is worth mentioning that the application of standard, general-purpose FEM schemes
requires mesh generation for the whole domain at hand, which may completely consume
the available computer resources even for moderately large arrays of cylinders, especially
when the distances between their centers are much larger than their radii. On the contrary,
MAS-FMM can analyze very large arrays of cylinders, without severe limitations on the
size of the array. For the aforesaid comparison, a 5 × 5 lattice of cylinders was tested. The
parameters pertaining to the cylinders are contained in Table 1. The computed RCS (again
in dBm) is shown in Figure 7, in which certain negative values are out of scale and are not
shown. Both methods predict the rather anticipated rapidly oscillating patterns, which are
very close to each other. Note, in particular, that the positive peaks agree remarkably well
(taking into account the nature of the oscillatory pattern for the examined electrically large
lattice). The evident discrepancies in the negative peaks (nulls) are rather unimportant, as
long as they correspond to very small RCS values. The distance between cylinder centers
in the lattice at hand was selected to be relatively short in order to facilitate convergence
of the FEM/COMSOL solution, used as reference. However, this selection inevitably
resulted in suboptimal performance of the FMM module in our algorithm, verified by a
few discrepancies between MAS-FMM and FEM, as, e.g., in the central lobe (at φ = 180◦)
of the RCS pattern shown in Figure 7. Such discrepancies are not present in analogous
comparisons between FEM and pure MAS; therefore, they are clearly attributed to FMM,
which is certainly more accurate in larger geometries, not easily computable by FEM. Other
factors affecting accuracy will be investigated in a future work on MAS-FMM and its use
for near- and far-field computations. Regarding the execution time, COMSOL required
about 81 s, whereas MAS-FMM required about 8 s. The differences became more dramatic
for the 10 × 10 lattice, for which COMSOL required about 40 min and MAS-FMM only
1 min. It is noted that COMSOL failed to analyze the case of the 20 × 20 lattice (due to lack
of memory), which, however, was successfully treated by MAS-FMM (in about 15 min).
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Figure 7. RCS (in dBm) as a function of the observation angle in the azimuth plane for a 5×5 lattice
of cylinders. The parameters pertaining to the cylinders and the incident field are provided in Table 1.
The results were obtained from MAS-FMM and COMSOL.

5. Conclusions and Prospect

The MAS-FMM scheme proposed and examined in this paper is a hybrid numerical
technique combining the general approach of MAS together with the grouping/clustering
concept of FMM. The aim of this combination is to achieve computational efficiency without
notably compromising numerical accuracy, especially for large-scale problems that involve
many scatterers. Many numerical experiments have shown the efficacy of the proposed
hybridization and revealed huge savings in the associated computational cost. Though
the scheme presented and evaluated here is for 2D problems only, 3D extensions and
implementations are possible, and even more promising from the aspect of the potential
computational savings.

Regarding the possible extensions of this work, these can be summarized as follows:

• The treatment of random lattices of cylinders for the deterministic or stochastic analy-
sis of electromagnetic propagation through complex vegetation environments (like
forests) is quite simple and straightforward. It is particularly stressed that macro-
scopic, stochastic approaches may be best suited for characterizing complex vegetation
environments. For this purpose, one can start from the assumption of proper sta-
tistical distributions for the radii of the cylinders and the distances between them
(depending on the specific characteristics of the orchard/forest or other environment
of interest), proceed using some certain strategy for applying the MAS-FMM scheme of
this work repeatedly, and finally compute distributions or moments for the statistical
characterization of the propagation environment of interest.

• The generalization of the proposed MAS-FMM scheme to cope with 3D scatterers.
Though not easy to manipulate and present in a comprehensive manner, this can be
accomplished via lengthy but straightforward modifications [1].

• The systematic assessment of the proposed MAS-FMM scheme from the aspect of
the associated complexity and computational cost and the relevant comparisons with
other established methods of Computational Electromagnetics. To this end, rigorous
cost metrics, such as polynomials involving the total number of unknowns, could
be obtained, and subsequently utilized to provide a solid basis for cost comparisons.
Furthermore, apart from the cost metrics usually used pertaining to the execution
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time and memory usage, one possible measure of the computational cost could be
the number of machine cycles consumed by the deployed routines (i.e., matrix filling,
system solving, calculation of currents and/or fields, etc.). Such an analysis is beyond
the scope of the present paper and is left for a future investigation.
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