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Abstract: The Sharpe ratio is a measure based on the theory of mean variance, it is the measure of
the performance of a portfolio when the risk can be measured through the standard deviation. This
paper suggests a Sharpe-ratio portfolio solution using a second order cone programming (SOCP).
We use the penalty-regularized method to represent the nonlinear portfolio problem. We present a
computationally tractable way to determining the Sharpe-ratio portfolio. A Markov chain structure is
employed to represent the underlying asset price process. In order to determine the optimal portfolio
in Markov chains, a new hybrid optimization programming method for SOCP is proposed. The
suggested method’s efficiency and efficacy are demonstrated using a numerical example.
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1. Introduction
1.1. Brief Review

Markowitz [1] proposed the mean-variance portfolio (MVP) which is a fundamental
contribution in the field of finance; currently, models based on it continue to be developed.
In its most basic version, it assumes n risky assets. Their returns over the period are
modeled as a random vector Z = (Zi)j=1,...,n ∈ Rn such that µ = E[Z] represents the

mean and Σ = (∑ E[(Z− µ)ᵀ(Z− µ)])1/2 is the covariance, where E denotes the expectation
operator. The mathematical formulation’s decision variable is ω = (ωi)i=1,...,n, which
indicates the percentage of the available budget invested in asset i. If ωi ≥ 0, it means that
short selling is not allowed.

The return of a portfolio ω = (ωi)i=1,...,n ∈ Rn is a scalar (random variable) given by
ωTZ = ∑n

i=1 ωiZi, then the mean return of ω is ωTµ = ωTE[Z], and the risk, measured by
the variance, is given by ωTΣω. We suppose that an admissible portfolio ω = (ωi)i=1,...,n ∈ Rn

is restricted to being contained within a closed convex set Wadm ⊆ Rn.
The selection of a portfolio is a risk–return trade-off. The minimum variance MVP

issue is used to define the optimal trade-off as

ωTΣω → minimize
ω∈Wadm

s.t.
ωTµ ≥ r

where r is the minimum required expected rate of return,

Wadm =
{

ω
∣∣∣ωTe = 1 : ωi ≥ 0, i = 1, . . . , n

}
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and e is a vector of size n whose components are ones. In this problem, we determine
the portfolio that minimizes the risk while still meeting the asset allocation and portfolio
budget constraints.

The objective of the Markowitz framework is to achieve a balance between the average
return of the portfolio and its risk, which is measured by the variance, that is, we look for
the highest return with the lowest risk that may exist among all the possibilities.

Another type of mean-variance analysis called the risk-adjusted expected return is
expressed as

ωTµ− λωTΣω → maximize
ω∈Wadm

s.t.
ωTe = 1

The dual objectives of this formulation are to maximize the portfolio expected re-
turn while minimizing variance, where λ is a risk-aversion coefficient determined by the
investors, and ωTe = 1 is the capital budget constraint.

Let us denote the function Ψ of the Pareto frontier

Ψ(ω, σ, µ) = sup
ω∈Wadm

inf
σ

ωTµ

where the trajectory of the optimal solution defines a concave curve increasing over
σ =

(
ωTΣω

)1/2 (standard deviation) for which

σ = inf

{(
ωTΣω

)1/2
∣∣∣∣ sup
ω∈Wadm

ωTµ, ω ∈Wadm

}

The best risk–return trade-off of the assets (Zi)j=1,...,n is found in the strictly concave
section of the curve, which is known as the efficient frontier. A portfolio ω is efficient if for
any other portfolio $ having the same expected return, its variance satisfies ωTΣω ≤ $TΣ$.
The performance of a portfolio ω with a uncertainty model is characterized by the set of
return–risk pairing computed using the variables across the set

P(σ, u) =

{
(σ, u) ∈ R2

∣∣∣∣∣σ = inf(ωᵀΣω)1/2, u = sup
ω∈Wadm

ωTµ

}

If there is no asset allocation restriction (except for the portfolio budget constraint), the
two-fund theorem states that the efficient frontier is a hyperbola and that every efficient
portfolio can be two-fold in terms of the mean and the variance as a combination of these
two efficient funds (portfolios) [2]. To obtain the efficient frontier of a portfolio, the average
return is needed, which is given by (ωᵀµ) and the standard deviation given by ((ωᵀΣω)1/2).
The efficient frontier can be computed using the Sharpe-ratio maximization [3,4]

ωᵀµ−r f

(ωᵀΣω)1/2 → maximize
ω∈Wadm

s.t.
ωᵀe = 1

(1)

where r f is the return of a risk-free asset (a risk-free asset is typically regarded to have
no risk or variance). The Sharpe-ratio maximization problem is named from the aim of
Equation (1), which measures the excess of return (ωTµ− r f ) normalized by the standard

deviation ((ωᵀΣω)1/2).
The efficient frontier is defined as the locations on the frontier of the portfolio with

expected returns greater than the expected return of the portfolio with the smallest variance.
The portfolio with the least variance among all portfolios is the most efficient. All portfolios
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in the efficient frontier are optimal according to the risk profile of the investor, which is the
choice of parameters.

1.2. Related Work

The Markowitz [1] single-period mean-variance portfolio is defined as a model that
maximizes the terminal wealth while minimizing risk using variance as a criterion. The
idea is to enable an investor to seek the maximum potential return by determining a risk
tolerance threshold. Trends, which are seen as inclinations of securities to move in a specific
manner over time, control the markets. Mathematical models, which detect patterns when
the price meets support and resistance levels throughout time, are used by investors to
forecast securities movements [5].

We structure the Markowitz mean-variance portfolio as a system whose variables are
represented by a discrete-time Markov chain to solve these challenges. We look at a specific
type of discrete-time Markov mean-variance portfolio model and find the portfolio strategy
that minimizes total risk, given a fixed anticipated return.

The Sharpe ratio is a measure of portfolio performance as long as the risk can be ade-
quately measured through the standard deviation, and it is usually effective for normally dis-
tributed returns. However, there are works, such as Zakamouline and Koekebakker et al. [6]
in which they generalized the evaluation of portfolio performance using the Sharpe ra-
tio. Lu and Li et al. [7] with their study identified a theoretical reasonable value of the
Sharpe ratio; to this end, they proposed a formula to estimate an expected value for the
Sharpe ratio, bounding it in the option pricing model. Kourtis et al. [8] provided how
to assess the value of efficient portfolios. Portfolio optimization for Markov chains with
restrictions has a significant body of work. See these articles for a survey of the impact
of transaction costs on portfolio optimization [9,10]. Portfolio optimization for Markov
chains with restrictions has a significant body of work. Sanchez et al. [11] proposed a novel
mean-variance customer portfolio optimization approach for a class of ergodic-finite con-
trollable Markov chains, according to citation percent. Sanchez et al. [12] built on the work
of [11] by presenting a recurrent reinforcement-learning strategy for controlled Markov
chains that adapts policies based on preprocessing and an actor–critic architecture. Clemp-
ner and Poznyak [13] investigated the applicability of the penalty regularized expected
utilities approach for solving the mean-variance Markowitz customer portfolio optimiza-
tion issue. In controlled partially observable Markov decision processes, Asiain et al. [14]
presented a reinforcement-learning method for calculating the customer portfolio with
transaction costs. Garcia-Galicia et al. [15] looked at a continuous-time portfolio strategy for
continuous-time discrete-state Markov decision processes with transaction costs requiring
temporal penalization. Using the extraproximal technique confined to a finite discrete
temporal, ergodic, and controlled Markov chains, Dominguez and Clempner [16] solved
the multi-period mean-variance customer-constrained Markowitz’s portfolio optimization
issue. Garcia-Galicia et al. [17] looked at policy optimization in the context of continuous-
time reinforcement learning for financial portfolio management, where the underlying
asset portfolio process is assumed to have a continuous-time discrete-state Markov chain
structure with simplex and ergodicity constraints. The portfolio problem’s purpose is to
redistribute a fund across various financial assets. Meghwani and Thakur [18] developed
a tri-objective portfolio optimization model with risk, return, and transaction cost as the
objectives, as well as a method for successfully handling equality constraints. Vazquez
and Clempner [19] developed a portfolio technique based on a Lagrangian regularization
method. The literature differs depending on whether you use continuous or discrete time,
a finite or infinite horizon, and so on [20–26].

Tikhonov’s regularization has gained a lot of interest in application sectors [27,28].
It is one of the most prominent ways to solve discrete ill-posed minimization problems.
The use of Tikhonov’s regularization to create successful algorithms is still a developing
topic. To solve the Markowitz MV portfolio model, for example, several strategies based
on Tikhonov’s regularization have been devised [11–13,19,29,30].
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1.3. Main Results

This paper proposes a solution to the Sharpe-ratio portfolio optimization issue, which
is based on a market model and allows for the formulation of risk reduction, security
returns, and performance assessment. We assume that securities trading occurs in discrete
time steps. We assume that the financial market is arbitrage free, meaning that no arbitrage
portfolio exists. The premise of an arbitrage-free market is proposed with the goal of
obtaining a pricing system that is compatible with the market’s principal asset price.

The main results are summarized as follows:

• Consider the problem of Sharpe-ratio portfolio selection.
• Formulate a regularization approach based on the penalty technique.
• Compute the optimal Sharpe-ratio portfolio using the new algorithm approach.
• Propose a financial mathematical method that is combined with increased computing

capacity to produce a powerful solution to the problem.

1.4. Organization of the Paper

The remainder of the paper is organized as follows. Section 2 describes the Sharpe-
ratio solver. Section 3 suggests a Markov approach for solving the proposed problem. A
numerical example is given in Section 4. Our conclusions and final comments are described
in Section 5.

2. Sharpe-Ratio Solver

If we denote σ = (ωΣω)1/2 =
∥∥∥Σ1/2ω

∥∥∥
2

(ωΣω)1/2 =

√(
(ωΣω)1/2

)2
≤
√(

∑i ∑k ωiΣ
1/2
ik

)(
∑k ∑j Σ1/2

kj ωj

)
=
∥∥∥Σ1/2ω

∥∥∥
2
,

where ‖·‖2 is the Euclidian norm and Σ1/2 satisfies that
(

Σ1/2
)ᵀ(

Σ1/2
)

= Σ we have
that the Sharpe-ratio portfolio minimization [3,4] can be expressed as

‖Σ1/2ω‖2
ωᵀµ−r f

→ minimize
ω∈Wadm

s.t.
ωᵀe = 1.

(2)

Let us introduce the variable α such that

α→ minimize
ω∈Wadm ,α>0

s.t.

‖Σ1/2ω‖2
(ωᵀµ−r f )

≤ α

ωᵀe− 1 = 0

such that α− ‖Σ1/2ω‖2
(ωᵀµ−r f )

≥ 0 with ωᵀµ− r f > 0. Now, consider the following second-order

cone programming (SOCP) for the Sharpe-ratio portfolio

ω → minimize
ω∈Wadm ,α>0

s.t.∥∥∥Σ1/2ω
∥∥∥

2
≤ α

(
ωᵀµ− r f

)
ωᵀe− 1 = 0

Under an affine mapping, the collection of points meeting a second-order cone con-
straint is the inverse image of the unit second-order cone given by
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∥∥∥Σ1/2ω
∥∥∥

2
≤ α

(
ωᵀµ− r f

)
⇔

 Σ1/2

αµ

ω +

 0

−αr f

 ∈ Kn+1

The standard or unit second-order cone of dimension Cn+1 is defined as

Kn+1 =


 ω

α

∣∣∣∣∣∣ω ∈Wadm, α ∈ R, ‖ω‖2 < α


Remark 1. The constraints, which are analogous to requiring the affine function to lie in the
second-order cone in Kn+1 lead to the SOCP.

It is possible that finding a minimum solution is not unique. We employ the penal-
ization method and introduce a Tokhonov’s regularizator with regularization parameters
q, δ > 0 to solve the ill-posed issue, which consists of

Ψ̃q,δ(α, ω, β) =

ω + q
[

1
2‖ωᵀe− 1‖2 + 1

2

∥∥∥(∥∥∥Σ1/2ω
∥∥∥

2
− α
(

ωᵀµ− r f

))
+ β

∥∥∥2
+ δ

2‖α‖
2 + δ

2‖ω‖
2 + δ

2‖β‖
2
]

(3)

Clearly, the optimization problem

Ψ̃q,δ(α, ω, β)→ minimize
ω∈Wadm ,α>0,β≥0

has a unique solution since the optimized function (3) is strongly convex if δ > 0. Consider-
ing $ = q−1 > 0, the following property holds:

arg min
ω∈Wadm ,α>0,β≥0

Ψ̃q,δ(α, ω, β) = arg min
ω∈Wadm ,α>0,β≥0

Ψ$,δ(α, ω, β)

and we have

Ψ$,δ(α, ω, β) =

$ω + 1
2‖ωᵀe− 1‖2 + 1

2

∥∥∥(∥∥∥Σ1/2ω
∥∥∥

2
− α
(

ωᵀµ− r f

))
+ β

∥∥∥2
+ δ

2‖α‖
2 + δ

2‖ω‖
2 + δ

2‖β‖
2

The concept behind the portfolio’s function Ψ$,δ(α, ω, β) is as follows: if the penalty
parameter $ approaches zero in a specific way, we may suppose that α∗$,δ, ω∗$,δ and β∗$,δ,
which are the optimization problem’s portfolio solution

Ψ$,δ(α, ω, β)→ minimize
ω∈Wadm ,α>0,β≥0

tend toward the set W∗adm of all the portfolio solutions to the original portfolio optimization
problem (2), i.e., the distance

d
{

α∗$,δ, ω∗$,δ, β∗$,δ; W∗adm

}
→

$,δ↓0
0

is defined as
d{y; W∗adm} = min

ω∗∈W∗adm

‖y−ω∗‖2
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Solver method for the Sharpe-ratio portfolio

ωt+1 = arg min
ω∈Wadm

{
1
2‖ω−ωt‖2 + γω,tΨ$t ,δt(αt, ω, βt)

}
βt+1 =

[
βt − γβ,t∇βΨ$t ,δt(αt, ωt, βt)

]
+

αt+1 =
‖Σ1/2ωt‖2
(ωᵀ

t µ−r f )


where for variable c

[c]+ = ([c1]+, . . . , [cn]+)

[ci]+ =

{
ci i f ci ≥ 0
0 i f ci < 0

3. Markov Approach for the Sharpe-Ratio Portfolio
3.1. Markov Model

Let us consider a discrete-time problem in which n takes integer values, i.e., n ∈ N. As-
sume un is a control variable whose value is determined at time n. The partial sequence of
controls (or decisions) taken throughout the first n phases is denoted by Un = (u1, . . . , un).
The control variable un is chosen based on the knowledge that Un = (un)n∈N (which deter-
mines everything else). However, a more cost-effective portrayal of the past is frequently
adequate. For instance, we may not require knowledge about the full path traveled up to
time n, but merely the location to which it has led us. The concept behind a state variable
x ∈ Rd is that its value at time n called xn, can be calculated using known values and
follows a plant equation (or law of motion) xn+1 = a(xn, un), n ∈ N. The optimal un is a
function only of xn, i.e., un = u(xn).

Consider a stochastic evolution where the x and u histories at time n are denoted by
Xn = (xn)n∈N and Un = (un)n∈N. As previously stated, the state structure is defined by
the fact that the process development is specified by a state variable x, which has the value
xn at time n ∈ N.

A discrete-time Markov chain is a tuple MC = (X, U, P), where X is the state space,
U is the action space and P(xn+1|Xn, Un) = P(xn+1|xn, un) is the transition probability
distribution (i.e., the stochastic version of the plant equation). A Markov decision process
is the tuple defined by MDP = (MC, f ), where f (xn+1, xn, un) is the immediate utility
function by choice of controls (un)n∈N.

The transition function P(xn+1|xn, un) and the common prior distribution P(x0) per-
fectly describe the behavior represented by a Markov chain, where P(xn) ∈ ∆X, where
∆X denotes the set of all probability distributions over X. The Markov chains are self-
contained. The absolute values of the utility function f (xn+1, xn, un) are bounded by some
constant. We assume that each Markov chain (P(xn), P(xn+1|xn, un)) is irreducible, recur-
rent and aperiodic (ergodic), and that P is its unique invariant distribution. Then, we have
P(xn+1) = ∑

xn∈X
P(xn+1|xn)P(xn). As well, there exists a state x∗ which is recurrent for

every distribution P.
To formulate the optimization issue related with MDP, let π : X → ∆(U) be a stationary

policy, where ∆(U) is the U-simplex, which maps state–space X to a probability distribution
on action–space U and determines randomized actions based on the current state xn. As
a result, we obtain that under policy π, the action un is chosen based on the probability
distribution π(xn). Let Πadm be the admissible set of Markov policies, i.e.,

Πadm =
{

π(un|xn)
∣∣∣∑un∈U π(un|xn) = 1, xn ∈ X, un ∈ U

}
.

In this model, the current value of the state is observable, i.e., when selecting un, xn is
known. We assume that Hn = (Xn, Un), where Hn is the observed history at time n.
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Given the Markovian structure of the state processes, the utility at state vector xn with
policy π(un|xn) and probability distribution P(xn) can be written as

F (π) = ∑
xn∈X

∑
un∈U

(
∑

xn+1∈X
f (xn+1, xn, un)P(xn+1|xn, un)

)
π(un|xn)P(xn) =

∑
xn∈X

∑
un∈U

F(xn, un)π(un|xn)P(xn),

such that F(xn, un) = ∑
xn+1∈X

f (xn+1, xn, un)P(xn+1|xn, un).

A policy {πn}n≥0 is called a optimal if for each n ≥ 0 maximizes the conditional
mathematical expectation of the utility function F (π) considering the history process in
period n, Hn = (Xn, Un) and set of possible states period Hn is fixed such that cannot be
changed hereafter, i.e., it achieves the optimal policy by solving the conditional optimization
problem given by

π∗ := arg max
π∈Πadm

E{F (π)|Hn} (4)

where F (π) is the average utility function. Under the previous assumptions the admissible
set Πadm is nonempty, therefore there exists an optimum policy π∗ in the class of stationary
Markovian policies.

The variance Var(F (π)) is given by

Var(F (π)) := ∑
xn∈X

∑
un∈U

[F(xn, un)−F (xn, un)]
2π(un|xn)P(xn) =

∑
xn∈X

∑
un∈U

F2(xn, un)π(un|xn)P(xn)−F 2(xn, un)

Finally, the portfolio is defined by

Φ(π) = F (π)− λVar(F (π)) =

∑
xn∈X

∑
un∈U

F(xn, un)π(un|xn)P(xn) + λ

(
F 2(xn, un)− ∑

xn∈X
∑

un∈U
F2(xn, un)π(un|xn)P(xn)

)
The distribution vector P(xn) is defined as

P(xn+1) = ∑
xn+1∈X

∑
xn∈X

(
∑

un∈U
P(xn+1|xn, un)π(un|xn)

)
P(xn) (5)

In the ergodic case, which we are dealing with, these probabilities exponentially
quickly converge to the stationary distributions, that is, P(xn) →n→∞

P(x). From now on, we
consider stationary distributions (we are considering the one-period portfolio).

3.2. Portfolio Model’s Compliance with MARKOV

Consider a variable v defined as

v(u, x) := π(u|x)P(x)

such

Vadm =

{
v(u, x)

∣∣∣∣ ∑
x∈X

∑
∈U

v(u, x) = 1, ∑
u∈U

v(u, x) > 0 ∑
x∈X

∑
u∈U

[
κx′ ,x − P(x′|x, u)

]
v(u, x) = 0, x′ ∈ X

}
where κx′ ,x is Kronecker’s variable. The following relationship holds true is the ergodic case

∑
u∈U

v(u, x) > 0.
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It is straightforward to determine that v(u, x) belongs to the simplex S

S : =

{
v(u, x)

∣∣∣∣∣∑x∈X
∑

u∈U
v(u, x) = 1

}

The utility function in terms of v-variables is determined by

F̃ (v) = ∑
x∈X

∑
u∈U

F(x, u)v(u, x),

To obtain the variables of interest after the portfolio model is solved, we have a
stationary distribution P(x) and the policy (portfolio) π(u|x) may be recovered using the
following formulae

P(x) = ∑
u∈U

v(u, x) π(u|x) = v(u,x)
∑

u∈U
v(u,x)

Associating these variables with the notions above define the vector

ω = ω(v) := (v(u, x)) ∈Wadm, v ∈ Vadm

such that the regularized portfolio return is defined as

Φδ(v) = ∑
x∈X

∑
u∈U

F(x, u)v(u, x) + λ ∑
x∈X

∑
u∈U

F(x, u)v(u, x) ∑
x′∈X

∑
u′∈U

F(x′, u′)v(u′, x′)−

λ ∑
x∈X

∑
u∈U

F2(x, u)v(u, x) + δ
2‖v(u, x)‖ 2

and satisfies
Ψδ(ω(v)) = Φδ(v)

then,
ω∗ ∈ Arg max

ω∈Wadm
Ψδ(ω(v))⇐⇒ v∗ ∈ Arg max

v∈Vadm
Φδ(v)

ω∗ = ω(v∗)

As a result,

(ωΣω)1/2

ωᵀµ− r f
=

[
∑

x∈X
∑

u∈U
F2(x, u)v(u, x)− ∑

x∈X
∑

u∈U
F(x, u)v(u, x) ∑

x′∈X
∑

u′∈U
F(x′, u′)v(u′, x′)

]1/2

∑
x∈X

∑
u∈U

F(x, u)v(u, x)− r̃ f

where r̃ f is the return risk-free asset in terms of Markov chains.

3.3. Solver for Markov Chains

Let us consider[
∑

x∈X
∑

u∈U
F2(x,u)v(u,x)− ∑

x∈X
∑

u∈U
F(x,u)v(u,x) ∑

x′∈X
∑

u′∈U
F(x′ ,u′)v(u′ ,x′)

]1/2

∑
x∈X

∑
u∈U

F(x,u)v(u,x)−r̃ f
→ min

v∈Vadm

s.t.
∑

x∈X
∑
∈U

v(u, x) = 1,

∑
u∈U

v(u, x) > 0,

∑
x∈X

∑
∈U

[
κx′ ,x − P(x′|x, u)

]
v(u, x) = 0
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Considering the SOCP for the Sharpe-ratio approach, we have

v→ min
v∈Vadm ,α>0

s.t.[
∑

x∈X
∑

u∈U
F2(x, u)v(u, x)− ∑

x∈X
∑

u∈U
F(x, u)v(u, x) ∑

x′∈X
∑

u′∈U
F(x′, u′)v(u′, x′)

]1/2
≤

α

(
∑

x∈X
∑

u∈U
F(x, u)v(u, x)− r̃ f

)
∑

x∈X
∑
∈U

v(u, x) = 1,

∑
u∈U

v(u, x) > 0,

∑
x∈X

∑
∈U

[
κx′ ,x − P(x′|x, u)

]
v(u, x) = 0

We have

Φ$,δ(v, α, β) = $v + 1
2

∥∥∥∥ ∑
x∈X

∑
u∈U

v(u, x)− 1
∥∥∥∥2
+

1
2

∥∥∥∥∥
[

∑
x∈X

∑
u∈U

F2(x, u)v(u, x)− ∑
x∈X

∑
u∈U

F(x, u)v(u, x) ∑
x′∈X

∑
u′∈U

F(x′, u′)v(u′, x′)
]1/2
−

α

(
∑

x∈X
∑

u∈U
F(x, u)v(u, x)− r̃ f

)
+ β

∥∥∥∥2
− 1

2

∥∥∥∥ ∑
u∈U

v(u, x)
∥∥∥∥2
+

1
2

∥∥∥∥ ∑
x∈X

∑
u∈U

[
κx′ ,x − P(x′|x, u)

]
v(u, x)

∥∥∥∥2
+ δ

2‖α‖
2 + δ

2‖v(u, x)‖2 + δ
2‖β‖

2

The optimization problem becomes

Φ$,δ(v, α, β)→ minimize
v∈Vadm ,α>0,β≥0

Solver method for the Sharpe ratio in Markov chains

vn+1 = arg min
v∈Vadm

{
1
2‖v− vn‖2 + γv,nΦ$,δ(v, αn, βn)

}
βn+1 =

[
βn − γβ,n∇βΦ$,δ(vn, αn, βn)

]
+

αn+1 =

[
∑

x∈X
∑

u∈U
F2(x,u)vn(u,x)− ∑

x∈X
∑

u∈U
F(x,u)vn(u,x) ∑

x′∈X
∑

u′∈U
F(x′ ,u′)vn(u′ ,x′)

]1/2

αn

(
∑

x∈X
∑

u∈U
F(x,u)vn(u,x)−r̃ f

)

4. Numerical Example

Under the one-period horizon, we assume that investors expect the same probability
distribution of returns and target the portfolio with the lowest risk. We believe that there is
no inflation or interest rate shift, and that the markets are in a state of equilibrium. To get
closer to the actual world, we assume that trading has transaction costs and that investors
can trade limitless quantities on an arbitrage-free market.

The proposed method implies that

vn+1 = arg min
v∈Vadm

{
1
2‖v− vn‖2 + γv,nΦ$,δ(v, α, β)

}
Developing further, we have



Mathematics 2022, 10, 3221 10 of 13

vn+1 = 1
2‖v(u, x)‖2 − v(u, x)vn(u, x) + 1

2‖vn(u, x)‖2 + γv,n

[
$v + 1

2

∥∥∥∥ ∑
x∈X

∑
u∈U

v(u, x)− 1
∥∥∥∥2
+

1
2

∥∥∥∥∥
[

∑
x∈X

∑
u∈U

F2(x, u)v(u, x)− ∑
x∈X

∑
u∈U

F(x, u)v(u, x) ∑
x′∈X

∑
u′∈U

F(x′, u′)v(u′, x′)
]1/2
−

α

(
∑

x∈X
∑

u∈U
F(x, u)v(u, x)− r̃ f

)
+ β

∥∥∥∥2
− 1

2

∥∥∥∥ ∑
u∈U

v(u, x)
∥∥∥∥2
+

1
2

∥∥∥∥ ∑
x∈X

∑
u∈U

[
κx′ ,x − P(x′|x, u)

]
v(u, x)

∥∥∥∥2
+ δ

2‖α‖
2 + δ

2‖v(u, x)‖2 + δ
2‖β‖

2

]

βn+1 =
[
βn − γβ,n∇βΦ$,δ(vn, αn, βn)

]
+

Hence,

βn+1 =

[
βn − γβ,n∇β

[
$v + 1

2

∥∥∥∥ ∑
x∈X

∑
u∈U

vn(u, x)− 1
∥∥∥∥2
+

1
2

∥∥∥∥∥
(

∑
x∈X

∑
u∈U

F2(x, u)vn(u, x)− ∑
x∈X

∑
u∈U

F(x, u)vn(u, x) ∑
x′∈X

∑
u′∈U

F(x′, u′)vn(u′, x′)
)1/2
−

α

(
∑

x∈X
∑

u∈U
F(x, u)vn(u, x)− r̃ f

)
+ βn

∥∥∥∥2
− 1

2

∥∥∥∥ ∑
u∈U

v(u, x)
∥∥∥∥2
+

1
2

∥∥∥∥ ∑
x∈X

∑
u∈U

[
κx′ ,x − P(x′|x, u)

]
v(u, x)

∥∥∥∥2
+ δ

2‖αn‖2 + δ
2‖vn(u, x)‖2 + δ

2‖βn‖2

)]
+

=[
βn − γβ,n

{(
∑

x∈X
∑

u∈U
F2(x, u)vn(u, x)− ∑

x∈X
∑

u∈U
F(x, u)vn(u, x) ∑

x′∈X
∑

u′∈U
F(x′, u′)vn(u′, x′)

)1/2
−

α

(
∑

x∈X
∑

u∈U
F(x, u)vn(u, x)− r̃ f

)
+ βn

}
+ δβn

]
+

Finally,

αn+1 =

[
∑

x∈X
∑

u∈U
F2(x, u)vn(u, x)− ∑

x∈X
∑

u∈U
F(x, u)vn(u, x) ∑

x′∈X
∑

u′∈U
F(x′, u′)vn(u′, x′)

]1/2

αn

(
∑

x∈X
∑

u∈U
F(x, u)vn(u, x)− r̃ f

)
For the proposed problem, we have that the set X has eight states and the set U three

controls. The initial parameters γν and γβ are set to be γν,0 = 5× 10−3 and γβ,0 = 5× 10−2.
For the method, the initial point portfolio π is set to be in the middle of the simplex, as
well as the initial distribution. The value of δ is set to be δ0 = 0.3049. As well, α0 = 0.5 and
β0 = 0.1.

The resulting portfolio is given by

π(u|x) =



0.3255 0.3363 0.3382
0.2741 0.3631 0.3628
0.3717 0.3958 0.2325
0.3401 0.3682 0.2917
0.2452 0.3836 0.3712
0.3487 0.3211 0.3302
0.5057 0.0080 0.4863
0.3250 0.3575 0.3175


The investor’s primary purpose is to make a profit. A rational investor tries to choose

the portfolio with the lowest risk that achieves this goal. To achieve this purpose, we create
a mean-variance diagram with all of the conceivable hazardous asset portfolios, where
the points indicate the returns F and the risk Var (variance) of the portfolios. Figure 1
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presents the convergence of the utility, Figure 2 shows the variance and Figure 3 plots the
convergence of the functional. Figure 4 shows the convergence of the portfolio strategies.

0 5 10 15 20 25 30

Iterations

0

0.1

0.2

0.3

0.4

0.5

0.6
Reward

R

Figure 1. Utility value of the portfolio.
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Figure 2. Variance value of the portfolio.
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Figure 3. Functional value of the portfolio.
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Figure 4. Convergence of the strategies.

5. Conclusions

Financial market research has grown in importance, owing to the adoption of advanced
mathematical tools for improved decision making. The need for more appropriate modeling
techniques to handle the portfolio optimization problem has risen due to the enormous
expansion in the diversity of financial assets. The Sharpe ratio is a popular performance
indicator used to optimize the trade-off between rewards and risks. The Sharpe ratio can
be applied to a variety of situations, including performance evaluation, risk management,
and market efficiency testing.

This paper proposes a Sharpe-ratio portfolio solution. For ensuring strong convexity
and the existence of a unique solution involving equality and inequality requirements, we
employed a penalty function approach. The penalty regularized technique was employed
to represent the nonlinear portfolio problem. For the proposed model, we suggest a
computationally tractable way to determine the Sharpe-ratio portfolio. A Markov chain
structure was used to model the underlying asset price process. In order to determine
the optimal portfolio in Markov chains, a new hybrid optimization programming method
was proposed. The suggested method’s efficiency and efficacy were demonstrated using a
numerical example.
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