
Citation: Yang, Z.; An, G.; Zhang, R.

STSM: Spatio-Temporal Shift Module

for Efficient Action Recognition.

Mathematics 2022, 10, 3290. https://

doi.org/10.3390/math10183290

Academic Editors: Andrea Prati,

Luis Javier García Villalba and

Vincent A. Cicirello

Received: 31 July 2022

Accepted: 5 September 2022

Published: 10 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

STSM: Spatio-Temporal Shift Module for Efficient
Action Recognition
Zhaoqilin Yang 1 , Gaoyun An 1,* and Ruichen Zhang 2

1 Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China
2 School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
* Correspondence: gyan@bjtu.edu.cn; Tel.: +86-138-1043-6920

Abstract: The modeling, computational complexity, and accuracy of spatio-temporal models are
the three major foci in the field of video action recognition. The traditional 2D convolution has
low computational complexity, but it cannot capture the temporal relationships. Although the 3D
convolution can obtain good performance, it is with both high computational complexity and a large
number of parameters. In this paper, we propose a plug-and-play Spatio-Temporal Shift Module
(STSM), which is a both effective and high-performance module. STSM can be easily inserted into
other networks to increase or enhance the ability of the network to learn spatio-temporal features,
effectively improving performance without increasing the number of parameters and computational
complexity. In particular, when 2D CNNs and STSM are integrated, the new network may learn spatio-
temporal features and outperform networks based on 3D convolutions. We revisit the shift operation
from the perspective of matrix algebra, i.e., the spatio-temporal shift operation is a convolution
operation with a sparse convolution kernel. Furthermore, we extensively evaluate the proposed
module on Kinetics-400 and Something-Something V2 datasets. The experimental results show the
effectiveness of the proposed STSM, and the proposed action recognition networks may also achieve
state-of-the-art results on the two action recognition benchmarks.

Keywords: spatio-temporal features; shift operation; action recognition; 2D convolution

MSC: 68T45

1. Introduction

With the rapid development of camera equipment and mobile phones, video data
has exploded in recent years. The massive amount of video information has far exceeded
the processing power of traditional artificial systems, which has aroused people’s research
interest in video understanding. As a fundamental task in video understanding, video
action recognition has become one of the most active research topics, widely applied in
video surveillance, video retrieval, social security, and other fields.

Recently, significant progress has been made in video action recognition based on deep
convolutional networks [1–8]. Action recognition based on 3D convolution, such as C3D [9]
and I3D [3], can most intuitively enable the network to learn spatio-temporal features.
However, I3D learns spatio-temporal features at the cost of hundreds of GFLOPs. The
use of 3D convolution will cause a large number of parameters and more computational
complexity, which greatly limit the practicability of related methods.

In order to reduce the amount of parameters and computational complexity, some
works [10–12] decompose the 3D convolution kernel into the space part (e.g., 1× 3× 3) and
the time part (e.g., 3× 1× 1). However, in practice, they are still with more parameters and
computational complexity than the corresponding 2D convolutions. The recent state-of-
the-art model TSM [4] has achieved a good balance between complexity and performance.
It abandons the traditional time convolution and learns time features by moving features

Mathematics 2022, 10, 3290. https://doi.org/10.3390/math10183290 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10183290
https://doi.org/10.3390/math10183290
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-3676-4761
https://orcid.org/0000-0002-6859-3645
https://doi.org/10.3390/math10183290
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10183290?type=check_update&version=2


Mathematics 2022, 10, 3290 2 of 17

along the time dimension using a shift operation with zero computational complexity and
parameters. After fusing the convolution results, it is combined with the backbone of 2D
CNNs to obtain the most advanced performance with a small amount of computational
complexity and parameters. This motivates us to focus on designing a plug-and-play
module with zero computational complexity and zero parameters that can effectively learn
spatio-temporal features.

In this paper, we propose a plug-and-play Spatio-Temporal Shift Module (STSM),
which is a general-purpose zero computation complexity and zero parameters module.
It has both high efficiency and high performance at the same time. First, we design a
spatio-temporal shift convolution, which is T×H×W (Time×Height× Width) tensors
performing a shift operation to improve network performance. It captures spatio-temporal
information from multiple perspectives using 1D shift operations in T, H, and W dimen-
sions, enabling the network to learn spatio-temporal features in one, two, and even higher
dimensions. Taking ResNet as an example, we add STSM before the first convolutional
layer of each residual block. The feature tensor is divided by channel. Selected channels
perform different shift operations to learn multi-view features, and the remaining channels
remain unchanged. Then the final network is built by embedding STSM in each residual
block. We have conducted extensive experiments on multiple well-known large datasets,
including Kinetics-400 [13] and Something-Something V2 [14]. The experimental results
fully demonstrate the effectiveness of our STSM. As shown in Figure 1, compared with
existing state-of-the-art methods, our proposed STSM exhibits competitive performance on
Something-Something V2. We achieve higher performance with less computation and less
sampling. For Kinetics-400, STSM enhances the network accuracy without increasing the
number of parameters and computational complexity.

Figure 1. Video action recognition performance comparison in terms of Top-1 accuracy, computational
complexity, and model size on the Something-Something V2 [14] dataset. Our STSM achieves higher
accuracy with less computational complexity and number of parameters than TSM [4], TRN [15] and
TSN [2].

The contributions of our paper are summarized as follows:

• We propose a plug-and-play Spatio-Temporal Shift Module (STSM), which is a module
with zero computational complexity and parameters but powerful spatio-temporal
modeling capabilities. A new perspective is proposed for efficient video model design



Mathematics 2022, 10, 3290 3 of 17

by performing shift operations in different dimensions. Moreover, we revisit our
spatio-temporal shift operation, which is essentially a convolution with a sparse
convolution kernel, from the perspective of matrix algebra.

• Video action has strong spatio-temporal correlations, but action recognition models
based on 2D CNNs backbone networks cannot effectively learn spatio-temporal fea-
tures. To learn more spatio-temporal features at zero cost, we integrated the proposed
STSM module in some typical 2D action recognition models in a plug-and-play fashion,
such as TSN [2], TANet [16], and TDN [17] etc. Furthermore, our STSM combined with
2D action recognition models achieves higher performance than 3D action recognition
models.

• Extensive experiments were conducted to verify the effectiveness of our method.
Compared with existing methods, the proposed module achieves state-of-the-art
or competitive results on the Kinetics-400 and Something-Something V2 datasets.
Moreover, our STSM does not increase the computational complexity and parameters.

2. Related Work
2.1. 2D CNNs

2D CNNs were widely used in various fields of deep learning [18–22]. Inspired
by the great success of deep convolution models in image recognition [21,23,24], many
methods based on 2D CNNs have been proposed to apply deep learning for the field
of video action recognition. In these methods, based on the two-stream architecture of
2D CNNs [1,25], video features could be learned from RGB streams and optical flow
streams or motion vectors, respectively. Then, the outputs of the two streams were fused
to obtain the prediction result. TSN [2] added a sparse time sampling strategy to the
two-stream structure to further improve performance. TRN [15] used the multi-scale
temporal relationship between sampled frames to improve model performance. Recently,
GST [26], GSM [27], TEINet [28] focused on solving the problem of efficient time modeling.
TSM [4] proposes a general plug-and-play temporal shift module with zero computational
complexity and parameters. TSM enables 2D CNNs to learn temporal features without
burden by simply shifting the feature tensor in memory along the temporal dimension.
TEA [5] also designs small modules to enhance network performance. It designs temporal
excitation and aggregation modules to capture network features’ short-term and long-
term temporal evolution through feature differentiation and accumulation, respectively.
TDN [17] used the time difference operator to design a module that can capture multi-scale
time information to achieve effective action recognition. STM [29] learned spatio-temporal
features and encoded motion features by designing spatio-temporal modules and motion
modules on the channel, respectively.

2.2. 3D CNNs and (2+1)D CNNs Variants

Since 3D CNNs can learn good spatio-temporal features, they were widely used in
the field of action recognition. C3D [9] was the first work to apply 3D CNNs to action
recognition, which directly used 3D convolution to learn the spatio-temporal features of the
video. However, C3D has too many parameters, which make it more difficult to be trained
than 2D CNNs. I3D [3] initialized the network by inflating the 2D convolution pre-trained
by ImageNet to 3D convolution, which improved the performance while reducing com-
putation time. S3D [11], P3D [10], R(2+1)D [12], and StNet [30] were inspired by I3D, and
could learn spatio-temporal features while reducing the computation complexity of 3D con-
volution. These (2+1)D CNNs resolved 3D convolutions into 2D spatial convolutions and
1D temporal convolutions. ECO [31] and ARTNet [32] combined 2D and 3D information in
CNN blocks to enhance the network’s ability of learning features. Recently, SlowFast [33]
explored the use of two different 3D CNN architectures to learn apparent features and
motion features. TPN [6] adopted a plug-and-play universal time pyramid network at the
feature level, which can be flexibly integrated into a 2D or 3D backbone network. Ref. [34]
proposes methods for extracting semantic-aware visual attention and synthesizing fusion



Mathematics 2022, 10, 3290 4 of 17

hierarchical semantic information to jointly interactively learn better features. ATFR [35]
improved the energy efficiency of the network by introducing a differentiable Similarity
Guided Sampling (SGS) module, and can be inserted into any existing 3D CNN architecture.
ACTION-Net [8] designed a universal and effective module with 3D convolution and used
it in 2D CNNs to enable the network to learn spatio-temporal features. CSTANet [36]
designed a lightweight and efficient channel-wise spatio-temporal aggregation block that
could be flexibly inserted into 2D CNNs. DSA-CNNs [37] effectively exploit the dense
semantic information of videos by using bottom-up attention in the spatial flow and fus-
ing the temporal flow. FEXNet [38] proposes a foreground extraction block to explicitly
model foreground cues for effective management of action subjects. STFT [39] proposed a
spatio-temporal short-term Fourier transform block that can replace 3D convolution.

3. Spatio-Temporal Shift Module (STSM)

The STSM is a plug-and-play module with zero computation complexity and parame-
ters. It can effectively and efficiently encode spatio-temporal features after being embedded
in the target network. In this section, we first introduce the details of our Spatio-Temporal
Shift Module (STSM) and how to insert it into the existing architecture of CNN. Then we
revisit that the essence of the shift operation in the STSM module is a convolution with a
sparse convolution kernel from a matrix algebraic point of view.

3.1. Efficient Action Recognition based on STSM

Our STSM is a plug-and-play module that can be inserted into any convolutional layer
of the network. Take the ResNet structured network for an exmaple, we insert the STSM
module as shown in the red rounded rectangle in the middle of the Figure 2. Only one
STSM module is inserted into each residual block, and the insertion position is before the
first convolutional layer inside the residual block.

Figure 2. Network structure diagram after embedding STSM in ResNet-50. The convolutions are
all 2D spatial convolutions, the first pooling layer is spatial max pooling, and the last pooling layer
is an average time pooling. For simplicity, we did not draw the batch normalization layer and the
activation function Relu in the figure.

Figure 2 shows the network structure after embedding our STSM module in ResNet-
50 [24]. The blue rounded rectangle at the bottom left is a schematic diagram of the structure
of the STSM module. The green rounded rectangle in the lower right corner of Figure 2
is a schematic diagram of the 1D shift operation in the width dimension. The difference
between time dimension shift, height dimension shift, and width dimension shift is the
dimension of the shift operation, so we only introduce the width shift operation. Here we
need to perform a shift operation on the tensor XW ∈ RT× α

3 C×H×W . We treat this tensor as
a 3D tensor, where one dimension is the channel C, one dimension is the width W, and the
other dimension is all the remaining dimensions. The leftmost part of the green rounded



Mathematics 2022, 10, 3290 5 of 17

rectangle in the lower right corner of Figure 2 is the 3D coordinate system of the 1D width
shift. The vertical axis is the channel dimension, the horizontal axis is the width dimension,
and the third axis is the combined dimension of time and height. Divide the tensor XW into
upper and lower halves along the channel dimension. The upper and lower halves of the
tensor XW are shifted one bit to the left and one to the right, respectively, along the width
dimension. The 1D spatio-temporal shift operation, time dimension (T) + height dimension
(H) + width dimension (W), combined with subsequent convolutions allows the network
to learn the results of 2D spatio-temporal shift operations and even 3D spatio-temporal
shift operations.

The 2D spatio-temporal shift operation is to perform the shift operation on two
dimensions in the same channel, respectively. Specifically, the 2D spatio-temporal shift
operation is TH+TW+HW, where, TH represents the two-dimensional space formed by the
time dimension and the height dimension, TW refers to the time and width dimensions,
and HW refers to the height and width dimensions. The 3D spatio-temporal shift operation
is to perform the shift operation on the three dimensions in the same channel, respectively.
Therefore, the 3D spatio-temporal shift operation is THW, which represents the three-
dimensional space formed by the time, height, and width dimensions. Applying shift
operation only to the spatial dimension [40] or the time dimension [4] does not fully release
the potential of the shift operation. Therefore, we propose a spatio-temporal shift operation
to make the shift operation play a more significant role.

Because our 1D spatio-temporal shift operation cooperates with subsequent convolu-
tions to obtain 1D, 2D and 3D spatio-temporal shift results, therefore, to enable the network
to adaptively select 1D, 2D, and 3D spatio-temporal shift operation to learn spatio-temporal
features based on samples, our STSM only uses 1D spatio-temporal shift operation based
on time dimension + height dimension + width dimension (T+H+W). In contrast, TSM [4]
only used 1D shift operations in the temporal dimension, and the network can only learn
temporal and spatial features through shift and convolution, respectively. The specific
verification will be given in detail in the ablation analysis in Section 5.1.2 later.

3.2. Spatio-Temporal Shift Operation

Our proposed STSM module using 1D spatio-temporal shift operation is shown in
Figure 3. Our 1D spatio-temporal shift operation is divided into the following five steps:

1. The feature tensor X ∈ RT×C×H×W is divided into four parts XT , XH , XW , XN by
channel, where T, C, H, W represent the time, channel, height and width dimensions,
respectively. Assume that α ∈ [0, 1] is the ratio of the number of channels in the
shift operation to the total number of channels, then XT , XH , XW ∈ RT× α

3 C×H×W ,
XN ∈ RT×(1−α)C×H×W .

2. For feature tensor XT after segmentation, it is divided into two parts X f
T ∈ RT× α

6 C×H×W

and Xb
T ∈ RT× α

6 C×H×W according to the channel. Then X f
T and Xb

T are shifted forward
and backward by one position in the time dimension to obtain the shifted tensors
X̂ f

T , X̂b
T ∈ RT× α

6 C×H×W . Next, we concatenate X̂ f
T and X̂b

T into X̂T ∈ RT× α
3 C×H×W

along the channel dimension.
3. For the second tensor XH and third feature tensor XW after segmentation, the same

shift operation as the first feature tensor is performed in the height dimension and
the width dimension, respectively. Then we get the 1D shifted tensors X̂H , X̂H ∈
RT× α

3 C×H×W .
4. The remaining feature tensor XN remains unchanged.
5. Finally, we concatenate the above four feature tensors X̂T , X̂H , X̂W , and XN along the

channel dimension to obtain a 1D spatio-temporal shifted tensor X̂ ∈ RT×C×H×W .

In this way, our 1D spatio-temporal shift operation is completed.



Mathematics 2022, 10, 3290 6 of 17

Figure 3. Time (T) + height (H) + width (W) 1D Spatio-temporal shift operation.

The shift operation completes the special convolution operation by moving the position
of the tensor without any calculation operation and does not need to store parameters at the
same time. Specifically, the shift operation is equivalent to a convolution operation using a
special sparse convolution kernel. This sparse convolution kernel has only one non-zero
component with a value of 1. In order to ensure the high efficiency of the module, we try
our best to make the shift operation corresponding to the sparse convolution kernel have
the greatest change to the input matrix. Therefore, when the dimensions before and after
the convolution are unchanged, the padding methods corresponding to different sparse
convolution kernels are different. The specific method is to perform a padding operation
on one side of the non-zero item. Assuming that the dimension of the sparse convolution
kernel is m× n, when m = 1 and n = 2, the 1× 2 dimensional convolution kernel has only
two combinations, i.e.: [

0 1
]

and
[
1 0

]
(1)

Under the premise that the dimension of the matrix is unchanged, to complete the
convolution operation of the above two convolution kernels, it is necessary to perform the
zero-padding operation on the matrix. Corresponding to the above-mentioned convolution
kernels [0 1] and [1 0], we respectively add zeros in the rightmost column and the left-
most column of the feature matrix. The sparse convolution operation corresponding to the
1D spatio-temporal shift operation is shown in Figure 4. The shift operation corresponding
to the convolution kernel [0 1] is to shift the entire matrix by one column to the left. The
specific operation is to delete the leftmost column of the input matrix, then add a column
of all zero vectors to the rightmost column. The shift operation corresponding to the
convolution kernel [1 0] is opposite to the shift operation of the convolution kernel [0 1].

When m = 2 and n = 1, the convolution kernel is:[
0
1

]
and

[
1
0

]
(2)

The shift operation is similar to the 1× 2 dimensional convolution kernel, and the left
and right shift of the matrix becomes the up and down shift.

When m = 2 and n = 2, there are only four combinations of 2 × 2-dimensional
convolution kernels, i.e.,: [

1 0
0 0

] [
0 1
0 0

] [
0 0
1 0

] [
0 0
0 1

]
(3)



Mathematics 2022, 10, 3290 7 of 17

Figure 4. Revisiting of the 1D spatio-temporal shift operation from the perspective of matrix algebra.
The figure shows the convolution calculation with a specific sparse convolution kernel and specific
padding corresponding to the 1D spatio-temporal shift operation of Figure 3. The 1D spatio-temporal
shift operation (T+H+W) is equivalent to the sparse convolution operation under specific padding.
At this time, the sparse convolution kernel has only one non-zero component with a value of 1.

The above-mentioned 2D convolution kernel is more complicated than the 1D con-
volution kernel. The shift corresponding to the 1D sparse convolution kernel only needs
to move the matrix once. The 2D sparse convolution needs to move twice to complete the
shift operation. Take the first sparse convolution kernel in Equation (3) as an example. In
the case of the same input and output dimensions, complete the shift operation through
the following steps:

1. Delete the rightmost column of the input matrix and add a column of zero vectors to
the leftmost column.

2. Delete the bottom row of the matrix obtained in the previous step, and add a row of
zero vectors to the top row.

The order of these two steps can be interchanged. In this way, the convolution
operation of a special 2D sparse convolution kernel is completed without any calculation.
Intuitively, it is equivalent to shifting the input matrix to the right one time and then to the
bottom one time. Moreover, the 3D shift operation needs to move three times to complete.

4. Experimental Setting

This section introduces the experimental settings related to this paper. Bold in all
tables represents the highest result.

4.1. Datasets and Evaluation Metrics

We evaluate our method on two large-scale datasets: Kinetics-400 (K400) [13] and
Something-Something V2 (Sth-V2) [14]. Kinetics-400 has 400 human action categories,
and the number of videos is approximately 240k training samples and 20k validation
samples. For the Something-Something V2 dataset, the actions in it have a strong temporal
relationship, so it is difficult to classify. It contains 220k videos, and the number of categories
is 174 fine-grained categories.

We report the Top-1 accuracy (%) of Kinetics-400 and Something-Something V2. In
addition, we use computational complexity (e.g., FLOPs or GFLOPs) and the number of
model parameters to describe model complexity. If there are no special instructions, all use



Mathematics 2022, 10, 3290 8 of 17

ImageNet for pre-training. #F and #Para indicate the number of frames and the number of
parameters, respectively.

4.2. Implementation Details

Unless otherwise stated, all experiments were performed on MMAction2 [41] using
RGB frames and evaluated on the validation set. The detailed setting and parameters of
the proposed STSM module are designed as follows.

4.2.1. Training

The parameters for training on the Kinetics-400 are: 100 training epochs, initial learning
rate 7.5× 10−3 (decays at epochs 40 and 80 by 0.1), batch size 48, and dropout 0.5. The
entire network uses stochastic gradient descent (SGD) for end-to-end training, with a
momentum of 0.9 and a weight decay of 1× 10−4. The sample input strategy uses the
built-in DenseSampleFrames type of MMAction2, where clip_len = 1, frame_interval = 1,
num_clips = 8, aiming at the feature that the number of frames of a single video sample in
the Something-Something V2 dataset is small. Therefore, the sample input strategy uses
the built-in SampleFrames type of MMAction2, where clip_len = 1, frame_interval = 1, and
num_clips = 8. The parameters for training on the Something-Something V2 are: 50 training
epochs, initial learning rate 7.5× 10−3 (decays at epochs 20 and 40 by 0.1), batch size 48,
and dropout 0.5. The shortest side of the input frame size will be pre-adjusted to 256
pixels, and then one of the ten-crops will be randomly used to crop the frame to 224× 224.
The ten-crops are top left, top right, center, bottom left, bottom right, and their horizontal
mirroring flips.

4.2.2. Inference

The frame sampling setting during inference is the same as during training. After
cropping the shortest side of the frame to 256 pixels, then uniformly cropping them into
256× 256 pixel frames, and finally averaging the output of three-crops to obtain the final
output. Moreover, we set ten clips for Kinetics-400 clips and one clip for Something-
Something V2, respectively.

5. Experimental Results
5.1. Ablation Analysis
5.1.1. Paramter Choice

Experiments in TSM [4] show that shifting the features on all channels is the best
choice when performing the shift operation of the feature tensor. The reason is that too
many original features are lost, so moving the features on only part of the channels is
not an optimal choice. Therefore, we split the feature tensor of the current layer into
parts according to the channel. We define the ratio of the number of channels of the shift
operation to the total number of channels of the feature tensor as α ∈ [0, 1]. For example,
when α = 1/4, if the total number of channels at this time is 72, the shift operation is
performed on the 1st to 18th channels, and the remaining 19th to 72th channels remain
unchanged. Table 1 compares the performance of STSM under different α. We use ImageNet
pre-trained 2D ResNet-50 based TSN [2] as the backbone network and embed our STSM in
it. At the same time, the shift dimension of STSM is set to T+H+W, i.e., we perform a one-
dimensional shift operation in the time dimension, height dimension, and width dimension,
respectively. The data in the table is the Top-1 accuracy rate (%) on the validation set of the
Kinetics-400 dataset. The backbone of all networks is ResNet-50. GFLOPs in all tables are
specified as GFLOPs×Crops×Clips. Unless otherwise stated, the inputs in all tables are
RGB frames.

According to the results in Table 1, we can see that our STSM will have different
performances under different α settings. It can be observed that the performance reaches
the highest point when α = 3/8. When α < 3/8, the accuracy will decrease as α decreases.
When α > 3/8, the accuracy will decrease with the increase of α. This is equivalent to



Mathematics 2022, 10, 3290 9 of 17

performing a shift operation on the first 3/8 of the channels of the feature tensor, and the
remaining channels remain unchanged. Because the shift dimension of STSM is set to
T+H+W at this time, α with a numerator of 3 will appear. For simplicity, we treat the levels
of each dimension as equal. It is worth noting that our choice of α is different from TSM
(α = 1/4) [4]. The α = 1/4 in TSM is equivalent to setting α = 3/4 in our STSM. In the
best α = 3/8 in our STSM experiment, we only perform shift operations along the time
dimension on the first 1/8 of the channel. In the subsequent experiments, unless otherwise
specified, our α is set to 3/8.

Table 1. Parameter choices of α about Top-1 accuracy. Backbone: R-50. Dataset: the validation set of
the Kinetics-400 dataset.

Setting α
0 1/8 1/4 3/8 1/2 3/4 1

Accuracy 72.16 74.62 74.77 75.04 74.81 74.49 73.83

5.1.2. Different Shift Operations

Our STSM is a spatio-temporal shift convolution module, which can be 1D, 2D, or
even higher-dimensional shift transformation. How to choose the right shift dimension is
an important issue. Table 2 shows the network performance when we only add 1D and 2D
shift convolutions in the spatial dimension. Table 3 shows the network performance when
we add 1D and 2D shift convolutions to the spatio-temporal dimension.

Table 2. Network performance under different shift operations in spatial dimensions. The α = 1/4,
which is consistent with TSM.

Setting Kinetics-400
#F GFLOPs #Para Top-1

TSN (R-50)
from [4] 8 43.1× 3× 10 24.3M 70.6

T(TSM [4]) 8 43.1× 3× 10 24.3M 74.1
T(MMAction2) 8 43.1× 3× 10 24.3M 74.43

H 8 43.1× 3× 10 24.3M 72.25
W 8 43.1× 3× 10 24.3M 72.46

H+W 8 43.1× 3× 10 24.3M 72.53
HW 8 43.1× 3× 10 24.3M 72.36

Table 3. Comparison results of network performance under 1D and 2D shift operations. In our
method, the α = 3/8. The α for TSM is set to 1/4, consistent with TSM’s original paper.

Setting Kinetics-400
#F GFLOPs #Para Top-1

TSN (R-50)
from [4] 8 43.1× 3× 10 24.3M 70.6

T(TSM [4]) 8 43.1× 3× 10 24.3M 74.1
T(MMAction2) 8 43.1× 3× 10 24.3M 74.43

T+H+W 8 43.1× 3× 10 24.3M 75.04
T+HW 8 43.1× 3× 10 24.3M 74.68

T+H+W+HW 8 43.1× 3× 10 24.3M 74.5
TH+TW+HW 8 43.1× 3× 10 24.3M 74.95

T+H+W+TH+TW+HW 8 43.1× 3× 10 24.3M 74.84

As shown in Table 2, it can be seen that on 2D CNNs, the performance of the network
using only spatial shift is improved compared with the backbone network TSN [2]. How-
ever, it is not as good as the network using only temporal shift. Therefore, this experiment
demonstrates that temporal features are essential for 2D CNNs. At the same time, it is



Mathematics 2022, 10, 3290 10 of 17

also proved that only the spatial shift operation is also effective. For video-based action
tasks, compared with a pure spatial shift operation, adding a temporal shift operation to
a 2D CNN enables the network to learn temporal features, which is a process from 0 to 1.
Therefore, the performance boosted by only temporal shift is much better than that of only
spatial shift. Among them, the network performance of adding a 1D spatial shift operation
H and W is slightly higher than that of adding a 2D spatial shift operation HW. It is proved
that after adding multiple 1D spatial shift operations to the network, the result after passing
through the convolutional layer is equivalent to the result of adaptively selecting 1D, 2D,
or higher-dimensional shift operations.

It can be seen from Table 3 that the performance of 2D CNNs with spatio-temporal shift
is better than that of 2D CNNs with temporal shift only. The most basic 1D spatio-temporal
shift combination has the best performance and the simplest shift operation required.
Therefore, our STSM module chooses to use only the combination of Time shift + Height
shift + Width shift (T+H+W). The performance of the 1D shift module with only T+H+W
is slightly better than other spatio-temporal shift combinations. It can be seen that the 1D
shift operation of T+H+W combined with the convolution operation can allow the network
to adaptively select the required shift operations of different dimensions. Specifically, the
network can utilize 1D shift (T, H, W) and subsequent convolutional layers to learn features
with 2D shift (TH, TW, HW). In subsequent experiments, unless otherwise stated, our STSM
only uses a one-dimensional shift operation, and the dimension of the shift operation is
set to T+H+W. Since there are too many combinations of 3D shift, we did not do 3D shift
research. However, experiments show that 1D shift outperforms 2D shift. It can be inferred
that 3D shift is not as good as 1D shift.

5.2. Different Backbone

Our proposed STSM is a general-purpose plug-and-play module with no parame-
ters and no additional operations. This experiment verifies that STSM can scale well to
different backbone networks. Tables 4 and 5 respectively show the results of our STSM
after being embedded in different backbones on the validation sets of Kinetics-400 and
Something-Something V2 datasets. In the experiment, ResNet-50 (R-50) [24] and Mo-
bileNetV2 (Mb_V2) [42] were used as the backbones. The methods in Table 4 have the
same GFLOPs and parameters under the same backbone and input frames. In Table 5, the
sampling method of our STSM is one clip, while the other methods are two clips. The input
frame size of our STSM at inference is 256× 256, while the other methods are 224× 224.
Therefore, our STSM is only 65% of the computational complexity of TSM, although the
backbone is the same and also has zero computational complexity and zero parameter
modules. However, our STSM still outperforms them and leads by a large margin when the
number of sampling frames is eight. Experimental results demonstrate that our STSM is a
general plug-and-play module with zero computational complexity and zero parameters,
which is effective under different backbone networks and input frame numbers.

Table 4. Comparison of STSM embedded in different backbones and different number of input frames
on the validation set of the Kinetics-400 dataset.

Model Kinetics-400
Backbone #F GFLOPs Top-1

TSN from [4] 2D Mb_V2 8 3.33× 3× 10 66.5
TSM+TSN [4] 2D Mb_V2 8 3.33× 3× 10 69.5
STSM+TSN 2D Mb_V2 8 3.33× 3× 10 69.9

TSN from [4] 2D R-50 8 43.1× 3× 10 70.6
TSM+TSN [4] 2D R-50 8 43.1× 3× 10 74.1
STSM+TSN 2D R-50 8 43.1× 3× 10 75.0

TSM+TSN [4] 2D R-50 16 86.1× 3× 10 74.7
STSM+TSN 2D R-50 16 86.1× 3× 10 75.8



Mathematics 2022, 10, 3290 11 of 17

Table 5. Comparison of STSM embedded in different backbones and different number of input frames
on the validation set of the Something-Something V2 dataset.

Model Something-Something V2
Backbone #F GFLOPs Top-1

TSM+TSN
from [8] 2D Mb_V2 8 2.55× 3× 2 54.9

STSM+TSN 2D Mb_V2 8 3.33× 3× 1 56.3

TSN from [8] 2D R-50 8 33× 3× 2 27.8
TSM+TSN [4] 2D R-50 8 33× 3× 2 59.1
STSM+TSN 2D R-50 8 43.1× 3× 1 61.3

TSN from [8] 2D R-50 16 65.9× 3× 2 30
TSM+TSN [4] 2D R-50 16 65.9× 3× 2 63.4
STSM+TSN 2D R-50 16 86.1× 3× 1 63.5

5.3. Comparison with State-of-the-Arts

As a universal plug-and-play module with zero computation complexity and zero
parameters, STSM significantly improves the 2D baseline. We embed our STSM into other
models and compare them with state-of-the-art methods on the Kinetics-400 and Something-
Something V2 datasets. When embedding our STSM into TDN [17], we replaced the TSM
module in the original TDN with our STSM module.

5.3.1. Kinetics-400

Kinetics-400 is the current mainstream and challenging large-scale dataset. We com-
pare the performance of STSM and the state-of-the-art method on the validation set of
the Kinetics-400 dataset in the Table 6. Rfn152 refers to RefineNet [43] whose backbone
network is ResNet-152 [24].

It can be seen from Table 6 that our STSM improves network performance more
effectively than TSM without increasing the cost of computation complexity and the number
of parameters. The network performance of our STSM embedded in 2D CNNs is also
competitive with 3D CNNs. Especially compared with TPN [6], which also uses TSN [2]
as the backbone, we have 1.5% higher accuracy than TPN with 3D convolution when
only 2D convolution is used. Compared with other networks based on 2D CNNs, our
network can achieve higher performance with a lower amount of computation complexity
and parameters. Compared with TSM [4], which is also based on TSN, our network
has a higher accuracy rate. Compared with the original TSN, the accuracy of TSM with
TSN as the backbone has increased by 3.5%. The accuracy of our STSM with TSN as
the backbone is increased by 4.4% compared to the original TSN. Our STSM improves
TSN by 22% higher than TSM. Our STSM also improves the performance of networks
with Non-local (NL) module [44], while X3D [45] can achieve good performance with
low computational complexity and low amount of parameters. However, X3D is a well-
designed network that is difficult to transfer to other networks, but our STSM can be easily
plugged into other 2D CNN networks to boost performance. Moreover, X3D requires
more input frames than eight to run. When a better performance 2D CNN-based action
recognition network emerges in the future, inserting our STSM can achieve even better
performance. Our STSM also achieves competitive results compared to TEA [5], TANet [16]
and TDN [17]. We insert our STSM module into both TANet and TDN to improve the
performance of the original network, demonstrating the effectiveness and plug-and-play
properties of STSM. It should be noted that both TEA, TANet and TDN are specifically
designed for ResNet [24], and our STSM can be easily embedded in other architectures, such
as MobileNetV2 (Mb_V2) [42]. In particular, our STSM is a plug-and-play ultra-lightweight
module with zero computation complexity and zero parameters. However, TEA, TANet
and TDN are both complex modules that are with high computation complexity and



Mathematics 2022, 10, 3290 12 of 17

parameters. Our STSM+TDN still outperforms the two-stream DSA-CNNs [37] based on
3D RefineNet (ResNet-152) [43] in the case of smaller computation and model volume.

Table 6. The comparison between our method and the state-of-the-art method on the validation set of
Kinetics-400. ♦means the result obtained by directly using the author’s GitHub. The input streams
of Two-Stream I3D and DSA-CNNs are RGB and FLOW. IN+K400 means ImageNet+Kinetics-400.

Model Backbone Pretrain #F Image Size GFLOPs #Para Top-1 (%)

SlowOnly [33] 3D R-50 ImageNet 4 256× 256 27.4× 3× 10 32.5M 72.6
TSN+TPN [6] 3D R-50B ImageNet 8 224× 224 - - 73.5

Two-Stream I3D [3] 3D BNInception ImageNet 64 + 64 224× 224 216 × N/A 25M 74.2
T-STFT [39] 3D BNInception None 64 112× 112 41.2× 3× 10 6.27M 75.0
FEXNet [38] 3D R-50 ImageNet 8 256× 256 48.3× 3× 10 - 75.4

SlowFast [33] 3D R-50 ImageNet 4 × 16 256× 256 36.4× 3× 10 34.5M 75.6
SlowFast+ATFR [35] 3D R-50 ImageNet 4 × 16 256× 256 20.8× 3× 10 34.4M 75.8

X3D-M [45] 3D R-50 None 16 224× 224 6.2× 3× 10 3.8M 76.0
SmallBigNet [46] 3D R-50 ImageNet 8 256× 256 74.5× 3× 10 - 76.3
DSA-CNNs [37] 3D Rfn152 IN+K400 12 224× 224 N/A× 5× 10 - 76.5

TANet [16] (2+1)D R-50 ImageNet 8 256× 256 43.1× 3× 10 25.6M 76.3

TSN+Mb_V2 from [4] 2D Mb_V2 ImageNet 8 256× 256 3.34× 3× 10 2.74M 66.5
TSM+Mb_V2 [4] 2D Mb_V2 ImageNet 8 256× 256 3.34× 3× 10 2.74M 69.5

TSN from [4] 2D R-50 ImageNet 8 256× 256 43.1× 3× 10 24.3M 70.6
TSM [4] 2D R-50 ImageNet 8 256× 256 43.1× 3× 10 24.3M 74.1
TSM [4] 2D R-50 ImageNet 16 256× 256 86.1× 3× 10 24.3M 74.7
TEA [5] 2D R-50 ImageNet 8 256× 256 45.7× 3× 10 - 75.0

STM [29] 2D R-50 ImageNet 8 224× 224 33.3× 3× 10 - 75.5
TSM+NL [4] 2D R-50 ImageNet 8 256× 256 64.6× 3× 10 31.7M 75.7
TDN ♦ [17] 2D R-50 ImageNet 8 256× 256 47× 3× 10 - 76.5

STSM+Mb_V2 2D Mb_V2 ImageNet 8 256× 256 3.34× 3× 10 2.74M 69.9
STSM+TSN 2D R-50 ImageNet 8 256× 256 43.1× 3× 10 24.3M 75.0
STSM+TSN 2D R-50 ImageNet 16 256× 256 86.1× 3× 10 24.3M 75.8

STSM+TSN+NL 2D R-50 ImageNet 8 256× 256 64.6× 3× 10 31.7M 75.9
STSM+TANet (2+1)D R-50 ImageNet 8 256× 256 43.1× 3× 10 25.6M 76.4
STSM+TDN 2D R-50 ImageNet 8 256× 256 47× 3× 10 - 76.7

5.3.2. Something-Something V2

Something-Something V2 is a challenging large dataset. Table 7 shows the performance
comparison between our STSM and the state-of-the-art method under the validation set of
the Something-Something V2 dataset. The video durations in the Something-Something V2
dataset are very short, but the spatio-temporal correlation of actions is higher. Because our
STSM can learn better spatio-temporal features and model more complex spatio-temporal
relationships, we obtain more competitive results than Kinetics-400 on the Something-
Something V2.

Table 7 shows that our STSM consistently outperforms other methods under the
same computational complexity. In models with less than 20G FLOPs of computational
complexity, the backbone network at this time is 2D MobileNetV2. Our STSM performs
4.3% better than TSM with the same computational complexity load of 15.36G FLOPs,
and our STSM is still 1.4% better than TSM with only 10.02G FLOPs of computational
complexity. Our STSM improves the performance of TSM+NL. However, for our STSM,
adding the NL module leads to performance degradation. This shows that for data with
strong spatio-temporal correlation, our STSM can extract spatio-temporal features better
than NL. When the number of input frames is eight, our STSM outperforms TSN by
33.5% and TSM by 2.2%, but at this time the computational complexity of our STSM is only
65% of theirs. When the number of input frames is 16, the computational complexity of our
STSM is only 65% of that of TSM, and the performance of STSM is still higher than that of
TSM. Under the same computational complexity, our STSM improves the performance of



Mathematics 2022, 10, 3290 13 of 17

TANet from 60.4% to 61.5%. At this time, TANet adopts the same one-clip sampling strategy
as ours. Our STSM also improves the performance of TDN. Our STSM+TDN is 1.1% more
accurate than FEXNet [38] with only 16.2% of FEXNet’s GFLOPs. The effectiveness of our
STSM is demonstrated.

Table 7. The comparison between our method and the state-of-the-art method on the validation set
of Something-Something V2. † means that it is the result of our own reproduction. ♦ means the
result obtained by directly using the author’s GitHub. The input streams of Two-Stream TRN are
RGB and FLOW.

Model Backbone Pretrain #F Image Size GFLOPs #Para Top-1 (%)

TSN+TPN [6] 3D R-50 ImageNet 8 224× 224 - - 55.2
Two-Stream TRN [15] 3D BNInception ImageNet 8 + 8 224× 224 32× 3× 2 36.6M 55.5

ACTION-Net+Mb_V2 [8] 3D Mb_V2 ImageNet 8 256× 256 3.36× 3× 10 2.36M 58.5
SmallBigNet [46] 3D R-50 ImageNet 8 256× 256 74.5× 3× 10 - 61.6

SlowFast from [35] 3D R-50 Kinetics-400 4 × 16 256× 256 132.8 34.4M 61.7
SlowFast+ATFR [35] 3D R-50 Kinetics-400 4 × 16 256× 256 86.8 34.4M 61.8

ACTION-Net [8] 3D R-50 ImageNet 8 256× 256 45.4× 3× 10 28.1M 62.5
T-STFT [39] 3D BNInception None 64 112× 112 41.2× 1× 1 6.27M 63.1
FEXNet [38] 3D R-50 ImageNet 8 256× 256 48.3× 3× 2 - 63.5

SmallBigNet [46] 3D R-50 ImageNet 16 256× 256 149× 3× 2 - 63.8

CSTANet [36] (2+1)D R-50 ImageNet 8 256× 256 33× 1× 1 24.1M 60.0
TANet † [16] (2+1)D R-50 ImageNet 8 256× 256 43.1× 3× 1 25.1M 60.4

CSTANet [36] (2+1)D R-50 ImageNet 16 256× 256 66× 1× 1 24.1M 61.6

TSN from [8] 2D R-50 Kinetics-400 8 224× 224 33× 3× 2 23.8M 27.8
TSN from [8] 2D R-50 Kinetics-400 16 224× 224 65.9× 3× 2 23.8M 30.0

TSM+Mb_V2 from [8] 2D Mb_V2 ImageNet 8 224× 224 2.56× 3× 2 2.45M 54.9
TSM [4] 2D R-50 ImageNet 8 224× 224 33× 3× 2 23.8M 59.1

MG-TSM [47] 2D R-50 ImageNet 8 224× 224 - - 60.1
TSM+NL † [4] 2D R-50 ImageNet 8 256× 256 64.6× 3× 1 31.7M 61.0

STM [29] 2D R-50 ImageNet 8 224× 224 33.3× 3× 10 - 62.8
MG-TEA [47] 2D R-50 ImageNet 8 224× 224 - - 62.5

TSM [4] 2D R-50 ImageNet 16 224× 224 65.9× 3× 2 23.8M 63.4
TDN ♦ [17] 2D R-50 ImageNet 8 224× 224 36× 1× 1 - 63.8

STSM+Mb_V2 2D Mb_V2 ImageNet 8 256× 256 3.34× 3× 1 2.45M 56.3
STSM+Mb_V2 2D Mb_V2 ImageNet 16 256× 256 6.67× 3× 1 2.45M 59.2

STSM+TSN+NL 2D R-50 ImageNet 8 256× 256 64.6× 3× 1 31.7M 61.2
STSM+TSN 2D R-50 ImageNet 8 256× 256 43.1× 3× 1 23.8M 61.3

STSM + TANet (2+1)D R-50 ImageNet 8 256× 256 43.1× 3× 1 25.1M 61.5
STSM+TSN 2D R-50 ImageNet 16 256× 256 86.1× 3× 1 23.8M 63.5
STSM+TDN 2D R-50 ImageNet 8 224× 224 36× 1× 1 - 63.9
STSM+TDN 2D R-50 ImageNet 8 256× 256 47× 1× 1 - 64.6

5.4. Qualitative Results on Some Typical Samples

In this section, we select a few samples to visualize the experimental results. As shown
in Figures 5–7, we selected one sample from each of the three categories in the Kinetics-400
dataset for display. The three categories are fixing hair, playing guitar, and recording music,
and our STSM is at least 10% more accurate than TSM [4] in all three categories. The bar
graph in the figure is the score graph of the top five of this sample. The horizontal axis is
the score, and the vertical axis is the category. As can be seen from the figure, since our
STSM can learn spatio-temporal features, TSM can only learn separate temporal features
and temporal features. Therefore, our STSM can distinguish more different points in space
and time to make the classification more accurate.



Mathematics 2022, 10, 3290 14 of 17

result

STSM: fixing_hair

TSM: dying_hair

input

fixing_hair

0 0.1 0.2 0.3

fixing_hair
dying_hair

brushing_hair
braiding_hair

sign_language

0 0.1 0.2 0.3

dying_hair
brushing_hair

fixing_hair
sign_language

braiding_hair

Figure 5. The top five results of STSM and TSM of the fixing hair sample.

result

STSM: playing_guitar

TSM: strumming_guitar

input

playing_guitar

0 0.2 0.4 0.6

playing_guitar
strumming_guitar

tapping_guitar
recording_music

busking

0 0.2 0.4 0.6

strumming_guitar
playing_guitar
tapping_guitar

busking
playing_bass_g…

Figure 6. The top five results of STSM and TSM of the playing guitar sample.

result

STSM: recording_music

TSM: drumming_fingers

input

recording_music

0 0.2 0.4 0.6

recording_music
playing_controller
drumming_fingers
assembling_co…
changing_wheel

0 0.10.20.30.40.5

drumming_fingers
playing_controller
recording_music

using_remote_co…
assembling_com…

Figure 7. The top five results of STSM and TSM of the recording music sample.

6. Conclusions

We propose a Spatio-Temporal Shift Module for efficient video recognition, which can
be inserted into the network’s backbone in a plug-and-play manner to enhance network



Mathematics 2022, 10, 3290 15 of 17

performance without increasing the amount of computation complexity and parameters.
This module splits the feature tensor by channel and moves one position along the temporal
and spatial dimensions, respectively, allowing the network to learn spatio-temporal features.
Because STSM is essentially a special convolution with a sparse convolution kernel, it does
not require extra calculation and no parameters. The action recognition model with STSM
achieves state-of-the-art performance on the class-rich Kinetics-400 dataset and the motion-
dominated Something-Something V2 dataset.

Author Contributions: Conceptualization, Z.Y. and G.A.; Data curation, Z.Y. and R.Z.; Formal
analysis, Z.Y.; Methodology, Z.Y.; Supervision, G.A.; Writing—original draft, Z.Y.; Writing—review &
editing, G.A. and R.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (62072028
and 61772067).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Simonyan, K.; Zisserman, A. Two-Stream Convolutional Networks for Action Recognition in Videos. In Proceedings of the NIPS,

Montreal, QC, Canada, 8–13 December 2014; pp. 568–576.
2. Wang, L.; Xiong, Y.; Wang, Z.; Qiao, Y.; Lin, D.; Tang, X.; Gool, L.V. Temporal segment networks: Towards good practices for deep

action recognition. In Proceedings of the ECCV, Amsterdam, The Netherlands, 8–16 December 2016.
3. Carreira, J.; Zisserman, A. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. In Proceedings of the CVPR,

Honolulu, HI, USA, 21–26 July 2017.
4. Lin, J.; Gan, C.; Han, S. TSM: Temporal Shift Module for Efficient Video Understanding. In Proceedings of the ICCV, Seoul, Korea,

27 October–2 November 2019.
5. Li, Y.; Ji, B.; Shi, X.; Zhang, J.; Kang, B.; Wang, L. TEA: Temporal Excitation and Aggregation for Action Recognition. In

Proceedings of the CVPR, virtually, 14–19 June 2020.
6. Yang, C.; Xu, Y.; Shi, J.; Dai, B.; Zhou, B. Temporal Pyramid Network for Action Recognition. In Proceedings of the CVPR,

virtually, 14–19 June 2020.
7. Liu, X.; Pintea, S.L.; Nejadasl, F.K.; Booij, O.; van Gemert, J.C. No Frame Left Behind: Full Video Action Recognition. In

Proceedings of the CVPR, virtually, 19–25 June 2021. pp. 14892–14901.
8. Wang, Z.; She, Q.; Smolic, A. ACTION-Net: Multipath Excitation for Action Recognition. In Proceedings of the CVPR, virtually,

19–25 June 2021.
9. Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; Paluri, M. Learning Spatiotemporal Features with 3D Convolutional Networks. In

Proceedings of the ICCV, Santiago, Chile, 13–16 December 2015.
10. Qiu, Z.; Yao, T.; Mei, T. Learning Spatio-Temporal Representation With Pseudo-3D Residual Networks. In Proceedings of the

ICCV, Venice, Italy, 22–29 October 2017.
11. Xie, S.; Sun, C.; Huang, J.; Tu, Z.; Murphy, K. Rethinking spatiotemporal feature learning: Speed-accuracy trade-offs in video

classification. In Proceedings of the ECCV, Munich, Germany, 8–14 September 2018.
12. Tran, D.; Wang, H.; Torresani, L.; Ray, J.; LeCun, Y.; Paluri, M. A Closer Look at Spatiotemporal Convolutions for Action

Recognition. In Proceedings of the CVPR, Salt Lake City, UT, USA, 18–22 June 2018.
13. Kay, W.; Carreira, J.; Simonyan, K.; Zhang, B.; Hillier, C.; Vijayanarasimhan, S.; Viola, F.; Green, T.; Back, T.; Natsev, P.; et al. The

Kinetics Human Action Video Dataset. arXiv 2017, arXiv:1705.06950.
14. Goyal, R.; Ebrahimi Kahou, S.; Michalski, V.; Materzynska, J.; Westphal, S.; Kim, H.; Haenel, V.; Fruend, I.; Yianilos, P.; Mueller-

Freitag, M.; et al. The “Something Something” Video Database for Learning and Evaluating Visual Common Sense. In Proceedings
of the ICCV, Venice, Italy, 22–29 October 2017.

15. Zhou, B.; Andonian, A.; Oliva, A.; Torralba, A. Temporal Relational Reasoning in Videos. In Proceedings of the ECCV, Munich,
Germany, 8–14 September 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2018; Volume 11205, pp. 831–846. [CrossRef]

16. Liu, Z.; Wang, L.; Wu, W.; Qian, C.; Lu, T. TAM: Temporal Adaptive Module for Video Recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), virtually, 11–17 October 2021; pp. 13708–13718.

17. Wang, L.; Tong, Z.; Ji, B.; Wu, G. TDN: Temporal Difference Networks for Efficient Action Recognition. In Proceedings of the
CVPR, virtually, 19–25 June 2021.

http://doi.org/10.1007/978-3-030-01246-5_49


Mathematics 2022, 10, 3290 16 of 17

18. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of
the NIPS, Lake Tahow, NV, USA, 3–6 December 2012; pp. 1106–1114.

19. Girshick, R.B.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.
In Proceedings of the CVPR, virtually, 19–25 June 2021. pp. 580–587. [CrossRef]

20. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.C.; Bengio, Y. Generative
Adversarial Nets. In Proceedings of the NIPS, Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680.

21. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the ICLR,
San Diego, CA, USA, 7–9 May 2015.

22. Redmon, J.; Divvala, S.K.; Girshick, R.B.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings
of the CVPR, Las Vegas, NV, USA, 27–30 June 2016. pp. 779–788. [CrossRef]

23. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In
Proceedings of the ICML, Lille, France, 6–11 July 2015; Bach, F.R., Blei, D.M., Eds.; JMLR Workshop and Conference Proceedings;
2015; Volume 37, pp. 448–456.

24. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the CVPR, Las Vegas, NV,
USA, 27–30 June 2016.

25. Zhang, B.; Wang, L.; Wang, Z.; Qiao, Y.; Wang, H. Real-Time Action Recognition with Enhanced Motion Vector CNNs. In
Proceedings of the CVPR, Las Vegas, NV, USA, 27–30 June 2016; pp. 2718–2726. [CrossRef]

26. Luo, C.; Yuille, A.L. Grouped Spatial-Temporal Aggregation for Efficient Action Recognition. In Proceedings of the ICCV, Seoul,
Korea, 27 October–2 November 2019; pp. 5511–5520. [CrossRef]

27. Sudhakaran, S.; Escalera, S.; Lanz, O. Gate-Shift Networks for Video Action Recognition. In Proceedings of the CVPR, virtually,
14–19 June 2020; pp. 1099–1108. [CrossRef]

28. Liu, Z.; Luo, D.; Wang, Y.; Wang, L.; Tai, Y.; Wang, C.; Li, J.; Huang, F.; Lu, T. TEINet: Towards an Efficient Architecture for Video
Recognition. In Proceedings of the AAAI, New York, NY, USA,7–12 February 2020. pp. 11669–11676.

29. Wang, M.; Xing, J.; Su, J.; Chen, J.; Yong, L. Learning SpatioTemporal and Motion Features in a Unified 2D Network for Action
Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2022, [CrossRef] [PubMed]

30. He, D.; Zhou, Z.; Gan, C.; Li, F.; Liu, X.; Li, Y.; Wang, L.; Wen, S. StNet: Local and Global Spatial-Temporal Modeling for Action
Recognition. In Proceedings of the AAAI, Honolulu, HI, USA, 27 January–1 February 2019; pp. 8401–8408. [CrossRef]

31. Zolfaghari, M.; Singh, K.; Brox, T. ECO: Efficient Convolutional Network for Online Video Understanding. In Proceedings of the
ECCV, Munich, Germany, 8–14 September 2018; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2018;
Volume 11206, pp. 713–730. [CrossRef]

32. Wang, L.; Li, W.; Li, W.; Van Gool, L. Appearance-and-Relation Networks for Video Classification. In Proceedings of the CVPR,
Salt Lake City, UT, USA, 18–22 June 2018.

33. Feichtenhofer, C.; Fan, H.; Malik, J.; He, K. SlowFast Networks for Video Recognition. In Proceedings of the ICCV, Seoul, Korea,
27 October–2 November 2019; pp. 6201–6210. [CrossRef]

34. Fu, J.; Gao, J.; Xu, C. Learning Semantic-Aware Spatial-Temporal Attention for Interpretable Action Recognition. IEEE Trans.
Circuits Syst. Video Technol. 2021, 32, 5213–5224. [CrossRef]

35. Fayyaz, M.; Bahrami, E.; Diba, A.; Noroozi, M.; Adeli, E.; Van Gool, L.; Gall, J. 3D CNNs With Adaptive Temporal Feature
Resolutions. In Proceedings of the CVPR, virtually, 19–25 June 2021. pp. 4731–4740.

36. Wang, H.; Xia, T.; Li, H.; Gu, X.; Lv, W.; Wang, Y. A Channel-Wise Spatial-Temporal Aggregation Network for Action Recognition.
Mathematics 2021, 9, 3226. [CrossRef]

37. Luo, H.; Lin, G.; Yao, Y.; Tang, Z.; Wu, Q.; Hua, X. Dense Semantics-Assisted Networks for Video Action Recognition. IEEE Trans.
Circuits Syst. Video Technol. 2022, 32, 3073–3084. [CrossRef]

38. Shen, Z.; Wu, X.J.; Xu, T. FEXNet: Foreground Extraction Network for Human Action Recognition. IEEE Trans. Circuits Syst.
Video Technol. 2022, 32, 3141–3151. [CrossRef]

39. Kumawat, S.; Verma, M.; Nakashima, Y.; Raman, S. Depthwise Spatio-Temporal STFT Convolutional Neural Networks for
Human Action Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 4839–4851. [CrossRef] [PubMed]

40. Wu, B.; Wan, A.; Yue, X.; Jin, P.; Zhao, S.; Golmant, N.; Gholaminejad, A.; Gonzalez, J.; Keutzer, K. Shift: A Zero FLOP, Zero
Parameter Alternative to Spatial Convolutions. In Proceedings of the CVPR, Salt Lake City, UT, USA, 18–22 June 2018.

41. Contributors, M. OpenMMLab’s Next Generation Video Understanding Toolbox and Benchmark. 2020. Available online:
https://github.com/open-mmlab/mmaction2 (accessed on 30 July 2022).

42. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the CVPR, Salt Lake City, UT, USA, 18–22 June 2018.

43. Lin, G.; Milan, A.; Shen, C.; Reid, I. RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

44. Wang, X.; Girshick, R.B.; Gupta, A.; He, K. Non-local Neural Networks. arXiv 2017, arXiv:1711.07971.
45. Feichtenhofer, C. X3D: Expanding Architectures for Efficient Video Recognition. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), virtually, 14–19 June 2020.

http://dx.doi.org/10.1109/CVPR.2014.81
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1109/CVPR.2016.297
http://dx.doi.org/10.1109/ICCV.2019.00561
http://dx.doi.org/10.1109/CVPR42600.2020.00118
http://dx.doi.org/10.1109/TPAMI.2022.3173658
http://www.ncbi.nlm.nih.gov/pubmed/35536824
http://dx.doi.org/10.1609/aaai.v33i01.33018401
http://dx.doi.org/10.1007/978-3-030-01216-8_43
http://dx.doi.org/10.1109/ICCV.2019.00630
http://dx.doi.org/10.1109/TCSVT.2021.3137023
http://dx.doi.org/10.3390/math9243226
http://dx.doi.org/10.1109/TCSVT.2021.3100842
http://dx.doi.org/10.1109/TCSVT.2021.3103677
http://dx.doi.org/10.1109/TPAMI.2021.3076522
http://www.ncbi.nlm.nih.gov/pubmed/33914681
https://github.com/open-mmlab/mmaction2


Mathematics 2022, 10, 3290 17 of 17

46. Li, X.; Wang, Y.; Zhou, Z.; Qiao, Y. SmallBigNet: Integrating Core and Contextual Views for Video Classification. In Proceedings
of the CVPR, virtually, 14–19 June 2020.

47. Zhi, Y.; Tong, Z.; Wang, L.; Wu, G. MGSampler: An Explainable Sampling Strategy for Video Action Recognition. In Proceedings
of the ICCV, virtually, 11–17 October 2021; pp. 1513–1522.


	Introduction
	Related Work
	2D CNNs
	3D CNNs and (2+1)D CNNs Variants

	Spatio-Temporal Shift Module (STSM)
	Efficient Action Recognition based on STSM
	Spatio-Temporal Shift Operation

	Experimental Setting
	Datasets and Evaluation Metrics
	Implementation Details
	Training
	Inference


	Experimental Results
	Ablation Analysis
	Paramter Choice
	Different Shift Operations

	Different Backbone
	Comparison with State-of-the-Arts
	Kinetics-400
	Something-Something V2

	Qualitative Results on Some Typical Samples

	Conclusions
	References

