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Abstract: Two non-standard predictor-corrector type finite difference methods for a SIR epidemic
model are proposed. The methods have useful and significant features, such as positivity, basic stabil-
ity, boundedness and preservation of the conservation laws. The proposed schemes are compared
with classical fourth order Runge–Kutta and non-standard difference methods (NSFD). The stability
analysis is studied and numerical simulations are provided.
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1. Introduction

Ordinary differential conditions are extensively used in demonstrating numerous natu-
ral and physical applications. Mathematical strategies dependent on finite differences [1,2],
Taylor series [3], interpolation, such as Runge–Kutta, Euler, and multistep techniques [4,5],
and some different strategies [6,7] are broadly utilized. A large number of problems in
mathematical epidemiology are modeled by autonomous systems of nonlinear ordinary
differential equations, which implies that the boundaries of the model are autonomous,
regarding time. In these models, the factors address subpopulations of susceptibles, in-
fected, recovered, etc. Consequently, the solutions of the ODE framework portray the
advancement of the various classes of subpopulations in the model over the long haul.
The use of different schemes brings up such issues as what the truncation error is or how
large the region of steadiness is. Numerous standard strategies, such as forward Euler,
Runge–Kutta and others, fail to demonstrate the non-actual motions, bifurcations and chaos
(see, for example, [8]).

One method for forestalling these kinds of mathematical problems is the development
of mathematical methods dependent on non-standard finite-difference techniques. This sort
of technique was initially devised by Mickens [9,10]. Piyanwong et al. [11] and Jansen and
Twizell [1] have planned positive and genuinely stable plans for the SIR and SEIR epidemic
models, individually. In any case, in their created solutions, they have not applied the
preservation law unequivocally, which can prompt impossible or unreasonable arrangements.

The best situation to accurately resolve an ODE based-model is the point at which
a careful difference solution can be developed in [12]. Although the non-standard finite
difference technique preserve the standard properties of the approximation solution, such as
consistency and convergence, it can also preserve the qualitative properties of the solution,
such as boundedness, monotonicity, positivity, and so on [13–22]. In this paper, we have
developed two predictor–corrector types of NSFD techniques to obtain mathematical results
for the SIR epidemic model. The new mathematical strategy has the heuristic properties of
the ODE framework solution and is basically stable. These strategies are also very practical
due to the huge time step used.
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The sections of the paper are as follows: In Section 2, we introduce the SIR epidemic
model and its steady-state point numerical model. In Section 3, we present the new methods.
In Sections 4 and 5, we explore positivity and basic stability results. In Section 6, other
NSFD techniques are constructed to be used as correctors in the event of larger stepsizes.
In Section 7, we introduce the results of the new methods compared to different schemes
used for inspection, such as the the classical Runge–Kutta (RK4) strategy, ode45, etc. We
finish the paper with the conclusions and discussion.

2. The SIR Model

We consider the SIR epidemic model as given in [11]. This model incorporates three
independent variables to represent the individuals:

s(t) : susceptible
i(t) : infected
r(t) : recovered

A variant of this model was utilized in [23] to depict the elements of beating hack
epidemics in London involving occasional varieties in susceptibility. The model is depicted
by a nonlinear ODEs framework as follows:

s′(t) = µN − µs(t)− βNi(t)s(t),

i′(t) = −(µ + ν)i(t) + βNs(t)i(t),

r′(t) = −µr(t) + νi(t), (1)

t > 0, i(0) = i0, s(0) = s0, r(0) = r0,

in which

• β is the coefficient of transmission;
• µ is the death rate or the birth rate, which are equal to each other;
• ν is the recovery rate;
• N is the total number of individuals, N(t) = i(t) + s(t) + r(t).

All are assumed to be positive.
The equations of the continuous system, if added together, satisfy the conservation

law dN
dt

= 0.

Since N is constant, system (1) can be written as follows by referring to [24] with the
assumption S(t) = s(t)

N , I = i(t)
N and R(t) = r(t)

N

S′(t) = µ− µS(t)− βI(t)S(t),

I′(t) = −(µ + ν)I(t) + βS(t)I(t),

R′(t) = −µR(t) + νI(t), (2)

t > 0, I(0) = I0, S(0) = S0, R(0) = R0,

where
s(t) : susceptible
i(t) : infected
r(t) : recovered

The reproduction number of (2) is

R0 =
β

µ + ν
.

If 1 > R0, model (2) has steady-state (disease-free) E∗0 = (1, 0, 0), and it has a unique
endemic steady-state, then

E∗ =
( 1
R0

,
µ

µ + ν
(1− 1

R0
),

ν

µ + ν
(1− 1

R0
)
)

,
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ifR0 > 1.

Definition 1. A discrete version of (2) is called the nonstandard method provided that one of the
conditions below is satisfied:

(i) In the discrete derivatives of dS
dt , dI

dt and dR
dt , a non-negative function ϕ(h) substitutes the step

size h, such that
ϕ(h) = h + O(h2) as 0 < h→ 0; (3)

(ii) Nonlinear terms in the right hand side of (2) are approximated in a nonlocal way, that is to
say, by an appropriate function of some points in the mesh.

For instance,

S ≈ 2Sn − Sn+1,

S2 ≈ Sn ∗ Sn+1,

S3 ≈ αS2
n ∗ Sn+1 + (1− α)Sn ∗ Sn+1 ∗ Sn−1.

3. Construction of New Schemes

We express system (2) as

Sn+1 − Sn

ϕ(h)
= µ− µ(δSn + γSn+1)− β(ηSn+1 + θSn)In,

In+1 − In

ϕ(h)
= β(ηSn+1 + θSn)In − µ(γIn+1 + δIn)− ν(θ In + η In+1), (4)

Rn+1 − Rn

ϕ(h)
= ν(θ In + η In+1)− µ(γRn+1 + δRn),

with 1 = η + θ = γ + δ,
ϕ(h) = exp(h)− 1.

We are free to choose the parameters keeping the condition 1 = η + θ = γ + δ, and
here we chose theta to achieve a set of stable explicit methods.

Remark 1. The condition 0 < ϕ(h) < 1 for h > 0 is essential, and there exist several functions
satisfying this condition, e.g., ϕ(h) = exp(h)− 1, ϕ(h) = 1− exp(−h) or ϕ(h) = sin(h).

It should be noted that by writing the Taylor expansion of Sn+1 and ϕ(h) = h + O(h2)
in the first relation of Equation (4), we have

Sn + hS′n + h2

2! S′′n + · · · − Sn

h + O(h2)
= µ− µ(δSn + γ(Sn + hS′n +

h2

2!
S′′n + · · · ))

− β(η(Sn + hS′n +
h2

2!
S′′n + · · · ) + θSn)In

with h→ 0, from which we have

S′n = µ− µ(δSn + γSn)− β(η(Sn + θSn))In = µ− µ(δ + γ)Sn − β((η + θ)Sn)In

On the other hand, δ + γ = 1 and η + θ = 1, then

S′n = µ− µSn − βSn In

The second and third relations of the equation can be written in the same way. There-
fore, we can move from the discrete form to the continuous form with h→ 0.

Lemma 1. The new NSFD family in (4) preserves the conservation law.



Mathematics 2022, 10, 3299 4 of 15

Proof. We use induction to prove it. Since S + I + R = 1, for the initial values, it is
S0 + I0 + R0 = 1. Hence, for n = 0, S1 + I1 + R1 − 1 = µϕ(h)γ(1− (S1 + I1 + R1)), and
thus S1 + I1 + R1 = 1, which implies Sn+1 + In+1 + Rn+1 = 1; as a result, the new family
preserves the conservation law.

After investigating the characteristics of the new family, we present the following
methods:

3.1. Scheme 1

Letting γ = 3
2 , θ = 0, δ = − 1

2 , η = 1 leads to

Sn+1 =
µϕ(h) + Sn(1 + 1

2 ϕ(h)µ)
3
2 µϕ(h) + ϕ(h)βIn + 1

= F(In, Sn), (5a)

In+1 =
In
(

1
2 µϕ(h) + 1 + βϕ(h)F(Sn, In)

)
3
2 µϕ(h) + νϕ(h) + 1

= G(Sn, In) (5b)

Rn+1 = 1− In+1 − Sn+1. (5c)

3.2. Scheme 2

Letting θ = 0, γ = 2, η = 1, δ = −1 gives

Sn+1 =
ϕ(h)µ + (1 + ϕ(h)µ)Sn

1 + 2ϕ(h)µ + ϕ(h)Inβ
= F̄(Sn, In), (6a)

In+1 =
In
(

µϕ(h) + 1 + βϕ(h)F̄(In, Sn)
)

1 + 2ϕ(h)µ + νϕ(h)
= Ḡ(In, Sn) (6b)

Rn+1 = 1− In+1 − Sn+1. (6c)

4. Positivity

In this part, we analyze the positivity features of the proposed strategies. With
positivity, we mean that the component-wise non-negativity of the initial vector is preserved
in time for the numerical solution. It must be mentioned that the positivity property of a
mathematical technique is significant when it is employed to address differential models
emerging in population science because these state factors address subpopulations, which
never take negative qualities. Many papers have been written about the positivity property
(see for instance [25]).

Definition 2. A finite difference technique is said to preserve the positivity property, if, for h and
y0 ∈ Rn

+, yk ∈ Rn
+ for every k ∈ N.

Theorem 1. NSFD schemes (5) and (6) are positivity preserving.

Proof. Because ν, β, µ > 0, the (5) and (6) positive NSFD schemes for any ϕ(h) > 0 if
0 < Sn < 1, 0 < In < 1 and 0 < Rn < 1 for all n ≥ 0.

5. Elementary Stability

We give sufficient conditions for schemes (5) and (6) to maintain the stability properties
of the steady points of the model (2). A difference scheme with this stability property is
called an elementary stable scheme [26].
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Definition 3. If the linear stability features of the discrete and differential models are the same, the
finite-difference scheme is said to be elementary stable.

The following result can be readily obtained by using the well-known Jury conditions [27].

Lemma 2. Consider λ2 − Aλ + B = 0. Both roots satisfy |λi| < 1, if

• B < 1,
• 1 + A + B > 0,
• 1− A + B > 0.

Theorem 2. Schemes in (5) and (6) are elementary stable.

Proof. Consider only Equations (5a), (5b), (6a) and (6b): Steady-state points of (5) are E∗0
and E∗ of (2).

The Jacobian of (5) is J(Sn, In) =

 ∂F
∂S

∂F
∂I

∂G
∂S

∂G
∂I

, where

∂F
∂S

=
1 + 1

2 µϕ(h)
3
2 ϕ(h)µ + ϕ(h)βIn + 1

,

∂F
∂I

= −
βϕ(h)

(
µϕ(h) + Sn(1 + 1

2 µϕ(h))
)

(1 + 3
2 µϕ(h) + βϕ(h)In)2

,

∂G
∂S

=
βϕ(h)In ∂F

∂S
1 + 3

2 µϕ(h) + νϕ(h)
=

βϕ(h)In(1 + 1
2 µϕ(h))

(1 + 3
2 µϕ(h) + ϕ(h)βIn)(1 + 3

2 µϕ(h) + νϕ(h))
,

∂G
∂I

=
1 + 1

2 µϕ(h) + βϕ(h)F(In, Sn) + βIn ϕ(h)
∂F
∂I

3
2 µϕ(h) + 1 + ϕ(h)

ν

=

1 + 1
2 µϕ(h) + βϕ(h)

(µϕ(h) + Sn(1 + 1
2 ϕ(h))

1 + 3
2 µϕ(h) + ϕ(h)βIn

)
− β2 ϕ2(h)In

((
µϕ(h) + Sn(1 + 1

2 µϕ(h))
)

(1 + 3
2 µϕ(h) + βϕ(h)In)2

)
1 + 3

2 µϕ(h) + νϕ(h)
.

Writing E∗0 into J(Sn, In),

J(E∗0 ) =


2 + ϕ(h)µ

2 + 3µϕ(h)
−2βϕ(h)

2 + 3µϕ(h)

0
2 + µϕ(h) + 2βϕ(h)
2 + 3µϕ(h) + 2ϕ(h)ν

,

from which we obtain the two eigenvalues

λ1 =
2 + µϕ(h)
2 + 3µϕ(h)

, λ2 =
2 + µϕ(h) + 2βϕ(h)
2 + 3µϕ(h) + 2νϕ(h)

.
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Hence, we have |λ1| < 1. On the other hand, ifR0 < 1, i.e., β < µ + ν, then |λ2| < 1.
However, ifR0 < 1, the disease-free steady-state point is asymptotically stable; otherwise,
it is unstable.

If 1 < R0, the system (2) has an endemic steady state. We have

J(E∗) =


a
b − c

b2

a f
bd

1
d (a + c

b −
c f
b2 )

,

where

a = 1 +
1
2

µϕ(h) > 1,

b = 1 +
3
2

µϕ(h) + βϕ(h)I∗ = 1 +
3
2

µϕ(h) + µϕ(h)(R0 − 1) = 1 +
1
2

µϕ(h) + µϕ(h)R0 > 1,

c = βϕ(h)
(

ϕ(h)µ + S∗(1 +
1
2

µϕ(h))
)
= βϕ(h)

(
µϕ(h) +

1
R0

(1 +
1
2

µϕ(h))
)

= (µ + ν)µϕ2(h)R0 + (µ + ν)µϕ(h)(1 +
1
2

µϕ(h)) > 0,

f = βϕ(h)I∗ = µϕ(h)(R0 − 1) > 0,

d = 1 +
3
2

µϕ(h) + νϕ(h) > 0.

The characteristic equation obtained from J(E∗) is λ2 − Aλ + B = 0 in which

A = TraceJ(E∗) =
ab2 + bda + c(b− f )

b2d
,

B = DetJ(E∗) =
a2b2 + acb− ca f

b3d
+

ca f
b3d

=
a2b2 + acb

b3d
=

a2b + ac
b2d

.

Thus, E∗ is stable if Lemma 2 holds. Clearly B > 0 since b > f , it is also A > 0. Since
A and B are positive, we have

1 + A + B > 0. (7)

Additionally, since a
b < 1 and

1
d
(a +

c
b
− c f

b2 ) <
1
d
(a +

c
b
) =

ab + c
bd

= 1,

we have

1− A + B = (1− a
b
)
(

1− 1
d
(a +

c
b
− c f

b2 )
)
+

ac f
b3d

> 0. (8)

Finally, we have
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B =
a2

bd
+

ac
b2d

<
a2

bd
+

c
bd

=
a2 + c

bd

=
(1 + 1

2 µϕ(h))2 + µβϕ(h)
(

ϕ(h) + 1
R0

(1 + 1
2 µϕ(h))

)
(1 + 1

2 ϕ(h)µ + µϕ(h)R0)(1 + 3
2 µϕ(h) + νϕ(h))

< 1, (9)

From (7), (8) and (9), we observe that Lemma 2 holds. Hence, J(E∗) has eigenvalues
which are < 1 in modulus, regardless of the size of h, as long as R0 > 1. Therefore, we
have verified the dynamical consistency between system (2) and scheme (5) around every
steady state that results in the elementary stability of (5).

Similarly, we have J(Sn, In) =

 ∂F̄
∂S

∂F̄
∂I

∂Ḡ
∂S

∂Ḡ
∂I

, in which

∂F̄
∂S

=
1 + µϕ(h)

1 + 2µϕ(h) + ϕ(h)βIn ,

∂F̄
∂I

= −
βϕ(h)

(
µϕ(h) + Sn(1 + µϕ(h))

)
(1 + 2µϕ(h) + βϕ(h)In)2 ,

∂Ḡ
∂S

=
βϕ(h)In ∂F̄

∂S
1 + 2µϕ(h) + νϕ(h)

=
βϕ(h)In(1 + µϕ(h))

(1 + 2µϕ(h) + ϕ(h)βIn)(1 + 2µϕ(h) + νϕ(h))
,

∂Ḡ
∂I

=
1 + ϕ(h)µ + βϕ(h)F̄(Sn, In) + βϕ(h)In ∂F̄

∂I
1 + 2µϕ(h) + νϕ(h)

,

=

1 + ϕ(h)µ + βϕ(h)
(µϕ(h) + Sn(1 + ϕ(h)µ)

1 + 2µϕ(h) + ϕ(h)βIn

)
− β2 ϕ2(h)In

((
µϕ(h) + Sn(1 + ϕ(h)µ)

)
(1 + 2µϕ(h) + βϕ(h)In)2

)
1 + 2µϕ(h) + νϕ(h)

.

Writing E∗0 in J(Sn, In), we obtain

J(E∗0 ) =


1 + µϕ(h)

1 + 2µϕ(h)
−βϕ(h)

1 + 2µϕ(h)

0
1 + µϕ(h) + βϕ(h)
1 + 2µϕ(h) + νϕ(h)

,

hence, we obtain the two eigenvalues

λ1 =
1 + µϕ(h)

1 + 2µϕ(h)
, λ2 =

1 + µϕ(h) + βϕ(h)
1 + 2µϕ(h) + νϕ(h)

.

It is clear that |λ1| < 1 always holds. On the other hand, if R0 < 1, i.e., β < µ + ν,
then |λ2| < 1. Therefore, if R0 < 1, the disease-free equilibrium is asymptotically stable;
otherwise, it is unstable. IfR0 > 1, (2) has an endemic steady state.



Mathematics 2022, 10, 3299 8 of 15

The Jacobian at the endemic steady state is

J(E∗) =


a
b − c

b2

a f
bd

1
d (a + c

b −
c f
b2 )

,

where

a = 1 + ϕ(h)µ > 1,

b = 1 + 2µϕ(h) + βϕ(h)I∗ = 1 + 2µϕ(h) + µϕ(h)(R0 − 1) = 1 + µϕ(h) + µϕ(h)R0 > 1,

c = βϕ(h)
(

µϕ(h) + S∗(1 + µϕ(h))
)
= βϕ(h)

(
µϕ(h) +

1
R0

(1 + µϕ(h))
)
> 0,

f = 1βϕ(h)I∗ = ϕ(h)µ(R0 − 1) > 0,

d = 1 + 2µϕ(h) + ϕ(h)ν > 0.

Hence, from λ2 − Aλ + B = 0, we obtain the eigenvalues as

A = TraceJ(E∗) =
ab2 + bda + c(b− f )

b2d
,

B = DetJ(E∗) =
a2b2 + acb− ca f

b3d
+

ca f
b3d

=
a2b2 + acb

b3d
=

a2b + ac
b2d

.

Thus, E∗ is stable if Lemma 2 holds. Clearly B > 0, and, since b > f , it is also A > 0.
Since A and B are positive, we have

1 + A + B > 0. (10)

Again, since a
b < 1 and

1
d
(a +

c
b
− c f

b2 ) <
1
d
(a +

c
b
) =

ab + c
bd

= 1

we have

1− A + B = (1− a
b
)
(

1− 1
d
(a +

c
b
− c f

b2 )
)
+

ac f
b3d

> 0. (11)

Finally, we have

B =
a2

bd
+

ac
b2d

<
a2

bd
+

c
bd

=
a2 + c

bd

=
(1 + µϕ(h))2 + βϕ(h)

(
µϕ(h) + 1

R0
(1 + µ 1

2 ϕ(h))
)

(1 + µϕ(h) + µϕ(h)R0)(1 + 2µϕ(h) + νϕ(h))
< 1. (12)

From (10), (11) and (12) we observe that Lemma 2 holds. Accordingly, J(E∗) has
eigenvalues which are less than 1 in modulus, regardless of h, provided that R0 > 1.
We have therefore verified the dynamical consistence between system (2) and scheme (6)
around each steady state that gives us the elementary stability of (6).
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6. The New Nonstandard Discretizations of SIR Model

To improve the performance of the NSFD schemes (5) and (6), we formulate them by a
predictor–corrector type method. In the NSFD methods, if step size h is relatively large,
some of their features, including convergence, conservation law and positivity, may be
lost. Therefore, it is useful to build robust computational methods that can cope with these
drawbacks. In general, explicit methods produce larger errors than implicit methods, but
implicit methods require solving nonlinear models. Next we will introduce two NSFD
schemes of predictor-corrector type schemes (5) and (6), where, for larger step sizes, h
maintains the aforementioned significant features. To develop scheme (5), we employ (5)
as a predictor scheme, that is

Sn+1
p =

µϕ(h) + Sn(1 + 1
2 µϕ(h))

1 + 3
2 µϕ(h) + ϕ(h)βIn

, (13a)

In+1
p =

(
1 + 1

2 µϕ(h) + βϕ(h)Sn+1
p

)
In

1 + 3
2 µϕ(h) + νϕ(h)

, (13b)

Now, we introduce an implicit NSFD method for solving the system in (2)

Sn+1 − Sn

ϕ(h)
= µ− µ(

3Sn+1 − Sn

2
)− βSn+1 In+1 − Sn+1

ϕ(h)
+

Sn+1

ϕ(h)
,

In+1 − In

ϕ(h)
= βSn+1 In+1 − µ(

3In+1 − In

2
)− νIn+1, (14)

Rn+1 − Rn

ϕ(h)
= νIn+1 − µ(

3Rn+1 − Rn

2
).

Thus,

Sn+1
c =

µϕ(h) + Sn(1 + 1
2 µϕ(h)) + Sn+1

p

2 + 3
2 µϕ(h) + ϕ(h)βIn+1

p
, (15a)

In+1
c =

(
1 + 1

2 µϕ(h)
)

In + βϕ(h)Sn+1
p In+1

p

1 + 3
2 µϕ(h) + νϕ(h)

, (15b)

Rn+1 = 1− Sn+1
c − In+1

c . (15c)

Similarly, to develop method (6),

Sn+1
p =

µϕ(h) + Sn(1 + ϕ(h)µ)
1 + 2µϕ(h) + ϕ(h)βIn , (16a)

In+1
p =

(
1 + µϕ(h) + βϕ(h)Sn+1

p

)
In

1 + 2µϕ(h) + νϕ(h)
(16b)

Applying the implicit NSFD method to solve (2), we obtain
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Sn+1 − Sn

ϕ(h)
= µ− µ(2Sn+1 − Sn)− βSn+1 In+1 − Sn+1

ϕ(h)
+

Sn+1

ϕ(h)
,

In+1 − In

ϕ(h)
= βSn+1 In+1 − µ(2In+1 − In)− νIn+1, (17)

Rn+1 − Rn

ϕ(h)
= νIn+1 − µ(2Rn+1 − Rn).

By the conservation law (since the population is constant), we have

Sn+1
c =

µϕ(h) + Sn(1 + µϕ(h)) + Sn+1
p

2 + 2µϕ(h) + ϕ(h)βIn+1
p

, (18a)

In+1
c =

(
1 + µϕ(h)

)
In + βϕ(h)Sn+1

p In+1
p

1 + 2µϕ(h) + νϕ(h)
(18b)

Rn+1 = 1− In+1
c − Sn+1

c . (18c)

The algorithm to get the computational solution may be written as follows:

• Step 1 Choose 0 < ε << 1, and I0, S0, R0 such that S0 + I0 + R0 = 1.
• Step 2 For n = 0, 1, . . . do
• Step 3 Evaluate Sn+1

p .
• Step 4 Via Sn+1

p and In, evaluate In+1
p .

• Step 5 Correct the value Sn+1
c , using Sn, Sn+1

p , In+1
p .

• Step 6 Correct the value In+1
c , using In, Sn+1

p , In+1
p .

• Step 7 If ‖Sn+1
c − Sn‖ < ε and ‖In+1

c − In‖ < ε then
• Step 8 Calculate Rn+1, else Sn = Sn+1

c , In = In+1
c and go to step 5.

7. Numerical Results

In this section, we address some useful simulations to affirm the hypothetical outcomes
and illustrate the upsides of the developed NSFD methods. Consider the model in (2) by
constants

β = 123, ν = 24, µ = 0.04.

If R0 < 1, (2) has an asymptotically stable disease-free point and an endemic equi-
librium point if R0 > 1. Figure 1 illustrates that for R0 > 1, the present method will
approach the correct epidemic point and generate positive quantities for all time t. At the
same time, the conventional Matlab programming procedures do not meet or sometimes
produce unreasonable negative qualities for the contaminated population. It should be
noted that the fourth request graph of Runge–Kutta with a period step of h = 0.005 and the
new plan with a cycle step of h = 0.01 are combined with the correct popularity points. The
comparisons of the absolute errors provided by different methods for different values of h
show that the proposed schemes are more precise than the other techniques. The absolute
value of the errors with the new methods, the method presented in [28], and Runge-Kutta
method as a reference method are illustrated in Figure 2. Figure 3 shows that the behavior
of the P-C schemes with h = 0.01 is similar to the Runge–Kutta method with h = 0.005,
while the NSFD schemes do not work like them. This means that P-C methods perform
better than NSFD methods. We can also see in Figure 4 that P-C 1 has lower dissipation
than P-C 2.
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Figure 1. The numerical results of system (2) using P-C schemes with h = 0.01, ode45 and RK4
scheme with h = 0.005 taking parameter values (R0 > 1) and I.C. S0 = 0.9, I0 = 0.05, ν = 24,
µ = 0.04, β = 123, R0 = 0.05.
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Figure 2. Absolute errors for the system (2) with h= 0.01 by the new schemes, the proposed method
in [28] and I.C. (S0, I0, R0) = (0.9, 0.05, 0.05) with β = 123, µ = 0.04, ν = 24, (R0 > 1) using
Runge–Kutta as a reference solution.
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Figure 3. The numerical results of system (2) using the P-C schemes, NSFD schemes with h = 0.01
and RK4 with h = 0.005 following parameter values (R0 > 1) and I.C. S0 = 0.24, I0 = 0.007,
R0 = 0.753, β = 123, µ = 0.04, ν = 24.
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Figure 4. The numerical results of system (2) using the P-C 1 schemes and P-C 2 schemes with
h = 0.01 following parameter values (R0 > 1) and I.C. S0 = 0.9, I0 = 0.05, R0 = 0.05, β = 123,
µ = 0.04, ν = 24.

8. Conclusions

In this article, we introduced two competing non-standard finite differences (NSFD)
of the of predictor-correctdor type for the classic SIR epidemic model. The model has two
biological equilibrium points: one is disease-free equilibrium point E∗0 , if and only ifR0 < 1
is an asymptotically stable node, and the other is endemic equilibrium point E∗. The
positivity, boundedness and stability of the proposed scheme are shown. The numerical
comparison between the NSFD numerical scheme proposed in this paper and the Runge-
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Kutta type scheme shows that the NSFD numerical scheme satisfying the conservation law
is unconditionally stable forR0 < 1, and converges to the time step of the long disease-free
equilibrium point. In addition, the same behavior is obtained forR0 > 1. Furthermore, we
showed that the well-known methods in the Matlab software package did not converge
to the popular equilibrium point. We conclude that the developed non-standard scheme
retains the basic characteristics of the continuous SIR model. In the new scheme, large time
steps can be used, making them more economical to reach a steady state over a long period
of time.
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