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Abstract: The evaluation of rockburst damage potential plays a significant role in managing rockburst
risk and guaranteeing the safety of personnel. However, it is still a challenging problem because
of its complex mechanisms and numerous influencing factors. In this study, a bagged ensemble
of Gaussian process classifiers (GPCs) is proposed to assess rockburst damage potential with an
imbalanced dataset. First, a rockburst dataset including seven indicators and four levels is collected.
To address classification problems with an imbalanced dataset, a novel model that integrates the
under-sampling technique, Gaussian process classifier (GPC) and bagging method is constructed.
Afterwards, the comprehensive performance of the proposed model is evaluated using the values of
accuracy, precision, recall, and F1. Finally, the methodology is applied to assess rockburst damage
potential in the Perseverance nickel mine. Results show that the performance of the proposed bagged
ensemble of GPCs is acceptable, and the integration of data preprocessing, under-sampling technique,
GPC, and bagging method can improve the model performance. The proposed methodology can
provide an effective reference for the risk management of rockburst.

Keywords: rockburst; damage potential; Gaussian process classifier (GPC); bagging method;
imbalanced dataset

MSC: 90B50; 94D05

1. Introduction

With the increase in mining depth, rockbursting has become an increasingly promi-
nent issue [1–3]. It is induced by the instantaneous release of elastic strain energy, and
often is accompanied by ejection and collapse of massive rock [4–6]. Many mines have
suffered rockburst disasters, causing serious economic losses and casualties. For example, a
rockburst with a magnitude of 3.5 happened in Falconbridge nickel mine, resulting in four
deaths [7]; a rockburst with a magnitude of 2.47 occurred in Junde coal mine, causing five
deaths and the destruction of a shearer and scraper conveyor [8]; and a rockburst with a
magnitude of 5.2 appeared in the Klerksdorp district of South Africa, leading to two deaths
and fifty-eight injuries [9]. Due to such serious consequences, assessing rockburst damage
potential is necessary and significant.

According to the differences between the locations of damage and seismic event, rock-
bursts can be classified into self-initiated rockburst and remotely triggered rockburst [10].
For the former, the locations of damage and seismic event are consistent. While for the
latter, rockburst is triggered by remote and relatively large magnitude seismic events. For
different types of rockburst, the influencing factors are different, resulting in the disparity of
the rockburst damage potential evaluation. This study aims to assess the damage potential
of remotely triggered rockburst. Because the location of the damage is not consistent with
that of the microseismic event, it is difficult to evaluate the damage potential only based
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on the microseismic event. The microseismic event information, stress wave propagation
paths, and rock mass conditions on the excavation face should be considered simultane-
ously. Due to the complex mechanisms and numerous influencing factors, the evaluation
of rockburst damage potential is still a difficult issue.

Scholars have proposed some methods to assess rockburst damage potential.
Kaiser et al. [11] developed a rockburst damage assessment procedure. It mainly included
four steps: propose rock and support damage scales, put forward an initial condition index,
calculate the scaled distance, and establish relationships among the initial condition index,
scaled distance, and rock and support damage scales. Durrheim et al. [12] summarized
the influencing factors of rockburst damage according to the investigations of rockbursts
in South African gold mines, which was valuable for the evaluation of rockburst damage
potential. Brink et al. [13] proposed an approach for seismic risk evaluation, which can
be summarized in four steps: determine an evaluation indicator system, score each sub-
category according to the risk rating, calculate the score of each category, and determine
the risk levels. Albrecht and Sharrock [14] investigated ten indicators that affect rockburst
damage, and established the relationship between them and rockburst damage based on
field rockburst incidences. With the increase of rockburst cases, machine learning (ML)
algorithms were used to evaluate rockburst damage potential. Heal et al. [15] proposed the
concept of excavation vulnerability potential (EVP), and then adopted logistic regression
to assess rockburst damage potential. Zhou et al. [16] employed a stochastic gradient
boosting approach for the evaluation of rockburst damage. Li et al. [17] put forward a
rockburst damage scale index using rock engineering systems and artificial neural networks
to evaluate rockburst damage.

When a large number of rockburst cases accumulate, ML is a possible way to evaluate
rockburst damage potential [18,19]. However, due to the fact that most rockburst damage
levels are slight, while the strong or even extremely strong type is relatively rare, the
distribution of sample data for each level is usually imbalanced [20–22]. Considering the
specific characteristics of rockburst data, two key issues need to be solved. The first one
is the handling of the imbalanced rockburst dataset. Generally, classical ML algorithms
are conceived on the premise of balanced datasets [23]. It is difficult to handle classifi-
cation problems with an imbalanced dataset, especially for discriminating the minority
category cases [24]. Therefore, traditional ML algorithms should be improved to deal with
imbalanced datasets. The corresponding strategy can be roughly divided into four groups:
data level, algorithm level, cost-sensitive level, and ensemble level [25]. Among them,
combining bagging ensemble learning with under-sampling techniques is an effective way
to deal with imbalanced datasets [26].

The second one is the selection of algorithms. A large number of ML algorithms have
been used to solve classification problems. Although some other statistical algorithms,
such as Monte Carlo methods, can also be adopted to solve multidimensional problems
and obtain probabilistic results, the probability density functions need to be determined
in advance [27–29]. Gaussian process classifier (GPC) is a promising statistical model
because it can deal with high-dimensional and nonlinear problems, tune hyperparameters
directly based on training data, and obtain probabilistic outputs [30,31]. However, due
to the characteristics of imbalance and strong noise in rockburst data, a single GPC is
hard to have stable prediction ability. Ensemble learning can overcome this drawback by
combining multiple base classifiers to some extent [32–34]. Combining bagging ensemble
learning with Gaussian process classifiers (GPCs) may improve the generalization ability
and robustness of models.

This study proposes a novel model that integrates the under-sampling technique, GPC,
and bagging method to assess rockburst damage potential with an imbalanced dataset.
First, the rockburst dataset is collected and preprocessed by the Yeo-Johnson transforma-
tion and standardization process. Then, the reliability of the proposed methodology is
verified, and the comprehensive performance is evaluated using four metrics. Finally, the
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proposed bagged ensemble of GPCs is applied to assess rockburst damage potential in the
Perseverance nickel mine.

2. Data Acquisition

According to the original work of Heal [35], a total of 254 rockburst cases were collected
from 13 underground metal mines in Canada and Australia. These cases were obtained
based on the rock mass failure conditions caused by a single microseismic event. This
database contains 83 microseismic events and 254 failure locations. It indicates some failure
locations are caused by the same microseismic event. Based on the damage status of rock
mass and support, the degree of rockburst damage was divided into five levels: none (L1),
low (L2), moderate (L3), high (L4), and strong (L5). Among them, L1 indicated the rock
mass showed no damage or minor loss, and the support was not damaged; L2 indicated the
rock mass was slightly damaged, less than 1 ton of rock was displaced, the support system
was loaded, the meshes were loose and the plates were deformed; L3 indicated 1 ton to
10 tons of rock was displaced and some bolts were broken; L4 indicated 10 tons to 100 tons
of rock was displaced and the support system was severely damaged; L5 indicated above
100 tons of rock was displaced and the support system was completely destroyed. As
the damage locations of L1 were not reported during investigations, the original database
only contained L2, L3, L4, and L5. The sample sizes at these levels were 116, 48, 63, and
27, respectively.

The original database included nine indicators: the ratio of total maximum principal
stress to uniaxial compressive strength (I1), the energy capacity of support system (I2),
excavation span (I3), geology factor (I4), Richer magnitude of seismic event (I5), distance
between rockburst location and microseismic event (I6), peak particle velocity (I7), rock
density (I8) and support types (I9). The specific meaning of each indicator can be referred to
in literature [35]. Different indicator combinations have a significant impact on evaluation
results. Heal [35] and Zhou et al. [16] selected I1, I2, I3, I4 and I7; and Li et al. [17] chose
I1, I2, I3, I4, I5, I7 and I8. Considering I7 was calculated by I5 and I6 based on an empirical
formula and I9 was difficult to be quantified, this study adopted I1, I2, I3, I4, I5, I6 and I8 to
evaluate the rockburst damage.

From this dataset, it can be seen that there were some duplicate sample data, and
some samples had the same indicator values, but the corresponding rockburst damage
levels were different. To improve the prediction accuracy, the duplicate samples were first
removed. For the samples with the same indicator values but different levels, only the
samples with the highest level were selected to ensure safety. Consequently, the number of
samples in the updated dataset was 236, and the sample sizes at L2, L3, L4 and L5 were 107,
45, 57 and 27, respectively. The corresponding ratio of sample sizes at different levels was
4.0:1.7:2.1:1.0. It shows that the distribution is relatively unbalanced, which may affect the
accuracy of evaluation results. The detailed dataset was listed in Appendix A.

To quantitatively analyze the correlations between these seven indicators, the heat
map of the correlation coefficient was obtained, as shown in Figure 1. It can be seen that
some indicators were positively correlated, such as I1 and I2, whereas some indicators were
negatively correlated, such as I1 and I3. Overall, the correlations between these indicators
were generally small. Although I5 and I6 had the largest correlation coefficient of 0.48,
they were distinctly based on their physical meanings. Therefore, these indicators were
relatively independent, which verified the rationality of the selected indicators.
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Figure 1. Heatmap of the correlation coefficient.

The box plot of all indicators for each rockburst damage level was shown in Figure 2.
It can be seen that all indicators had some outliers. Especially for I2, I3, I6 and I8, outliers
were more obvious. Some overlapping parts existed in the range of indicator values for
various levels. As a result, it was difficult to differentiate the level of rockburst damage only
using one indicator. Second, there was no obvious correlation between rockburst damage
level and each indicator. In addition, the distribution of indicator values was uneven. All
these characteristics illustrated the complexity of rockburst damage evaluation.

Figure 2. Cont.
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Figure 2. Box plot of indicators for each level.

3. Methodology
3.1. Gaussian Process Classifier

GPC is a statistical learning algorithm based on the Gaussian process and Bayesian
theory, which has a solid mathematical foundation. By assuming the implicit function obeys
the prior distribution of a Gaussian process, the posterior distribution can be obtained
according to Bayesian inference [36]. Then, the probability of different classes can be
determined. The main calculation steps are as follows.

Suppose the training set is:

D = (X, Y) = {(xi, yi)|yi = ±1, i = 1, 2, · · · , m}, (1)
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where xi = (x1i, x2i, · · · , xBi) is the input; yi is the output; and m is the number of samples
in the training set.

To reflect the mapping relationship between xi and yi, the implicit function that obeys
the Gaussian process distribution is defined as:

f = [ f (x1), f (x1), · · · , f (xi), · · · , f (xm)]
T , (2)

Suppose f satisfies a Gaussian process distribution with a zero mean and covariance
matrix K, then:

p( f |X ) ∼ N( f |0, K ), (3)

where K can be calculated by a covariance function k(x, x′), and is specifically defined
according to the actual situation.

In general, the radial basis function is selected as the covariance function:

k(x, x′) = θ1e−
‖x−x′‖2

θ2 , (4)

where θ1 and θ2 are hyperparameters.
Based on Equations (3) and (4), the prior probability can be determined as:

p( f |X ) =
1

(2π)0.5|K|0.5
exp(−0.5 f TK−1 f ). (5)

Then, to obtain the probability of the predicted category, a likelihood function is used
to map the output value of the implicit function to the interval [0, 1]. The logistic function
is generally used as the likelihood function:

p(Y| f ) = ψ(z) =
1

1 + exp(−z)
. (6)

Based on Bayes’ theorem, the posterior probability of the implicit function is:

p( f̂ |X, Y ) =
p(Y| f )p( f |X ))

p(Y|X )
, (7)

where p(Y|X ) is the marginal likelihood function, which indicates the probability distribu-
tion of a training set.

p(Y|X ) can be calculated by:

p(Y|X ) =
∫

p(D| f )p( f )d f . (8)

Suppose the sample to be predicted is (x̃, ỹ), the probability of ỹ = +1 can be deter-
mined by:

p(ỹ= +1|X, Y, x̃ ) =
∫

p(ỹ
∣∣∣ f̂ )p( f̂ |X, Y, x̃ )d f̂ , (9)

where f̂ indicates the implicit function of x̃.
Since there is no analytical solution in Equations (7)–(9), Laplace approximation

algorithm is often to obtain the solutions. Namely, the posterior probability distribution
p( f̂ |X, Y ) is first obtained, then the implicit function f̂ can be determined.

Finally, the probability of ỹ = +1 can be calculated by

p(ỹ= +1|X, Y, x̃ ) =
∫

ψ( f̂ )p( f̂ |X, Y, x̃ )d f̂ . (10)

If p(ỹ= +1|X, Y, x̃ ) ≥ 0.5, then the prediction result is a positive class, otherwise it is
a negative class.
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For multi-classification issues, the binary Gaussian process classifier can be extended
with a “one-vs-rest” or “one-vs-one” strategy [37]. For the “one-vs-rest” strategy, the
binary Gaussian process classifier classifies one of the classes and the remaining classes
respectively. In this case, the class with the highest probability is selected as the final result.
For the “one-vs-one” strategy, the binary Gaussian process classifier classifies the two
classes respectively. In this case, each classification is equivalent to one vote, and the class
with the highest votes is selected as the final result.

3.2. Bagged Ensemble of Gaussian Process Classifiers

A bagged ensemble of GPCs is proposed to handle classification problems with
imbalanced datasets, as shown in Figure 3. This model integrates the under-sampling
technique, GPC and bagging method. The under-sampling technique is used to make the
training samples balanced. The samples of classes except the minority class are resampled
and combined with the minority class samples into a new dataset. GPC has a strong
probabilistic prediction ability for unknown data by learning from the existing dataset.
By integrating multiple classifiers, the bagging method can avoid over-fitting to a certain
extent, and has better anti-noise ability and robustness. In addition, the defect of data loss
from a single under-sampling can be overcome through multiple under-samplings with
replacement. The specific steps are as follows.

Figure 3. Diagram of a bagged ensemble of Gaussian process classifiers.

First, the under-sampling technique with replacement is used to generate the balanced
sample sets from the original dataset.

Second, the GPCs are independently trained based on the generated training sets.
Last, the final result is obtained by integrating the evaluation results of each GPC

based on a voting classifier.

3.3. Establishment of Rockburst Damage Evaluation Model

The proposed ensemble model is used to evaluate rockburst damage. The detailed
procedure is shown in Figure 4, which is described as follows.
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Figure 4. The procedure of the ensemble model for the evaluation of rockburst damage.

First, the original rockburst damage dataset is preprocessed based on the Yeo-Johnson
transformation and standardized processing. In many modeling scenarios, data needs to
be normalized to improve predictive performance. Power transformation maps sample
data from an arbitrary distribution to a Gaussian distribution as close as possible. It builds
a set of monotonic functions to stabilize variance and minimize skewness. There are two
transformation methods: the Yeo-Johnson and Box-Cox transformation. Since the Box-Cox
transformation only works for positive data, the Yeo-Johnson transformation is adopted in
this study. The calculation formula is [38]:

x(λ)i =



[
(xi + 1)λ − 1

]
λ ifλ 6= 0, xi ≥ 0

ln(xi + 1) ifλ = 0, xi ≥ 0

−
[
(−xi + 1)2−λ − 1

]
/(2− λ) ifλ 6= 2, xi < 0

− ln(−xi + 1) ifλ = 2, xi < 0

, (11)

where xi is the data to be transformed; and λ is a parameter, which can be estimated by the
maximum likelihood method.

In addition, there is a large gap between some indicator values. For example, I8 is
three orders of magnitude larger than I5. In this case, it may lead to the dominance of this
indicator, while the roles of other indicators are ignored. Therefore, the initial indicator
values need to be firstly standardized. In this study, they are converted into a standard
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normal distribution with a mean of zero and a standard deviation of one. The conversion
formula is:

x(λ)i = (x(λ)i − µ)/σ, (12)

where µ is the mean value and σ is the standard deviation of sample data.
Second, the preprocessed dataset is randomly divided into training and test sets with

a ratio of 4:1. Furthermore, the ratio of sample size for different levels in these two sets is
kept consistent to make the results more stable.

Third, the hyperparameter of the bagged ensemble of GPCs is optimized using five-
fold cross-validation. The number of GPC is adopted as the hyperparameter to be opti-
mized, and both the hyperparameters θ1 and θ2 in kernel function of GPC are selected as
1.0. Then, the optimal hyperparameter value is determined based on the average accuracy
of five-fold cross-validation.

Fourth, the model with the optimal hyperparameter value is fitted based on the
training set, and then the optimal training model is obtained.

Fifth, the comprehensive performance of the proposed methodology is evaluated
based on the test set. The accuracy, precision, recall, and F1 are chosen as the evaluation
metrics, which can be calculated by a confusion matrix.

Suppose the confusion matrix is:

S =


s11 s12 · · · s1q
s21 s22 · · · s2q
...

...
. . .

...
sq1 sq2 · · · sqq

, (13)

where q is the number of levels.
Then, the accuracy can be calculated by

Accuracy =
1

q
∑

j=1

q
∑

k=1
sjk

q

∑
j=1

sjj; (14)

The precision can be calculated by

Precision =
sjj

q
∑

j=1
sjk

; (15)

The recall can be calculated by

Recall =
sjj

q
∑

k=1
sjk

; (16)

The F1 can be calculated by

F1 =
2× Precision× Recall

Precision + Recall
. (17)

Finally, if the prediction performance is reliable, the entire preprocessed dataset can
be used as the training set to fit the model. Then, the rockburst damage level in actual
engineering can be evaluated. Conversely, if the prediction performance is unreliable,
improvements can be made in terms of database quality, data preprocessing, and evaluation
models. Moreover, new cases can be adopted to update the original rockburst dataset, and
the evaluation process in the next stage can be conducted.
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4. Validity Verification

The collected rockburst dataset was used to verify the feasibility of the proposed
methodology. Based on Equations (11) and (12), all indicator values were preprocessed.
The distribution of indicator values before and after preprocessing was shown in Figure 5.
The values of all indicators after preprocessing followed the standard normal distribution
with a mean of zero and a standard deviation of one.

To make the model performance more reliable, the number of GPC was optimized
by using the five-fold cross validation based on the training set. The average accuracy
of five-fold cross validation corresponding to different numbers of GPC was shown in
Figure 6. It can be seen that the average accuracy does not increase with the number of
GPC, and the optimal number of GPC was 12 because of its maximum average accuracy.

Figure 5. Cont.
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Figure 5. Distribution of indicator values before and after preprocessing.
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Figure 6. Average accuracy of five-fold cross validation under different numbers of GPC.

After the bagged ensemble of GPCs with the optimal hyperparameter value was fitted
on the training set, it was used to evaluate the rockburst damage on the test set. The
evaluation results were expressed by the confusion matrix defined by Equation (13), which
were indicated as:

S =


17 4 0 1
2 6 1 0
2 0 6 4
0 1 3 2


Based on Equation (14), the value of accuracy was 63.27%. If the levels L2 and L3 were

merged into the low-risk group, and the levels L4 and L5 were merged into the high-risk
group, then the accuracy value of low and high risk was 93.55% and 83.33%, respectively.

According to Equations (15)–(17), the values of precision, recall and F1 corresponding
to different levels were obtained, as shown in Figure 7. It can be seen that the evaluation
performance for level L2 was the best, while that for level L5 was the worst. After compre-
hensively considering the values of precision, recall and F1, the ranking of the evaluation
performance for different levels was L2 > L3 > L4 > L5.

Figure 7. Average accuracy of five-fold cross validation under different number of GPC.
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5. Case Study

The proposed methodology was applied to evaluate the rockburst damage in the
Perseverance nickel mine. The main orebody is hosted in ultramafic rocks, which is mined
using the sub-level caving method. The hanging wall is composed of stiff Felsic volcanics
and metasediments, which are prone to mining-induced seismicity. The microseismic mon-
itoring system has been established in this mine, making it possible to manage rockburst
risk based on microseismic data. Because most of the ramp and infrastructure are located
in the hanging wall, it is necessary to evaluate the rockburst damage potential.

Heal [35] recorded twelve rockburst damage cases caused by six microseismic events
at the depth of 950 m to 1100 m in this mine. The specific data was shown in Table 1. The
Richer magnitude of microseismic events ranged from 1.5 to 2.2, and their real rockburst
damage levels were between L2 and L4.

Table 1. Rockburst damage cases at Perseverance nickel mine.

Microseismic
Event I1 I2 I3 I4 I5 I6 I8 Actual Level

Results Using
Heal’s Method

[35]

Evaluation
Results in
This Study

#1
57.7 5 12.2 0.5 1.62 14 2700 L2 L5 L2
57.7 5 12.2 0.5 1.62 22 2700 L2 L5 L2
47 8 6 0.5 1.62 29 2700 L2 L2 L2

#2
47 8 10.3 0.5 1.8 10 2700 L3 L4 L2
47 8 6.6 0.5 1.8 10 2700 L2 L2 L4

46.9 5 5.9 0.5 1.8 16 2700 L3 L3 L4

#3
47.5 10 4.8 0.5 1.5 10 2700 L2 L2 L2
47.5 10 10 1 1.5 10 2700 L2 L2 L2

#4
39.2 5 5 1 1.8 13 2700 L2 L1 L2
43.4 8 5 1 1.8 13 2700 L2 L1 L2

#5 58 8 12 0.5 1.6 10 2700 L2 L5 L2

#6 58.1 8 11 1 2.2 5 2700 L4 L3 L2

The proposed methodology was used to evaluate the rockburst damage levels for
these twelve cases. First, these cases were preprocessed together with the original rockburst
dataset. Then, the preprocessed dataset was used as the training set to train the model.
Finally, the rockburst damage levels of these twelve cases were obtained using the trained
model, as shown in the last column of Table 1.

According to the evaluation results in Table 1, only the rockburst damage levels caused
by microseismic events #2 and #6 were not identified. That is, the evaluation results of four
cases were inconsistent with the actual situation, and the accuracy is 66.67%. In Heal’s
method [35], the evaluation results of seven cases did not match the actual situation, and
the accuracy is 41.67%. Therefore, the methodology proposed in this study improved the
evaluation accuracy of rockburst damage to a certain extent.

6. Discussions

Since the dataset used in this study is the same as that in Heal [35], Zhou et al. [16], and
Li et al. [17], the evaluation results using our methodology are compared with theirs. The
comparison results are shown in Table 2. Among them, Heal [35] artificially synthesized
277 samples with level L1 according to the distribution of the existing data. The evaluation
criteria of accuracy used in different literatures are dissimilar, which mainly include the
following four categories: (1) The evaluation value corresponds to the actual value; (2) the
evaluation value corresponds to the actual value or the neighboring value; (3) the evaluation
value corresponds to the actual value after combining L1, L2 and L3 (or L2 and L3) into
a group while L4 and L5 into another group; and (4) the evaluation value corresponds
to the actual value after combining L2 and L3 into a group. According to these four
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evaluation criteria, the accuracy of the proposed method is 63.27%, 91.84%, 89.80% and
75.51%, respectively. From Table 2, it can be seen that the accuracy of the proposed method
is higher than that of other methods under these four evaluation criteria. This verifies the
effectiveness of the method proposed in this study to a certain extent.

Table 2. Comparison of evaluation results in different literatures.

Evaluation Criterion Level Method Accuracy

The evaluation value corresponds to the actual value

L1, L2, L3, L4, L5 EVP [35] 28.0%
L1, L2, L3, L4, L5 EVP.PPV [35] 24.4%

L2, L3, L4, L5
Stochastic gradient

boosting approach [16] 61.22%

L2, L3, L4, L5 The proposed method 63.27%

The evaluation value corresponds to the actual value
or the neighboring value

L1, L2, L3, L4, L5 EVP [35] 66.1%
L1, L2, L3, L4, L5 EVP.PPV [35] 72.4%

L2, L3, L4, L5 The proposed method 91.84%

The evaluation value corresponds to the actual value
after combining L1, L2 and L3 (or L2 and L3) into

one group while L4 and L5 into another group

L1, L2, L3, L4, L5 EVP [35] 71.3%
L1, L2, L3, L4, L5 EVP.PPV [35] 78.0%

L2, L3, L4, L5 The proposed method 89.80%

The evaluation value corresponds to the actual value
after combining L2 and L3 into one group

L2, L3, L4, L5

Rock engineering systems
and artificial neural

network [17]
71%

L2, L3, L4, L5 The proposed method 75.51%

Moreover, to further illustrate the reliability of the proposed method, it is also com-
pared with the bagged ensemble of GPCs without preprocessing, bagged ensemble of GPCs
without under-sampling, and GPC without under-sampling. The evaluation results of
different approaches are shown in Table 3. It can be seen that the bagged ensemble of GPCs
without data preprocessing has the lowest accuracy of 48.98%, which shows the importance
of data preprocessing. Before preprocessing, the distribution of some indicators is skewed,
and there is no clear distribution law for each indicator. When using the Yeo-Johnson
transformation, the sample data is mapped from an arbitrary distribution to a Gaussian
distribution as close as possible to stabilize variance and minimize skewness. In addition,
the influence of diverse dimensions and units on the evaluation results can be avoided
after standardization. Therefore, the accuracy is improved by using data preprocessing.
The bagged ensemble of GPCs and the GPC without under-sampling can identify level L2
well, but cannot achieve a reliable recognition of level L5. Moreover, the value of F1 is 0 in
these methods, which illustrates that under-sampling has an important influence on the
evaluation results. Because the distribution of different rockburst damage levels is relatively
unbalanced, the prediction results are biased towards the level with a larger number of
samples. When using the under-sampling technique, this influence can be avoided to some
extent by balancing the training samples. Compared with GPC, the bagged ensemble of
GPCs improves the evaluation accuracy, which indicates the bagging method can improve
the evaluation performance. By integrating multiple GPCs using the bagging method, the
generalization ability and robustness of the model can be increased to a certain extent.
Therefore, the integration of data preprocessing, under-sampling technique, GPC, and
bagging method improves the comprehensive performance.
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Table 3. Evaluation results of different approaches.

Approaches Confusion Matrix Accuracy F1

Bagged ensemble of GPCs
without data preprocessing


15 4 2 1
3 4 1 1
5 1 4 2
0 1 4 1

 48.98% [0.6667, 0.4211, 0.3478, 0.1818]

Bagged ensemble of GPCs
without under-sampling


20 1 0 1
5 4 0 0
4 0 6 2
3 1 2 0

 61.22% [0.7407, 0.5333, 0.6, 0]

GPC without under-sampling


19 2 0 1
5 3 1 0
4 0 6 2
3 1 2 0

 57.14% [0.7170, 0.4, 0.5714, 0]

The proposed method


17 4 0 1
2 6 1 0
2 0 6 4
0 1 3 2

 63.27% [0.7907, 0.6, 0.5455, 0.3077]

Although the proposed method can evaluate the rockburst damage to some extent,
there are still some shortcomings:

(1) The bagged ensemble of GPCs has better evaluation performance for level L2, but the
evaluation performance for level L5 still needs to be improved. The reason may be
that the sample size of L2 is the largest, while that of L5 is the least. A large number of
samples can make the model fit better, which can improve the evaluation performance
in turn. Because the data-driven method is highly dependent on the quality of data, a
higher-quality rockburst damage database should be established in the future.

(2) More indicators for rockburst damage evaluation need to be considered. According to
the original rockburst damage database, some samples with the same indicator values
have different levels. This shows that some key indicators are ignored, which may be
an important reason for restricting the evaluation accuracy of rockburst damage. In
the future, some novel evaluation indicators may be proposed from the perspective
of focal mechanisms and failure characteristics of rock mass under dynamic and
static stress.

(3) Considering the distribution of some indicators is skewed, the Gaussian process may
yield impropriate results. Although the proposed method can obtain relatively good
results, the Gaussian process with skewed errors can be further used to investigate
the evaluation performance [39,40].

7. Conclusions

To effectively assess rockburst damage potential with an imbalanced dataset, this
study proposed a novel model by integrating the under-sampling technique, GPC, and
bagging method. Based on the rockburst dataset preprocessed by the Yeo-Johnson trans-
formation and standardization, the reliability of the proposed model was verified. The
accuracy values of all samples, low risk (L2 and L3) and high risk (L4 and L5) were 63.27%,
93.55%, and 83.33%, respectively. According to the values of precision, recall and F1, the
ranking of evaluation performance at different levels was L2 > L3 > L4 > L5. By using the
evaluation criteria in other literature, the accuracy of the proposed method was highest,
which further verified the reliability of our method. Based on the evaluation results of
the other three methods (the bagged ensemble of GPCs without preprocessing, bagged
ensemble of GPCs without under-sampling and GPC without under-sampling), the com-
prehensive performance of the proposed method was better. It indicated the effectiveness
of the integration of data preprocessing, under-sampling technique, GPC and bagging
method in this study. The proposed methodology was applied to assess rockburst damage
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potential in the Perseverance nickel mine. The evaluation accuracy was 66.67%, which was
25% higher than the method in original literature. Due to the improved performance, the
evaluation results provided a valuable guidance for the prevention of rockburst disasters.

In the future, a higher-quality database for the evaluation of rockburst damage po-
tential should be established under a unified data acquisition standard. Because of the
complex mechanisms of rockburst, some novel evaluation indicators are worth investigat-
ing based on focal mechanisms and failure characteristics of rock mass under dynamic
and static stress. The Gaussian process with skewed errors can be obtained to investigate
the evaluation performance after considering the skewness of indicator distributions. In
addition, the proposed methodology can be applied in other mining and geotechnical
engineering fields, such as pillar stability prediction and landslide risk analysis.
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Appendix A

Table A1. Rockburst Damage Dataset.

Number I1 I2 I3/(m) I4 I5 I6/(m) I8/(kg/m3) Level

1 80 5 6.2 1 −0.3 5 2700 4
2 60 5 4.2 0.5 1.7 20 2700 4
3 60 8 4.2 0.5 1.7 25 2700 2
4 80 8 6 0.5 1.8 10 2700 4
5 70 8 4 1 1.8 15 2700 2
6 40 5 3.8 1 0.4 5 2700 2
7 80 8 5.9 1 0.6 5 2700 2
8 90 8 6.8 1 0 5 2700 4
9 80 8 7 1 0 10 2700 2

10 80 8 7 1 2 5 2700 4
11 80 8 4.1 1 2 10 2700 4
12 70 8 9.5 1 2.2 5 2700 4
13 75 8 3.8 1 2.2 10 2700 3
14 75 8 4 1 2.2 10 2700 4
15 60 8 6.2 1 1.6 5 2700 2
16 60 10 10.5 0.5 1.6 5 2700 2
17 65 8 4.3 1 0.3 5 2700 2
18 60 5 5.6 0.5 1.5 5 2700 4
19 45 10 9.1 0.5 1.8 5 2700 5
20 43 5 9.3 0.5 1.8 5 2700 4
21 43 10 9.3 1 1.8 5 2700 2
22 43 10 9.4 0.5 −0.2 5 2700 2
23 54 8 3.5 0.5 1.3 5 2700 2
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Table A1. Cont.

Number I1 I2 I3/(m) I4 I5 I6/(m) I8/(kg/m3) Level

24 45 8 3.6 1 1.3 10 2700 2
25 80 8 5.4 1 1.3 10 2700 2
26 50 8 7.8 1 1.3 15 2700 2
27 50 5 6.2 1 1 5 2700 3
28 50 5 5.1 0.5 1.2 5 2700 4
29 50 5 5.1 1 1.2 5 2700 2
30 50 8 8.3 1 0.7 5 2700 2
31 50 8 5.5 1 0.7 5 2700 2
32 60 10 8.8 1 2 5 2700 2
33 60 5 6.2 1 2 5 2700 2
34 60 5 5.2 1 2 5 2700 2
35 60 5 8.4 1 2 5 2700 2
36 60 5 6 1 2 5 2700 2
37 60 10 8.4 1 2 5 2700 2
38 60 5 5.3 1 2 5 2700 2
39 60 10 7 1 2 5 2700 2
40 60 10 5.4 0.5 2 5 2700 4
41 75 5 5.1 1 0.6 15 2700 3
42 70 5 5.1 1 0.6 10 2700 2
43 70 5 5.1 1 0.6 5 2700 3
44 75 5 5.2 1 1.3 10 2700 2
45 75 5 6.7 1 1.3 15 2700 2
46 75 5 5.1 1 1.3 20 2700 2
47 75 8 7 1 1.8 5 2700 3
48 75 8 5 1 1.8 10 2700 2
49 75 5 5.3 1 1.8 5 2700 3
50 35 2 5.3 1 3.1 15 2700 5
51 35 2 10.6 1 3.1 15 2700 5
52 35 10 10.6 1 3.1 20 2700 2
53 35 5 5.9 1.5 3.1 25 2700 4
54 35 2 10.6 1.5 3.1 25 2700 4
55 35 5 11.8 1.5 3.1 20 2700 2
56 35 5 10.6 0.5 3.1 25 2700 3
57 35 8 7.6 0.5 3.1 15 2700 4
58 41.7 5 7.6 1.5 3.1 15 2700 2
59 41.7 2 7 1 3.1 10 2700 4
60 35 10 10.6 0.5 3.1 15 2700 2
61 35 5 7 1 3.1 15 2700 4
62 40 2 14 1 2.8 15 2900 5
63 39 2 7 1 2.8 10 2900 4
64 39 2 6.5 1 2.8 50 2900 4
65 40 2 5.7 1 1.6 25 2900 3
66 42.86 2 6.4 1.5 1.6 20 2900 3
67 35.1 2 6.8 1.5 3.5 50 2900 2
68 38 10 9 0.5 3.5 10 2900 5
69 32.3 2 4.5 1.5 3.5 35 2900 3
70 43.7 8 7.7 0.5 3.5 20 2900 3
71 43.7 10 7 0.5 3.5 20 2900 3
72 43.7 2 4.2 1 3.5 15 2900 4
73 42.8 2 5 0.5 3.5 30 2900 5
74 42.8 10 10 0.5 3.5 30 2900 3
75 39.5 5 5 0.5 3.5 10 2900 4
76 44.4 10 15 1 3.5 15 2900 4
77 47.3 8 8.3 1 3.5 50 2900 3
78 47.3 8 5.5 1 3.5 50 2900 3
79 51.43 5 9.3 1.5 1.9 10 2900 3
80 39.4 5 9.5 1.5 2.1 15 2900 2
81 39.4 2 4.5 1 2.1 20 2900 3
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Table A1. Cont.

Number I1 I2 I3/(m) I4 I5 I6/(m) I8/(kg/m3) Level

82 39.4 10 11 1 2.1 25 2900 2
83 41.7 2 4.5 0.5 2.1 60 2900 3
84 40.8 10 10 0.5 2.1 30 2900 3
85 40.8 5 8 0.5 2.1 25 2900 3
86 44.1 5 18 1 2.1 50 2900 2
87 36 8 14 1 1.2 10 2900 2
88 36 8 6.5 0.5 1.2 15 2900 2
89 37.7 8 5.2 1 0.4 5 2900 3
90 40.8 8 4.2 1 1.8 5 2900 2
91 30 10 5.3 0.5 1.2 5 2800 3
92 30 8 5.4 0.5 1.2 5 2800 2
93 30 10 5.3 1 1.2 10 2800 2
94 30 10 5.2 1 1.2 10 2800 3
95 74 8 5.9 0.5 1.5 5 2800 5
96 74 8 5.3 1 1.5 10 2800 3
97 74 8 5.9 1 1.5 10 2800 2
98 74 8 6.5 1 1.5 20 2800 2
99 74 8 6.5 0.5 1.5 15 2800 4
100 71 8 8 1 0.9 5 2800 4
101 71 8 5.3 1 0.9 10 2800 2
102 71 10 8 1 0.9 10 2800 2
103 71 8 5.6 1 0.9 10 2800 2
104 71 10 20 0.5 2.1 5 2800 5
105 40 8 5.9 0.5 2.1 5 2700 4
106 40 8 5.3 0.5 2.1 5 2700 2
107 40 8 5.9 1 2.1 5 2700 2
108 40 8 6.5 1 2.1 10 2700 2
109 40 2 5.6 1 2.1 10 2700 4
110 40 2 5.8 1 2.1 5 2700 4
111 40 8 5.5 1 2.1 20 2700 2
112 70 5 8 1 0.8 5 2800 4
113 70 10 8 1 0.8 10 2800 2
114 70 10 5.5 1 0.8 10 2800 2
115 70 5 8 1 0.8 10 2800 4
116 70 8 5.1 1 0.8 10 2800 3
117 70 5 5.1 1 0.8 5 2800 2
118 70 5 5.1 1 0.8 10 2800 2
119 54 5 5.7 1 0.8 20 2700 2
120 54 10 9.1 0.5 0.8 25 2700 2
121 39 8 5.7 1 0.8 30 2800 2
122 84 5 7.7 1 2.9 10 2900 5
123 45 5 4.8 1 2.9 50 2900 2
124 84 10 7.4 1 2.9 50 2900 3
125 45 10 6.9 1 2.9 10 2900 2
126 45 5 7.4 1 2.9 10 2900 4
127 56 5 4.6 1 2.9 25 2900 2
128 18 5 5.8 0.5 0.4 10 3030 4
129 24 5 8.6 0.5 0.4 10 3030 3
130 95 10 6.9 1 1.5 5 2900 2
131 95 5 6.6 1 0.9 5 2900 5
132 45 10 5.1 1 1.6 5 2900 2
133 21 5 11.2 1.5 0.9 5 3030 2
134 21 5 6.1 1.5 0.9 5 3030 2
135 95 10 8 1 1.6 5 2900 5
136 39 10 5.3 1 1.6 15 2900 3
137 21 5 5.5 1 1.9 20 3030 3
138 24 5 8.7 0.5 1.5 10 3030 5
139 24 5 11 1 1.5 15 3030 2
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Table A1. Cont.

Number I1 I2 I3/(m) I4 I5 I6/(m) I8/(kg/m3) Level

140 67 10 5 1 −0.2 5 2900 2
141 21 5 9 0.5 1.8 10 3030 4
142 21 10 9 1 1.8 10 3030 2
143 95 10 6.8 1 1 5 2900 4
144 73 25 6.8 1 1 5 2900 3
145 27 5 11.5 1 3.1 30 3030 4
146 27 5 7.6 1 3.1 40 3030 4
147 35 5 11.5 1 3.1 30 3030 4
148 50 25 4.5 1 3.1 40 2900 2
149 95 25 7.1 1 3.1 20 2900 2
150 73 25 4.7 1 3.1 30 2900 2
151 95 25 6.3 1 3.1 30 2900 2
152 73 25 4.4 1 3.1 40 2900 2
153 73 25 9.6 1 3.1 50 2900 2
154 54 25 4.8 1 3.1 60 2900 2
155 34 5 4.5 1 3.1 70 2900 3
156 25 10 11.6 0.5 1.4 5 3030 4
157 25 5 11.6 0.5 1.4 5 3030 4
158 24 5 12 1 2 5 3030 5
159 39 5 9 1 2 5 2900 4
160 25 5 5.1 1 1.3 5 3080 4
161 25 5 10.5 1 1.3 10 3080 3
162 25 5 7.8 1 1.3 10 3080 2
163 25.97 10 17 0.5 2 5 3080 5
164 25.97 8 6.2 0.5 2 10 3080 3
165 25.97 8 5.7 0.5 2 5 3080 4
166 25.97 5 5.4 1 2 10 3080 3
167 25.97 8 5.3 1 2 10 3080 2
168 25.97 8 5.6 0.5 2 5 3080 4
169 75 5 5.2 1 1.6 10 2800 5
170 75 5 5 1 1.6 5 2800 5
171 65 5 2 1 1.6 5 2800 2
172 50 5 9.1 1 1.4 5 2800 3
173 50 5 4.6 0.5 1.9 30 2800 3
174 70 8 5 0.5 1.6 5 4300 4
175 70 8 8 1 2 5 4300 4
176 70 8 6 0.5 2 5 4300 4
177 70 8 12 1 2 10 4300 3
178 67 10 11 0.5 2.5 15 4300 5
179 67 25 5 1 2.5 15 4300 2
180 67 5 5 1 2.5 15 4300 2
181 76 10 6 0.5 2.7 5 4300 5
182 40 10 9.2 0.5 1.1 5 4300 3
183 40 5 4.8 1 1.1 10 4300 2
184 40 10 11.7 0.5 2.5 5 4300 5
185 50 10 9 1 2.7 20 4300 4
186 50 5 6 1 2.1 5 4300 4
187 55 5 8 1 1.9 5 4300 5
188 55 5 6 1 2.3 5 4300 4
189 65 10 11 1 2.3 10 4300 4
190 55 5 6 0.5 0.9 5 4300 4
191 60 5 5.5 1 2.2 20 4300 4
192 50 5 5.5 0.5 1.4 5 4300 5
193 50 10 8.5 0.5 1.4 20 4300 2
194 50 10 5.5 0.5 1.4 40 4300 2
195 50 5 6 1 1.5 5 4300 3
196 50 10 30 1 1.7 5 4300 5
197 70 5 4.4 1.5 1.7 20 2700 2
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Table A1. Cont.

Number I1 I2 I3/(m) I4 I5 I6/(m) I8/(kg/m3) Level

198 70 10 4.6 0.5 2 5 2800 4
199 90 10 4.5 1.5 2 10 2850 2
200 70 5 5.2 1 2.1 5 2700 5
201 56.2 8 10 1 1 5 2870 4
202 56.2 10 10 1 1 10 2870 2
203 56.2 8 6 1 1 20 2870 2
204 57.8 8 6.1 1 1 5 2870 3
205 57.8 8 6.1 1.5 1 10 2870 3
206 57.8 8 6.5 1 1.5 5 2870 4
207 57.8 10 11.3 1 1.5 10 2870 2
208 57.8 10 6.5 1 1.5 10 2870 2
209 57 8 6.7 1 2.2 5 2870 4
210 57 10 9.5 1 2.2 5 2870 4
211 57 10 11.2 1 2.2 10 2870 2
212 57 8 6.4 1 2.2 25 2870 2
213 57 8 6.5 1 2.2 10 2870 2
214 57 10 11.5 0.5 1.7 5 2870 4
215 57 10 11 1 1.7 5 2870 2
216 57 10 11 1 1.7 10 2870 2
217 57 10 11.5 1 1.7 10 2870 2
218 57 10 7.4 1 1.7 15 2870 2
219 57.8 10 6.4 0.5 2.5 5 2870 5
220 57.8 10 11.2 0.5 2.5 5 2870 5
221 57.8 10 6.4 1 2.5 10 2870 2
222 57.8 10 10.6 1 2.5 10 2870 2
223 58.6 10 12.4 0.5 2.2 30 2870 2
224 58.6 10 5.9 1 2.2 30 2870 2
225 58.6 10 6.1 1 2.2 30 2870 2
226 59.3 8 8 1 2.2 5 2870 5
227 59.3 8 5.4 1 2.2 15 2870 3
228 59.3 8 10 1 2.2 10 2870 2
229 59.3 8 8 1 2.2 15 2870 3
230 59.3 8 8.4 1 2.2 15 2870 2
231 59.3 8 5 1 2.2 20 2870 2
232 70.3 10 6.9 0.5 2.3 5 2900 5
233 70.3 10 11 1 2.3 10 2900 2
234 70.3 10 5.5 1 2.3 15 2900 3
235 70.3 10 5.4 1 2.3 15 2900 2
236 72.2 8 4 1 1.6 5 2900 3
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