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Abstract: Existing infrared (IR)-visible (VIS) image fusion algorithms demand source images with
the same resolution levels. However, IR images are always available with poor resolution due to
hardware limitations and environmental conditions. In this correspondence, we develop a novel
image fusion model that brings resolution consistency between IR-VIS source images and generates
an accurate high-resolution fused image. We train a single deep convolutional neural network model
by considering true degradations in real time and reconstruct IR images. The trained multiple
degradation skilled network (MDSNet) increases the prominence of objects in fused images from the
IR source image. In addition, we adopt multi-resolution singular value decomposition (MRSVD) to
capture maximum information from source images and update IR image coefficients with that of VIS
images at the finest level. This ensures uniform contrast along with clear textural information in our
results. Experiments demonstrate the efficiency of the proposed method over nine state-of-the-art
methods using five image quality assessment metrics.

Keywords: multiple degradation model; deep networks; image fusion; multi-resolution singular
value decomposition

MSC: 34A08; 26A33; 34A08; 34A34; 34B10

1. Introduction

Multi-modal images have huge demand in many areas, such as medical imaging,
target recognition, and remote sensing [1]. This is due to the advancement in sensor
technology. In particular, the infrared (IR) and visible (VIS) sensor combination has distinct
advantages. IR sensors capture thermal radiation and represent as IR images. On the
contrary, VIS images hold textural details captured from the reflected light on VIS sensors.
By considering the mapped IR and VIS sensor data, the fused IR-VIS images have inherent
features with good visual understating of a scene [2].

Image fusion aims to extract the vital features from multiple source images and merge
them into a single image. In this regard, various algorithms have been developed with
certain fusion rules. These are based on saliency detection [3–5], sparse representation
theory [6–8], multi-scale transforms [9,10], convolutional neural networks [11,12], subspace
methods [13,14], machine and deep learning [15–17], hybrid methods [18,19], and other
fusion strategies [20,21].
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In spite of the appreciable performance achieved by these methods, the IR-VIS image
fusion at different resolutions still remains an unsolved research problem. IR images usually
suffer from poor resolution when compared with the corresponding VIS data. However,
the existing methods [2–4,6,7,9–16,18–22] do not consider resolution differences between
IR and VIS source images, leading to inaccurate fusion results. Under this condition, there
are two possible cases while fusing the IR and VIS images with different resolution levels.
For intuitiveness, these cases are illustrated in Figure 1. Let the dimensions of IR and VIS
images be M× N and sM× sN, respectively. In case 1, the VIS image is downsampled
with a factor s before applying the fusion process [23]. The fused output in this procedure
still suffers from low resolution. For consistency and also to compare with other methods,
the fused image is forcibly converted to an HR image. However, this cannot recover the
loss of VIS textures caused by the downsampling operation prior to image fusion.

Figure 1. Different resolution IR-VIS image fusion.

To address this, we confine to case 2 in our work and eliminate inaccuracy and blur
in the fused image. Here, the IR image is first upscaled to sM× sN before using it as the
source image [23]. Hence, both IR and VIS images have the same HR dimensions before
applying the fusion process. With the proper upscaling of IR images, both IR and VIS
source images contribute to the fused image with improved resolution.

In this paper, we address the problem of image fusion with different resolution VIS-
IR source images. We learn a deep CNN by assuming multiple true degradations in
real time to improve practicability. The learned multiple degradations skilled network
(MDSNet) provides good scalability to recover the IR images with low resolution (LR).
Moreover, it creates resolution compatibility between IR-VIS images for the fusion process.
Correspondingly, the multi-resolution singular value decomposition captures information
from IR-VIS source images in horizontal, vertical and diagonal directions at different
levels. The contrast correction on IR image coefficients with that of VIS image coefficients
at the finest level ensures better fused images. The rest of this paper is organized as
follows. In Section 2, we discuss the degradation model, network structure and loss
function of MDSNet. In Section 3, we propose our IR-VIS fusion method by detailing
MDSNet upscaling and MRSVD updating. In Section 4, the proposed method is validated
over the existing methods based on quantitative metrics and qualitative analysis. Finally,
conclusions are presented in Section 5.

2. MDSNet

In recent times, CNNs have shown unprecedented success in extensive applications.
However, we limit our discussion on CNNs to super-resolution (SR) imaging in this
paper. Existing SR CNN methods apply bicubic downsampling on an HR image, which
do not consider true degradation, thus leading to poor performance. To address this
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issue, we employ the MDSNet for SR that can handle multiple degradations and improve
the practicability [24,25]. In general, the degradation model of an LR image p from the
corresponding HR image q can be viewed as

p = (q⊗ b) ↓s +n, (1)

where ⊗ represents convolution operation, b is a blur kernel, ↓s indicates a downsampling
operation with a factor s, and n is additive Gaussian noise. To obtain better insights on
CNNs in the context of SR, we analyze the approximate solution to Equation (1) using the
maximum a posteriori (MAP) framework as

q̂ = arg min
q

1
2σ2 ‖(q⊗ b) ↓s −p‖2 + λφ(x). (2)

Here, the first term 1
2σ2 ‖(q⊗ b) ↓s −p‖2 represents data fidelity and the second term

λφ(x) indicates regularization with a trade-off λ. The above MAP problem in Equation (2)
conveys that the SR reconstruction process should obey the degradation model while
estimating HR images. In addition, it is clear that the estimated SR image q̂ is a function of
LR input p, blur operator b, and standard deviation σ representing noise level and λ.

q̂ = f(p, b, σ; θ), (3)

where θ represents the MAP inference parameter. However, the existing SR networks [5,8,17]
limit the single image SR problem to interpolation, neglecting the blurring operation and
noise level as q̂ = f(p; θ). However, this does not cover true degradations, resulting in
poor performance. So, we consider the three inputs p, b, and σ together as in Equation (3)
while modeling MDSNet. The sizes of p, b, and σ are different, which causes dimensionality
mismatch while feeding the CNN. Hence, we apply dimensionality stretching and convert
all the input parameters to have a similar size. Let us assume an LR image of size M× N
with C number of channels as M× N × C, a blur operator of size r× r, and a noise level
σ. First, the r × r blur matrix is vectorized to r2 × 1 and projected onto k-dimensional
space using the principal component analysis (PCA) approach. The obtained vector is then
concatenated with the noise level and denoted by a vector t, which is finally stretched into
k + 1 degradation maps of size M× N represented as M× N × (k + 1). Now, these maps
have similar size compared to LR images, thus enabling MDSNet capable of handling three
inputs simultaneously.

The MDSNet is designed for multiple degradations for improving the real-time SR
performance. We describe the architecture of MDSNet in the following.

• The network takes M×N× (C+ k+ 1) images as input by considering M×N×C LR
images concatenated with M× N × (k + 1) degradation maps. The MDSNet achieves
non-linear mapping using multiple convolutional layers in cascade form [17]. Each
layer includes convolution operation (CONV), batch normalization (BN) [26] and
rectifier linear unit (ReLU) [27].

• The first “CONV+BN+ReLU” layer operates on M× N × (C + k + 1) input images.
• All the middle layers are similar to each other, performing “CONV+BN+ReLU” operations.
• The last layer consists of “CONV” operation alone, which produces output HR image

patches. The last layer is followed by a sub-pixel convolution layer [28] to convert HR
image patches to a single HR image sM× sN × C.

• We use Adam optimizer [29] to minimize the loss function,

L(θ) =
1

2K

N

∑
i=1
‖ f (pi, Di; θ)− qi‖2, (4)

where K is the total number of images including the degradation maps Di and pi, qi
are the i-th LR and HR images, respectively. For all scale factors s, we set a total of
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12 convolution layers with 128 feature maps in each layer. The training is performed
separately for different scaling factors. We use the trained model to enhance the
resolution of the input LR-IR image in our proposed method.

3. Proposed Method

In this paper, we aim to solve the different resolution IF problem of IR and VIS images.
Let us denote the ratio of IR image resolution and VIS image resolution by a factor s. That
is, the IR image has dimensions M × N and that of the VIS image is sM × sN. Given
an LR-IR image IRp and an HR-VIS VISq image, the fusion process of our proposed
MDSNet-MRSVD algorithm is outlined in Figure 2.

Figure 2. Proposed IR-VIS image fusion methodology.

3.1. LR-IR Image Upscaling Using MDSNet

Since the IR image IRp has a lower resolution, it is first subjected to MDSNet to
generate the corresponding HR-IR image IRq. The MDSNet is trained with numerous
HR-LR example patches where the LR images are synthesized using Equation (1). However,
the sizes of LR images, blur kernel, and noise are different, which causes dimensionality
mismatch while feeding the CNN. Hence, we apply dimensionality stretching and convert
all the input parameters to have the same size.

To synthesize HR images using MDSNet, it is required to specify the blur operator
and noise level for defining the degradation maps. For blur operation, isotropic Gaussian
kernel with a fixed width and anisotropic Gaussian kernel with probability density function
having zero mean and variable covariance are used. The blur matrix is vectorized and
projected onto k-dimensional space using the PCA approach. The obtained blur vector is
concatenated with the additive white Gaussian noise and stretched into M× N × (k + 1)
degradation maps. By considering these maps, MDSNet can handle multiple degradations
in real time and improve the practicability.
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MDSNet is optimized by minimizing the loss function in Equation (4) using Adam
optimizer [29]. The learned knowledge is used to produce the HR-IR image with factor s.
In other words, the size of HR-IR is sM× sN, which is similar to that of the HR-VIS image.

3.2. MRSVD Coefficients Generation and Updation

The implementation of MRSVD resembles the discrete wavelet transform (DWT)
except the finite impulse response filters are replaced with SVDs [30,31]. However, MRSVD
performs similar to DWT but with reduced computations. Moreover, its basis is data
dependent unlike a fixed basis in DWT, discrete cosine transform and discrete Fourier
transform. Hence, it can capture maximum information from the source IR and VIS images,
thereby proving the finest details in the fused image.

The MRSVD of the HR-VIS image is given by{
ΦVIS

L ,
{

ΨVISv
i , ΨVISh

i , ΨVISd
i

}L

i=1
,
{

UVIS
i

}L

i=1

}
= MRSVD(VISq) (5)

where ΦVIS
L denotes the L-th level approximation coefficient of the HR-VIS image VISq,{

ΨVISv
i , ΨVISh

i , ΨVISd
i

}L

i=1
are the detailed coefficients of VISq at different levels i in the

vertical, horizontal and diagonal directions.
{

UVIS
i
}L

i=1 represents the eigenvectors of VISq
corresponding to i = 1, 2, . . . , L.

Similarly, the MRSVD of HR-IR can be written as{
ΦIR

L ,
{

ΨIRv
i , ΨIRh

i , ΨIRd
i

}L

i=1
,
{

UIR
l

}L

i=1

}
= MRSVD(IR q) (6)

where ΦIR
L denotes the L-th level approximation coefficient of the HR-IR image IRq,{

ΨIRv
i , ΨIRh

i , ΨIRd
i

}L

i=1
are the detailed coefficients of IRq at different levels i in the ver-

tical, horizontal and diagonal directions.
{

U IR
i
}L

i=1 represents the eigenvectors of IRq
corresponding to i = 1, 2, . . . , L.

The HR-IR image IRq is obtained from its LR-IR IRp using MDSNet. In the process
of approximation, a non-uniform illumination may be induced in the resulting image due
to the external training database considered. To address this issue, we correct the HR-IR
image MRSVD approximation coefficient in Equation (5) using the corresponding VIS
image coefficient in Equation (6).

ζ =
max

(
UVIS

L
)

max
(
UIR

L
) (7)

where ζ is the correction factor for updating the ΦIR
L coefficient using UVIS

L and UIR
L at the L-

th level. Now, the updated IR approximation coefficient can be obtained as ΦIR
L = ζΦIR

L and

thus representing the new set of IR coefficients as
{

ΦIR
L ,
{

ΨIRv
i , ΨIRh

i , ΨIRd
i

}L

i=1
,
{

UIR
i
}L

i=1

}
.

3.3. Fusion Process

In this section, the fusion process of HR-IR and HR-VIS images using approximation
coefficients, detailed coefficients and eigenvector matrices is presented. From Equation (5),

the VISq is decomposed into
{

ΦVIS
L ,

{
ΨVISv

i , ΨVISh
i , ΨVISd

i

}L

i=1′
,
{

UVIS
i
}L

i=1

}
, and from

Equation (6), IRq is decomposed and updated as
{

ΦIR
L ,
{

ΨIRv
i , ΨIRh

i , ΨIRd
i

}L

i=1
,
{

UIR
i
}L

i=1

}
.

The approximation coefficients and the eigen matrices are fused by following the average
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strategy, whereas the detailed coefficients of the fused image are obtained by taking the
maximum value of IR and VIS image detailed coefficients,

ΦF
L =

1
2

(
ΦIR

L + ΦVIS
L

)
(8)

ΩFh
i = max

(
ΩIRh

i + ΩVISh
i

)
(9)

ΩFv
i = max

(
ΩIRv

i + ΩVISv
i

)
(10)

ΩF
i = max

(
ΩIRh

i + ΩVISh
i

)
(11)

UF
i =

1
2

(
U IR

i + UVIS
i

)
. (12)

Here, ΦF
L denotes the L-th level approximation coefficient of the fused image. The set{

ΨIRv
i , ΨIRh

i , ΨIRd
i

}
represents the detailed coefficients of the fused image in the vertical,

horizontal and diagonal directions. In addition, UF
i is the fused eigen matrix corresponding

to the IR and VIS images. Finally, we apply the inverse MRSVD process and reconstruct

the HR fused image Fq using these fused coefficients
{

ΦF
L,
{

ΨFv
i , ΨFh

i , ΨFd
i

}L

i=1
,
{

UF
i
}L

i=1

}
.

4. Results and Discussion

In this section, we present the experimental settings of the proposed fusion algo-
rithm, methods and metrics used for comparison. Finally, we present a qualitative and
quantitative analysis to validate our MDSNet-MRSVD approach over the existing state-of-
the-art methods.

4.1. Datasets and Settings

The resolution ratio between IR and VIS input images is set to s = 4. However,
the dimensions M× N for IR image and sM× sN for VIS image vary with the input test
images. The problem of super-resolving IR images can be solved using s = 4, s = 3, or
s = 2. In general, small scaling factors result in a better enhancement of IR images, and
thus, considering large upscaling factors is a challenging task in real time. For this reason,
we employ MDSNet with s = 4 to perform super-resolution on IR input images.

The training data should be as close as possible to the data on which predictions
are to be made. In our use case, MDSNet training involves blurry and LR data from
a security camera. However, we first select a clean large-scale HR image dataset with
DIV2K [5] 800 images and BSDS [32] 500 images. Out of these 1300 images, 1200 images
are randomly selected for training, and the remaining 100 images are used as validation
data. Next, the LR images are synthesized using Equation (1) to generate LR-HR image
patch pairs. For this, the width of the blur kernel is set to [0.2, 4] for isotropic Gaussian,
the angle range of eigenvectors is set to [0, π] to determine the space of anisotropic Gaussian
kernel, and the noise range is set to [0, 75]. The PCA approach is implemented by setting
k = 15 dimensional space. The loss function in Equation (4) is minimized using the
Adams approach [29], with an initial learning rate and mini-batch size set to 10−3 and 8,
respectively. The learning rate reduces by a factor of 10 when the loss is becoming saturated.

The MRSVD of HR-VIS and HR-VIS images in Equations (5) and (6) are implemented
with L = 2 levels, and the corresponding ζ is computed for the 2nd level as shown in
Equation (7). The VISq coefficients and the updated IRq coefficients are fused using
Equations (8)–(12), which are followed by the inverse MRSVD with L = 2 levels. For testing
the MDSNet-MRSVD approach, we select 20 IR-VIS registered HR image pairs from the
TNO Human Factors [22] dataset. The IR and VIS images corresponding to each image pair
in the dataset have the same resolution. In our experiments, we downscale the IR images
to LR by the factor s = 4.
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4.2. Methods and Evaluation Metrics

We compare the proposed method with nine state-of-the-art IF methods, including a
deep networks based super-resolution model in the stationary wavelet domain [17], the ad-
versarial game model [22], total variation minimization (TVM) [33], gradient transfer–TVM
problem [20], multi-sensor IF model with one level SVD [34], wavelets approach [35], image
guided filtering [36], curvelet transform [37], and Laplacian pyramid model [38]. All the
methods are implemented using Matlab software on a system with Intel(R) Core(TM)
i7-8750H CPU @ 2.20 GHz and 16 GB RAM.

For the comprehensive evaluation of different IF methods, we adopt the peak signal-to-
noise ratio (PSNR) [39] and structural similarity index measure (SSIM) [40]. In addition, the
total IF performance QAB/F, IF loss LAB/F, and IF artifacts NAB/F are also considered for
in-depth IF performance analysis [41]. It is noted that the sum of QAB/F, LAB/F, and NAB/F

should be unity [42]. The metrics SD, EN, and SF depend on the fused image only, whereas
PSNR, SSIM, QAB/F, LAB/F, and NAB/F depend on both fused and IR and VIS source
images. Theoretically, PSNR, SSIM, SD, SF, EN, and QAB/F should be high, and LAB/F, and
NAB/F should be low for better IF performance.

4.3. Qualitative Results Analysis

For qualitative comparison of different state-of-the-art IF methods, the visual IF results
on seven typical IR-VIS image pairs are presented in Figures 3–9. In Figures 3 and 4,
the fused images of the proposed method, existing methods [17,20,22,33–38] on test image
pair1-duine sequence and test image pair4-tree sequence are given, respectively. Figure 3a,b
represent the IR-VIS source images of the duine sequence and Figure 4a,b represent the
IR-VIS source images of the tree sequence. Figures 3c and 4c show the results of the proposed
MDSNet-MRSVD method, whereas Figures 3d–l and 4d–l are the fused images from the
methods in [17,20,22,33–38]. Here, we have selected the captains present in the duine
sequence and tree sequence as our region of interest. It can be noticed that the thermal
information is well preserved in our result. In Figure 3, the captains contrast is higher in
Figure 3c than in Figure 3f–j. The fused images in Figure 3d,e,k,l also enhance the contrast,
but it comes with an additional blurring.

In Figures 5–7, the results of the proposed method and the existing methods [17,20,22,33–38]
on test image pair7-airplane in trees, test image pair10-two men in front of house, and test image
pair13-lake are evaluated. Figure 5a,b represent the IR-VIS source images of airplane in trees,
Figure 6a,b represent the IR-VIS source images of two men in front of house, and Figure 7a,b
represent the IR-VIS source images of lake. Figures 5c, 6c and 7c show the results of the proposed
MDSNet-MRSVD method, whereas the fused images of the methods in [17,20,22,33–38] are
shown in Figures 5d–l, 6d–l and 7d–l. For airplane in trees, our region of interest is airplane,
and for two men in front of house and lake, we highlight the tree branches. Here, the fine
textures are greatly recovered in our results. For example, the tree branches corresponding
to the test image pair10 and test image pair13 are clearly visible in Figures 6c and 7c,
whereas the results in Figures 6d–l and 7d–l suffer from non-uniform illumination along
the textures.

Finally, Figures 8 and 9 compare the proposed method with the existing
methods [17,20,22,33–38] using the results on test image pair16-soldier in trench and test
image pair19-marne. Figure 8a,b represent the IR-VIS source images of soldier in trench and
Figure 9a,b are the IR-VIS source images of marne. Figures 8c and 9c show the results of the
proposed MDSNet-MRSVD method. The fused images of the methods in [17,20,22,33–38]
are shown in Figures 8d–l and 9d–l. Here, we have selected the stairs present in soldier
in trench and marne as our region of interest. We can notice that the stairs are clearer for
our method in Figures 8c and 9c compared to the existing methods. Moreover, our results
provide good thermal information with minimized blurring effect.
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Figure 3. Visual IF results of different methods on duine sequence: (a) IR image, (b) VIS image,
(c) Proposed method, (d) [17], (e) [22], (f) [33], (g) [20], (h) [34], (i) [35], (j) [36], (k) [37], and (l) [38].

Figure 4. Visual IF results of different methods on tree sequence: (a) IR image, (b) VIS image, (c) Pro-
posed method, (d) [17], (e) [22], (f) [33], (g) [20], (h) [34], (i) [35], (j) [36], (k) [37], and (l) [38].
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Figure 5. Visual IF results of different methods on airplane in trees: (a) IR image, (b) VIS image,
(c) Proposed method, (d) [17], (e) [22], (f) [33], (g) [20], (h) [34], (i) [35], (j) [36], (k) [37], and (l) [38].

Figure 6. Visual IF results of different methods on two men in front of house: (a) IR image, (b) VIS
image, (c) Proposed method, (d) [17], (e) [22], (f) [33], (g) [20], (h) [34], (i) [35], (j) [36], (k) [37], and
(l) [38].



Mathematics 2022, 10, 3389 10 of 14

Figure 7. Visual IF results of different methods on lake: (a) IR image, (b) VIS image, (c) Proposed
method, (d) [17], (e) [22], (f) [33], (g) [20], (h) [34], (i) [35], (j) [36], (k) [37], and (l) [38].

Figure 8. Visual IF results of different methods on soldier in trench: (a) IR image, (b) VIS image,
(c) Proposed method, (d) [17], (e) [22], (f) [33], (g) [20], (h) [34], (i) [35], (j) [36], (k) [37], and (l) [38].
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Figure 9. Visual IF results of different methods on marne: (a) IR image, (b) VIS image, (c) Proposed
method, (d) [17], (e) [22], (f) [33], (g) [20], (h) [34], (i) [35], (j) [36], (k) [37], and (l) [38].

4.4. Quantitative Results Analysis

We first performed qualitative analysis in Figures 3–9. It is based on human visual
perception and usually focuses on the contrast, edge details, and sharpness of an image.
However, the visual results alone are insufficient to prove the significance of the proposed
method. Therefore, we also present quantitative analysis which is consistent with visual
results and is based on PSNR, SSIM, QAB/F, LAB/F and NAB/F. In Table 1, we show different
metrics of the proposed method averaged over 20 IR-VIS test image pairs. The individual
metric results of different fusion methods are summarized in Figure 10.

As seen, the proposed method produces outstanding results in terms of PSNR, SSIM,
QAB/F, and NAB/F. The method in [36] and proposed method are capable of generating
PSNR values above 34. In addition, the proposed method has the highest SSIM index of
0.663 compared to other methods. The methods in [37,38] and the proposed method have
QAB/F values of 0.759, 0.738, and 0.720, respectively. In addition to the proposed method,
the methods in [35,36] are advantageous with smaller NAB/F indices. In terms of LAB/F,
the proposed method is comparable to the methods in [22,37,38].

Table 1. Average PSNR, SSIM, QAB/F, LAB/F and NAB/F indices of different methods.

Method PSNR SSIM QAB/F LAB/F N AB/F QAB/F + LAB/F + N AB/F

Proposed 34.03 0.663 0.720 0.278 0.002 1
[17] 33.87 0.642 0.680 0.310 0.010 1
[22] 30.71 0.513 0.613 0.250 0.138 1
[33] 33.16 0.549 0.646 0.338 0.016 1
[20] 33.28 0.560 0.651 0.336 0.013 1
[34] 32.31 0.653 0.505 0.493 0.002 1
[35] 32.32 0.656 0.495 0.504 0.001 1
[36] 34.34 0.574 0.712 0.284 0.003 1
[37] 32.22 0.623 0.738 0.237 0.025 1
[38] 32.17 0.617 0.759 0.220 0.021 1
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Figure 10. Metric results of different methods [17,20,22,33–38] on 20 IR-VIS test image pairs: (a) PSNR
(b) SSIM (c) QAB/F (d) LAB/F (e) NAB/F.

The average runtime values corresponding to the proposed method and the existing
methods [17,20,22,33–38] are given in Table 2. It can be noticed that the methods in [35,36,38]
are the fastest methods that can execute in 1 s. The proposed method and the methods
in [20,34,37] consume less than 10 s. In contrast, the methods in [17,22,33] are the slowest
methods with execution times of 14.52, 32.56, and 12.79 s, respectively. Even though the
methods in [35,36,38] are the fastest methods, the method in [35] yields very poor fusion
performance QAB/F, resulting in high fusion loss LAB/F. The methods in [36,38] suffer from
poor SSIM indices with more noise compared to the proposed method. In particular, when
better visual quality is desired with high PSNR, SSIM indices and low fusion loss, a slight
increase in computational time is acceptable in view of improved computational facilities.

Table 2. Average runtime (in seconds) comparison of different methods on 20 IR-VIS test image pairs.

Proposed [17] [22] [33] [20]
9.26 14.52 32.56 12.79 3.29

[34] [35] [36] [37] [38]
7.41 0.24 0.70 9.16 0.07
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Thus, comparing all metrics together, the proposed method can be seen as the best
method in terms of SSIM, second best performed in terms of PSNR and NAB/F, and third
best performed with QAB/F metrics. Additionally, it gives comparable results in view of
the LAB/Fmetrics as well.

5. Conclusions

In this correspondence, we propose a IR-VIS image fusion algorithm based on MDSNet
and MRSVD updation. The proposed method does not demand source images with the
same spatial resolution but still produces a high spatial resolution. The multi-degradation
handling capabilities of MDSNet and IR image coefficient correction using MRSVD enrich
the fused image with clear visible textures and thermal radiation information. Extensive
visual comparisons on various IR-VIS test images demonstrate the qualitative superiority
of our method. The proposed method yields good results on PSNR, SSIM, and QAB/F with
less fusion loss and artifcats as well.
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