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Abstract: In traditional agricultural quality control, agricultural products are screened manually
and then packaged and transported. However, long-term fruit storage is challenging in tropical
climates, especially in the case of cherry tomatoes. Cherry tomatoes that appear rotten must be
immediately discarded while grading; otherwise, other neighboring cherry tomatoes could rot. An
insufficient agricultural workforce is one of the reasons for an increasing number of rotten tomatoes.
The development of smart-technology agriculture has become a primary trend. This study proposed
a You Only Look Once version 4 (YOLOv4)-driven appearance grading filing mechanism to grade
cherry tomatoes. Images of different cherry-tomato appearance grades and different light sources
were used as training sets, and the cherry tomatoes were divided into four categories according to
appearance (perfect (pedicled head), good (not pedicled head), defective, and discardable). The AI
server ran the YOLOv4 deep-learning framework for deep image learning training. Each dataset
group was calculated by considering 100 of the four categories as the difference, and the total
numbers of images were 400, 800, 1200, 1600, and 2000. Each dataset group was split into an
80% training set, 10% verification set, and 10% test set to overcome the identification complexity of
different appearances and light source intensities. The experimental results revealed that models
using 400–2000 images were approximately 99.9% accurate. Thus, we propose a new mechanism for
rapidly grading agricultural products.

Keywords: deep learning; quality control; deep image learning; YOLOv4

MSC: 68U10

1. Introduction

Fruits that cannot be stored for a long time, such as cherry tomatoes, are prone to rot
owing to tropical climates [1]. Failure to screen such fruits in time could lead to severe
problems. Once a rotten fruit is identified, it needs to be immediately removed while
grading; otherwise, the entire batch of fruit is prone to rot [2]. This situation becomes more
severe with an insufficient agricultural workforce.

Deep learning [3] has become a popular artificial intelligence technique for solving
engineering problems [3–6]. Convolutional neural network (CNN) is a class of deep neural
networks most commonly used to examine visual images, such as safe prediction and assess-
ment of sports injuries [7], disease prediction [8,9], non-intrusive load monitoring [10], and
nitrogen deficiency prediction of rice crops [11]. To study tomato leaf diseases, Robert et al.
proposed an object-detection algorithm based on a faster region-based convolution neural
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network (R-CNN). The region proposal network (RPN)-based faster R-CNN uses feature
maps as input and produces a series of object targets to detect tomato leaf diseases [12].
Anirudh et al. used Xception combined with YOLO version 3 (YOLOv3) to replace the
original Inception v3, utilizing deep separable convolution to classify tomato leaf wilt
in India [13]. Additionally, Piyush et al. proposed an R-CNN algorithm based on deep
learning to correctly identify infected areas of tomato leaf diseases in India. In this manner,
they helped farmers diagnose diseases and intervene in time to improve the survival rate
of crops [14]. Choi et al. proposed a CNN based on Inception-ResNet v2 to identify mineral
nutrients from growth images of tomato plants in a greenhouse. Predicting the lack of
mineral nutrients in tomatoes can improve their yield and prevent diseases caused by such
a lack [15].

Jiang et al. proposed Resnet-50 as the fundamental network model in China. They
changed the activation function of the network to Leaky-ReLU to identify the disease
characteristics on the leaf surface. Their model can successfully predict leaf spot blight, late
blight, and yellow leaf roll [16]. Surampalli et al. proposed a CNN to detect tomato leaf
diseases and mitigate India’s heavy crop losses caused by plant diseases and pests. They
used an open-source algorithm for image segmentation and image processing technology
to identify tomato leaf diseases [17]. Azeddine et al. proposed an intelligent mobile
application model based on a deep CNN to identify ten types of tomato leaf diseases [13].
Qimei et al. proposed a tomato disease detection method based on a faster R-CNN in China.
To identify different tomato diseases effectively, they combined faster R-CNN with different
CNNs (including vgg16, resnet50, and resnet101) [18]. Jiayue et al. proposed a target
detection algorithm based on a regression model to improve tomato yield and promote the
control of tomato fruit quality in China. The author used YOLO version 2 (YOLOv2) to
detect healthy tomato fruits with common physiological diseases [19]. Bhole and Kumar
proposed an automatic mango fruit grading system that uses non-destructive techniques
such as thermal imaging and transfer learning with a pretrained SqueezeNet model [20].
Hidetomo et al. proposed an acoustic detection technology for estimating the shelf life of
fruits and vegetables in Korea. Consumers often decide the cooking method according
to the maturity of vegetables or choose better vegetables in supermarkets based on their
freshness. The authors scanned the audible frequency band of the samples using an acoustic
probe and captured the transmitted acoustic signal using a microphone. Transmission
signals collected from the samples under various storage conditions were used to train the
classifier. They found that the transmission signal amplitude decreases significantly with
the maturity of tomatoes [21].

Current research has focused on tomato plants, leaf diseases, mineral nutrition, and
other areas. However, research on the image recognition of fruit appearance defectives
remains an important research topic. This study collected and labeled images of several
cherry tomatoes for cherry tomato quality. We proposed a YOLO version 4 [22] (YOLOv4)-
driven appearance grading filing mechanism for image deep learning training to grade
cherry tomatoes accurately.

2. Methods

Due to defective features, traditional machine learning can be challenging to model and
migrate. The advantages of deep learning, such as YOLOv4, can avoid the complex process
of image preprocessing and reduce the complexity of the network, especially for multiple-
input vectors. YOLOv4 improves the shortcomings of the traditional manual method,
achieves more efficient defective detection, and can effectively avoid the complexity of data
reconstruction in feature extraction and classification. We used the YOLOv4 deep-learning
framework for image deep-learning training to accurately grade cherry tomatoes (Figure 1).
The YOLOv4 deep-learning framework can be divided into four steps: data collection,
deep-learning framework development, cherry tomato quality grading, and the actual test.
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Figure 1. Flowchart of cherry tomato grading.

2.1. Data Collection

We collected various cherry tomato videos from tomato orchards. Cherry tomatoes
were manually placed at different angles to completely record their appearances with
varying face shapes during the recording process. Each video was converted into images
every 1 s to obtain 2000 cherry tomato images. Based on expert-assessed appearance,
the images were classified into four categories: perfect (pedicled), good (not pedicled),
defective, and discardable. Perfect tomatoes are pedicled cherry tomatoes that are not
damaged in appearance. Cherry tomatoes that are not pedicled and not damaged in
appearance are good. Cherry tomatoes with a damaged appearance are defective and can
be made into ketchup, canned tomatoes, etc. Rotten, moldy, and cracked cherry tomatoes
were classified for culling. We stacked 100 images per category, thus obtaining datasets
of sizes 400, 800, 1200, 1600, and 2000. We used image annotation software to frame the
bounding boxes of the cherry tomato images and define their feature categories. After the
images were labeled, the corresponding XML files were generated, including the category
names and coordinate values.

2.2. Deep-Learning Architecture

A CNN is a feedforward neural network whose artificial neurons can satisfy the
requirement of partially covering the surrounding cells. The CNN can effectively exploit
the two-dimensional structure of the input data. Its internal structure includes one or more
convolutional layers, a fully connected layer (corresponding to a classical neural network),
correlation weights, and pooling layers. The backpropagation algorithm trains the CNN.
This model performs better than other deep feedforward neural networks, especially
in image and speech recognition. We divided the images of the cherry tomatoes into
training, validation, and test sets. The training set was mainly used for model fitting and
training in the training phase; it directly participates in the model parameter adjustment.
The validation set was used to assess the initial capabilities of the model and provide a
basis for hyperparameter tuning during training. The test set was the final generalization
used to evaluate the model. The model training diversity description split the images
proportionally into an 80% training set, 10% validation, and 10% test set. During the model
training process, the convolutional layer comprised a set of feature maps formed by sliding
different convolution kernels on the input image and performing certain operations. The
factor stride controls the size of the output feature map. At each sliding position, the
convolution kernel and the input cherry tomato image perform the corresponding product
and sum operations, projecting the information of the image onto the elements in the
feature map. The convolution kernel size is smaller than the input image; it overlaps or is
parallel to the input image. The convolution kernel computes all elements in the feature
map, and the feature maps have the same weights.
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A convolution is a nonlinear form of downsampling. This study used max pooling,
which divides the input cherry tomato image into rectangular regions and outputs the max-
imum value of each sub-region. The pooling layer continuously reduces the data space size
to reduce the overall number of parameters and calculations. Pooling layers were inserted
between the convolutional layers, reducing the edge sensitivity of the convolutional layers.
The step size was two, and the pool size was varied according to the step size. A 2 × 2 max-
pooling layer divides every two elements from the image into 2 × 2 memory blocks and
considers the maximum value. During the deep-learning training, multiple convolutions,
max-pooling layers, and high-level inference were fully connected. In convolution, the
neurons of a fully connected layer are related to all the activations of the previous layer.
In a fully connected layer, all the neurons have weighted connections. The convolutional
layer captures sufficient input features to recognize the input image of cherry tomatoes,
and a model can be trained to recognize cherry tomatoes.

We employed the YOLO technology for real-time object detection to achieve real-time
automatic defective detection for cherry tomatoes. YOLO was developed into the fourth
version (YOLOv4). After the camera lens captured the cherry tomato defects, the processing
method of the cspparknet53 framework of YOLOv4 was run through the AI server. YOLOv4
has the characteristics of real-time object detection, tracking, and judgment. The object-
detection framework is illustrated in Figure 2. During training, the image input of cherry
tomatoes was generated into a one-stage detector through four stages of input, trunk, neck,
and sensory prediction, and then combined with spark prediction to form a two-stage
detector object-detection framework. As shown in Figure 3, the network architecture of
YOLOv4 comprises a CBM, CBL, res unit, cspx, and spp. The CBM is the smallest element
in the network structure and comprises the Conv + BN + Mish activation function. The
difference between CBL and CBM is that the activation function uses leaky_relu. The
Res unit refers to the residual structure in the RESNET network so the network can be
built deeper. Furthermore, cspx is based on the cspnet network structure and comprises
three convolutional layers and an X res unit module. Spp uses 1 × 1, 5 × 5, 9 × 9, and
13 × 13 multi-scale fusion and concatenates the feature maps of different kernel sizes as
the output. The concept is tensor splicing, which expands the dimensions of two tensors,
such as 26 × 26 × 256 and 26 × 26 × 512, and after splicing the two tensors, the output
result was 26 × 26 × 768. Moreover, add is the addition of tensors without dimension
expansion, such as adding 104 × 104 × 128 and 104 × 104 × 128, where the result is still
104 × 104 × 128.
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The image input of cherry tomatoes first passes through the csppark-net53 memory
block of the YOLOv4 network architecture in Figure 3, that is, the backbone memory block
in object detection, to build and learn a deep network, including the five items mentioned
above: CBM, CBL, res units, cspx, and spp. We performed tensor splicing and Concat to
expand the Jade Girl Tomato image dimension and performed image splicing to improve
the training speed quickly. In the cspparknet53 memory block of the YOLOv4 network
architecture, the CBM module adopts the Mish activation function. The Mish activation
function is a smooth nonmonotonic activation function, which is defined by Equation (1):

f (x) = x·tanh(ς(x)) (1)

where ς(x) = ln (1 + ex) is the softmax activation function, sum. After normalizing the
output, each cell’s output was compressed between 0 and 1. The sum of the outputs is equal
to one, and the outputs are equal to the classification probability distribution representing
the probability of each cherry tomato class. The Mish activation function can effectively
improve the training stability and average accuracy. The ReLU activation function is shown
in Equation (2):

f (x) = max(0,x) (2)

Because the output of the ReLU activation function is not centered around zero, only
one positive gradient exists. When x > 0 in forwarding propagation, the backpropagation
process transfers the upstream value to the downstream value. Conversely, the signal
traveling downstream in the backpropagation stops if the input x ≤ 0 in the forwarding
propagation. Thus, the training weights cannot be updated, and the network cannot
learn. Therefore, a ReLu activation function was used at the neck layer to avoid stopping
the training at the backbone layer. The Mish activation function is characterized by low
computational cost, smoothness, nonmonotonicity, upper unbounded, and lower bound.
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A comparison revealed that the accurate value of Mish in each model was higher than
that of Swish and ReLu. The complexity of the Mish activation function increased only
slightly (Mish requires approximately 1 s more per epoch than ReLU). When the ReLU
activation function is selected, the gradient may explode, the output has no upper limit, and
the model cannot converge rapidly. Therefore, in YOLOv4, the Mish function fits into the
backbone and is the most helpful for model training on cherry tomatoes. CSPDarknet53 is a
convolutional neural network and backbone network for object detection using DarkNet-53.
Due to the improvement of the detector MAP index, a backbone with strong image fea-
ture extraction ability has been considered, which should not be too large and affect the
detection speed. The Bochkovskiy study showed that the CSPDarknet53 neural network is
the optimal model for a detector’s backbone [22]. Therefore, CSPDarknet53 was chosen
as the backbone of YOLOv4, as shown in Table 1. The advantages of using the Mish
activation function instead of the activation function in the backbone are outlined in Table 1.
Compared with YOLOv3, YOLOv4 can be lightweight, enhance the learning ability of
CNN, help the training of the cherry tomato model, and improve the recognition accuracy
of multi-input cherry tomato images.

Table 1. Comparison of CSPResNet50, CSPDarknet53, and Efficient-B3 (The bold indicates the best
value in parameter aggregation.).

Backbone Model CSPResNet50 CSPDarknet53 Efficient-B3

Input network resolution 512 × 512 512 × 512 512 × 512
Receptive field size 425 × 425 725 × 725 1311 × 1311

Parameters 20.6 M 27.6 M 12.0 M
Average size of layer output (W × H × C) 1058 K 950 K 668 K

BFLOPs (512 × 512 network resolution) 31 (15.5 FMA) 52 (26.0 FMA) 11 (5.5 FMA)
FPS (GPU RTX 2070) 62 66 26

Figure 4 presents a schematic of the mosaic data enhancement. The mosaic data aug-
mentation process extends the CutMix [23] method to generate a new data augmentation
algorithm that differs from the CutMix method’s overlay fusion of two images. Instead,
it uses four images for clipping and stitching to form a new image [24]. When we input
multiple cherry tomato images, we obtained batches of data from the total dataset and then
cut and stitched each cherry tomato image at random positions. Four cherry tomato images
were randomly chosen, cut, stitched at any position, and synthesized into new images
repeated for batch size times. Finally, a new batch-sized cherry tomato image augmented by
mosaic data was obtained and sent back to the neural network for training. This procedure
enriches the background of the detected object, adds several small targets during random
scaling, maintains the characteristics of the input image, effectively reduces the demand for
the GPU, and speeds up the training time of the model.
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3. Results and Discussion

The experimental environment for this study includes an AI server. The server model,
ASUS ws880t, supports the ECC Intel ® Xeon ® W workstation with Ubuntu 20.04. The
processor is an Intel Xeon w-2133 with 64 GB memory and three NVIDIA RTX 2080ti
graphics processors. The three graphics cards use a tu102 core and have 34 SM units,
11 GB gddr6 VRAM, 4352 CUDA cores, 272 shadow units (TMU), 88 raster (ROP) units,
and 13.4TFLOPS single floating-point performance. All support the NVLink multi-card
series. The cherry tomato identification model can be trained more quickly to maximize
computational performance.

We collected and filed images using YOLOv4. Each group of datasets was calculated
by superimposing 100 images of their categories as the difference, and there were five
groups of datasets in total. The total images taken were 400, 800, 1200, 1600, and 2000.
Each group of datasets was split into an 80% training set, 10% verification set, and 10% test
set. The training times of each data group were mainly 10,000 times, while overcoming
the identification complexity caused by different appearances and different light sources,
avoiding the situation of detailed parameters or different settings in each dataset, reducing
human factors, and improving the accuracy of the experiment. Then, the five groups
of datasets were trained using the abovementioned deep-learning method. After the
training, five models suitable for identifying the appearance of cherry tomatoes were
generated, and the models were tested individually. First, the models were applied to
the original data verification set to verify data integrity. The cross-validation results after
verification were the output. We used the newly obtained cherry tomato images in the test
set to test the weight of the trained model, measure the classification ability of the cherry
tomato defective detection model, and accurately identify the perfect, good, defective, and
discardable categories.

We ran these five datasets on an AI server for in-depth learning training using the
abovementioned experimental process. We set the parameters of each group to be consistent
to reduce the impact of different parameters on the experimental results and avoid affecting
the accuracy and reliability of the experiment. The experimental results are presented in
Figure 5A. The experimental results revealed that 400 images of cherry tomatoes were input,
100 images of each category. From the experimental data, we can see that when the training
time was approximately 1000–2500 times, the floating range of the mAP is extensive, and
while the AVG loss decreased in a curve, it finally became 0.5080. In the process of curve
decline, continuous cutting, and splicing at random positions to synthesize new images for
training and then repeating batch size times, the mosaic data enhancement mentioned in
the previous paragraph improves the generalization ability. However, when the number of
training times reached 3000, the mAP continued to be 100%, indicating that the model was
overfitted during training. Therefore, we added 100 images to each category (perfect, good,
defective, and discardable) to determine whether the experimental results differed.

Figure 5B shows the experimental result after inputting 800 images of cherry tomatoes
and 200 images of each category. The experimental data showed that when the number of
training times reached 4000, the mAP continued to be 100%, and the AVG loss was 0.4721.
Therefore, the model was still overfitted during the training. Hence, we added 100 images
(perfect, good, defective, and discardable) to each category to determine whether the exper-
imental results differed and whether fitting would occur. In Figure 5C, the experimental
results revealed that 1200 images of cherry tomatoes were input, including 300 images
of each category. The experimental data showed that the AVG loss was 0.9009, and the
mAP was 100%. According to the training results, the model was still overfitted during
training. However, in this training process, when the training time was approximately 8000,
the AVG loss value suddenly increased to approximately 3.00, and the mAP decreased to
99%. Therefore, it was inferred that if the number of images increases, there is a chance
of reducing the occurrence of overfitting. Thus, 100 images (perfect, good, defective, and
discardable) were added to each category to ensure different results. Figure 5D shows the
experimental result after inputting 1600 images of cherry tomatoes, 400 images of each
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category. The experimental data showed that when the number of training times reached
4500, the mAP continued to be 100%, while the AVG loss was 2.1369. The model was still
overfitted during training. Therefore, we added 100 images (perfect, good, defective, and
discardable) for each category to the last data group to determine whether the experimental
results differed and whether fitting would occur. Figure 5E shows the experimental result
when 2000 images of cherry tomatoes were input, that is, 500 images of each category, as
follows: the mAP was 99.7%, and the AVG loss was 0.7813. Therefore, it can be inferred
that if we continue to increase the number of images of cherry tomatoes, we may effectively
reduce overfitting.
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Several hyper-parameters can be adjusted in the cfg file of YOLOv4. The hyper-
parameters were tuned based on rules of thumb by try and error. The width and height of
the normalized image size must be a multiple of 32. Here, we used a standard resolution
size, 416 × 416. Batch is a one-time input batch size data for model training. If the dataset
is relatively small, the Full Batch Learning can be used to better represent the sample
population, so as to more accurately orient to the direction of the optimal value. For large
datasets, it is not feasible to load all the data at once due to memory constraints. Therefore,
a smaller batch size needs to be set. Subdivisions are used to subdivide the data thrown
into the memory. When the GPU memory is not enough, this parameter can be adjusted to
increase the amount of batch input, so as to better face the direction of the optimal value.
Each batch represents the completion of one weight parameter update, and max_batches is
the maximum number of weight updates, and the training is stopped after max_batches of
weight updates are completed. The setting of max_batches will affect the results of model
training. If max_batches is too small, the optimal value may not be found. If max_batches
is too large, computing resources will be wasted. Steps can change the learning rate after a
certain number of iterations. It helps the training process to escape the local optimum. It is
usually recommended to increase the max_batches gradually by 70%, 80%, 90%, etc. Other
hyper-parameters use YOLOv4 preset parameters. The experimental parameters of the five
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groups were set to be consistent to avoid deviations in the experimental results owing to
different parameters, as shown in Table 2. This table lists the CFG parameters and various
information sets for each group of experimental data. First, the width and height denote
the width and height of the input image, respectively. Furthermore, batch and subdivisions
mean that 64 images were loaded simultaneously. Forward propagation was completed
16 times. After the forward propagation of 64 images each time, the backpropagation
and update were completed once, and max batches represent the training times of the
model. Here, we uniformly trained 10,000 times, and the steps were max_batches as the
benchmark, multiplied by 0.8 and 0.9, respectively. These classes comprise several training
categories. The images of cherry tomatoes were classified into four categories: perfect,
good, defective, and discardable; the classes were set as 4, and the allocation ratios of
training percentage, verification percentage, and test percentage were 80%, 10%, and 10%
of the mainstream. The experimental results and times required for the different numbers
of images are evident in Figure 6. According to the experimental results, we can infer
that overfitting occurred in the training process of the five datasets, that is, with the 400,
800, 1200, 1600, and 2000 tomato images. When we trained the model, we mainly used
the model to fit the input cherry tomato images and let the model correctly predict the
samples that did not appear in the training set. The model’s generalization ability is the
prediction ability of the samples outside the training set. When the model can capture the
characteristics of a single sample of the training set and consider it as a “general law”, or
when the model has too many iterations and insufficient training data, it cannot find the
generalized characteristics. Therefore, the model tends to “memorize and remember” the
training data rather than “learn the law” from the training data. This reduces the model’s
generalization ability, which is known as overfitting. Therefore, it is speculated that due to
the lack of training data and our five groups of data sets, the images are of a single category
(cherry tomato), which is difficult to generalize, thereby resulting in the easier fitting of the
model in the training process.

Table 2. Parameters and experimental results of each group.

CFG Parameters
and Model Training

Number of Images

400 800 1200 1600 2000

Width 416 416 416 416 416
Height 416 416 416 416 416
Batch 64 64 64 64 64

Subdivisions 16 16 16 16 16
Max_batches 10,000 10,000 10,000 10,000 10,000

Classes 4 4 4 4 4
Steps 8000 and 9000 8000 and 9000 8000 and 9000 8000 and 9000 8000 and 9000

Training percentage 80% 80% 80% 80% 80%
Validation percentage 10% 10% 10% 10% 10%

Test percentage 10% 10% 10% 10% 10%
mAP 100.0% 100.0% 99.8% 100.0% 99.7%

Avg loss 0.5080 0.4721 0.9009 2.1369 0.7813
Environment AI server (Ubuntu 20.04)

Time 2.01 h 2.58 h 2.98 h 3.19 h 3.6 h

Our fitting model mainly predicts unknown results (those not in the training set);
it classifies cherry tomatoes that are not present in this dataset. Therefore, to prevent
overfitting, we can avoid it in the following ways: increasing the number of images,
data enhancement, dropout, and early stopping. Data enhancement can be achieved
using geometric, color, rotary reflection, and composite images. Limited input data can
manually generate more data and expand the training set. Dropout is a typical deep-
learning technique. In neural networks, some neurons (including hidden and visible
neurons) are randomly discarded to reduce the dependence of the model on each neuron
and affect the convergence of the model. Because YOLOv4 belongs to supervised learning,
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we can set early stopping to solve when we encounter considerable iterations and long
training times. Observing the dataset loss change during training can determine the timing
of the early ending of the training. Another application of YOLOv4-driven appearance
grading filing mechanism could be for general object grading, which can be used in various
agricultural, augmented reality [25], and virtual reality applications [26].
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The machine learning to classify fruits has become a vital topic. The grading filing
mechanism based on machine learning can be used for grading when grading standard
rules are defined according to fruit features. This mechanism enables fast execution, saves
time, and reduces manual labor for automated sorting systems. Naik and Patel reviewed
the literature on fruit classification and grading [27]. They explored the classification
and grading capabilities of popular machine learning methods such as artificial neural
networks [28], biogeography-based optimization [29], support vector machines [30], and
principal component analysis [31] under different fruits. Their results confirmed that
machine learning could achieve fruit detection, tracking, and estimation. Furthermore,
machine learning can detect multiple objects in the same frame simultaneously without
consuming much extra time. However, the above algorithms required the experience for
data training, and it takes a lot of time to collect and train data to train the model. Most
of these algorithms aim at approximate functions. In the color-based fruit classification
problem, when fruits of the same shape differ only in the color threshold, the algorithm
may not be as expected [32], and operation speed remains an important challenge. In
order to enable the future application of an automatic cherry tomatoes quality classification
system suitable for factories, we combined the recognition speed of machine learning
techniques using the YOLOv4 network architecture. YOLOv4 is optimized for fast running
speed and parallel computation of object detectors in production systems rather than
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a low computation volume theoretical indicator [22]. Therefore, the designed objects
can be easily trained and used. YOLOv4 has real-time, high-quality, and convincing
object detection results for anyone using traditional GPUs for training and testing. Most
studies have successfully used YOLOv4 for fruit location identification and ripening stage
identification [33]. However, only a few studies examined the results of YOLOv4 for
identifying fruit quality. In terms of identification accuracy and efficiency, the YOLOv4-
driven appearance grading filing mechanism was based on the parameter model suggested
by the YOLOv4 literature, which can achieve good results in grading cherry tomatoes.
However, many improved versions of YOLOv4 can still be used in more complex fruit
species. The ablation study can effectively improve the accuracy of the YOLOv4-driven
appearance grading filing mechanism and apply it to more fruit quality classifications.

4. Conclusions

A high-precision cherry-tomato grading model can be derived based on the deep-
learning framework and appearance grading archive. The model trained in this study
exhibited a good recognition effect on a single category. This method is suitable for
identifying cherry tomatoes and obtaining accurate identification and classification results.
In this study, we did not have to consider how the degree of damage of tomato is finely
graded. This is because, based on the expert-assessed appearance, severely damaged cherry
tomatoes will be classified as discardable. Other categories will be classified according to
the appearance they conform to. Adding cherry tomato feature images from different light
sources and high background complexity to the dataset can reduce overfitting. Feature
samples of cherry tomatoes with different light sources will be added in future studies.
Several features with high background complexity and different categories were added for
deep learning and training. Distinct classes can be compared and learned during the model
training to reduce the possibility of overfitting. Accurate grading and filing mechanism
helps to detect rotten fruit, realize instant grading and elimination, and reduce the number
of rotten fruit in the whole batch. Furthermore, our study can serve as a pilot study for
related research to improve future technological novelty. Our study proposes the idea
of a hierarchical filing mechanism that could provide more technically novel studies in
the future.
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