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Abstract: The interest in large or extreme outliers in arrays of empirical information is caused by the
wishes of users (with whom the author worked): specialists in medical and zoo geography, mining,
the application of meteorology in fishing tasks, etc. The following motives are important for these
specialists: the substantial significance of large emissions, the fear of errors in the study of large
emissions by standard and previously used methods, the speed of information processing and the
ease of interpretation of the results obtained. To meet these requirements, interval pattern recognition
algorithms and the accompanying auxiliary computational procedures have been developed. These
algorithms were designed for specific samples provided by the users (short samples, the presence
of rare events in them or difficulties in the construction of interpretation scenarios). They have
the common property that the original optimization procedures are built for them or well-known
optimization procedures are used. This paper presents a series of results on processing observations
by allocating large outliers as in a time series in planar and spatial observations. The algorithms
presented in this paper differ in speed and sufficient validity in terms of the specially selected
indicators. The proposed algorithms were previously tested on specific measurements and were
accompanied by meaningful interpretations. According to the author, this paper is more applied
than theoretical. However, to work with the proposed material, it is required to use a more diverse
mathematical tool kit than the one that is traditionally used in the listed applications.
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1. Introduction

This paper is devoted to the analysis of large outliers in data samples in medical and
zoo geography, mining, an application of meteorology in fishing tasks, etc. The closest to
this problem in probability theory, mathematical statistics, queuing theory and insurance is
the analysis of heavy-tailed distributions [1–7].

It should be noted that recently, this topic has attracted the attention of a large number
of data processing specialists from the fields of mathematical statistics [8,9], statistical
methods in medicine [10,11] and physiological studies [12], as well as in the analysis of
industrial processes [13,14]. Moreover, along with the statistical methods in this area, it
requires the development of new algorithms and the application of graph theory elements,
particularly in the study of protein networks [15].

However, in those applications with which the author had to work, it was necessary
to shift the emphasis from estimates of heavy tails to the large outliers in empirical infor-
mation. Apparently, this is due to the fact that we have to work with short samples or in
the presence of rare events. However, the main reason is that there are no well-established
theoretical models in these areas of application, and we have to work with data within the
framework of a phenomenological approach. This circumstance required the development
of original heuristic algorithms that allowed obtaining information useful and interesting
to users who submitted their empirical results to the author. The novelty and significance
of the algorithms constructed by the author were confirmed during last 20 years by the joint
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results represented in [13,15–20]. Previously, for a long time, such tasks simply could not be
solved by the author.

In the listed areas of application, the ability to consistently meet the user requirements
plays a crucial role. The following motives are important for these specialists: the sub-
stantial significance of large emissions, the fear of errors in the study of large emissions
by standard and previously used methods, the speed of information processing and the
ease of interpretation of the results obtained. To meet these requirements, interval pattern
recognition algorithms and the accompanying auxiliary computational procedures have
been developed. These algorithms were designed for specific samples provided by the
users. They have the common property of the original optimization procedures being built
for them or well-known optimization procedures being used.

The emphasis on large outliers is due to the fact that their behavior usually obeys some
asymptotic relations [21] and is therefore somewhat simplified. Such circumstances allow
us to raise the question of increasing the reliability of the results of the processing arrays
of observations and reducing the counting time. The latter plays an important role in the
interdisciplinary interactions between domain specialists and mathematical programmers
processing the arrays of observations. To carry out such work, it is advisable to identify the
applied tasks in which such observation processing procedures may be implemented.

The considered samples of observations are defined by the number n of observations
and the number m of their dimensions. The requirements of mathematical statistics [10]
are such that it is desirable that the parameter n is large and the parameter m is small.
However, in the arrays of observations with which we had to deal, the opposite situation
was often observed, where the parameter n was small and the parameter m was large. For
example, such a situation occurs in problems of medical geography [17] and in problems of
meteorology and hydrology [18]. This circumstance forces one to look for sufficiently fast
algorithms for processing short time series, and the accuracy of calculations determined in
some way, on the contrary, increases with an increase in the parameter m.

At the same time, there are one-dimensional long time series (m = 1, and n is suffi-
ciently large) in which not just rare but very rare events associated with large outliers are
observed [13]. It is required to process these series in such a way that the length of the
series and the number of large outliers in it do not create problems for either processing or
interpretation of the results obtained.

Along with time series, which are not quite convenient for data processing, in various
applications, there are large arrays of observations that require data compression and
packaging and lead to extreme graph theory problems. These include disturbances in the
rock according to the results of acoustic monitoring and the movement of animals in a
territory. Despite the presence of well-known graph theory algorithms, special auxiliary
algorithms, albeit simple, are designed well enough with the requirements of a particular
subject area and are also required for processing such data.

This paper describes the methods of interval pattern recognition used in medical
geography and meteorology recognition of rare outliers by a generalized indicator used
in mining, studies of the vicinity of the extremes in the nodes of the square grid used
in meteorology and hydrology and special classification methods used in the analysis of
protein networks in zoo geography, mining and other subject areas.

2. Materials and Methods

The materials for constructing algorithms for processing empirical information are the
following:

• Multidimensional short series of observations containing the main component and m
accompanying components;

• Series of real observations equipped with Boolean variables indicating the presence or
absence of critical events;

• An array of three-dimensional vectors characterizing the coordinates of sound sources;
• An array of one-dimensional characteristics of square lattice nodes;
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• A scheme of the protein network in the form of a digraph;
• A map with a set of districts and a description of the presence or absence of borders

between them.

The methods are as follows:

• The method of interval pattern recognition;
• The method for optimizing monotone piecewise constant functions;
• The method for converting a matrix of distances between points in three-dimensional

space into an undirected graph;
• The method for difference approximation of first- and second-order partial derivatives

for the functions of two variables;
• The method of sequentially allocating cyclic equivalence classes in a digraph and

constructing a zero-one matrix of a partial order between these classes;
• The method of hierarchical classification of districts on a map with respect to the

presence of common boundaries between them.

The following optimization problems are considered:

• When recognizing critical events from an array of one-dimensional observations, two
optimization problems are considered. A connection between them is established, and
it is shown how by reducing one task to another, the array of processed information
may be significantly decreased.

• In determining the acoustic core, the connectivity component that contains the mini-
mum number of vertices is selected from another connectivity component of a graph.

• An algorithm for approximating a level line of a smooth function, given at the nodes
of a square lattice, in the form of an ellipse is constructed.

• In the hierarchical classification of districts on a map, for each district, the minimum
number of borders, a crossing of which allows one to get out from this district to a
common boundary, is determined.

All described methods are closely connected with the initial formulations of the
applied problems and are adopted to real data processing. Moreover, in relation to each
case, it is necessary to introduce some new element into the algorithm.

3. Interval Pattern Recognition Method and Related Algorithms

This section discusses the interval pattern recognition algorithm, which has found its
application in the processing of time series in the problems of medical geography [17], as
well as in meteorology, hydrology [18] and fishing [22,23].

3.1. Interval Pattern Recognition Method

Suppose that an array of observations is represented by a set of vectors with dimen-
sions m + 1 : X = {(x01, x11, . . . , xm1), . . . , (xn0, xn1, . . . , xnm)}. Here, the components of
vectors x01, . . . , x0m characterize the main features, and all other components of these vec-
tors are related features. Let us say the element (xk0, xk1, . . . xkm) corresponds to a larger
outlier in the sample if the inequality xk0 ≥ x0 is satisfied at some critical level x0 (selected
by an expert) of the zero component value in the vector. Then, in the initial sample X, a
set of elements with numbers 1 ≤ k1, . . . , ks ≤ n is determined, for which the inequality
xkj0 ≥ x0, 1 ≤ j ≤ s is satisfied. All these elements are perceived as large outliers. We first
calculate

x+i = max
1≤j≤s

xkji, x−i = min
1≤j≤s

xkji, (1)

Then, a decisive rule is constructed according to which the sample element (xk0, xk1, . . . xkm)
is a large outlier if the following inequalities are met:

x−i ≤ xki ≤ x+i , 1 ≤ i ≤ m. (2)
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This decisive rule is defined as interval pattern recognition. Here, the image is un-
derstood as a large outlier determined by the value of the zero component of the sample
element, and the decisive rule (2) is determined by the belonging of the components of the
vector (xk0, xk1, . . . xkm) to the segments [x−i , x+i ], 1 ≤ i ≤ m.

Let us now list the main properties of interval pattern recognition. For this, we denote
S as the number of sample elements that are perceived by this decisive interval recognition
rule as large outliers:

• All sample elements that are large outliers are perceived by interval recognition as
large outliers. Therefore, the S ≥ s inequality is fulfilled. Then, the quality of interval
recognition may be chosen by the ratio s/S ≤ 1.

• With an increase in the number m of associated features, the recognition quality of s/S
increases and, for some samples of observations, may even approach unity.

• The number of arithmetic operations for the interval recognition procedure is propor-
tional to the product nm and therefore depends linearly on the number n of sample
elements X and on the number m of accompanying features.

• The solution of this problem in its initial version was tested with respect to s/S,,
characterizing the quality of recognition for a given sample. Here, it is possible to
increase the value 0.6 obtained by standard methods to 0.7 or more with an increase in
the number m.

3.2. Investigation of the Extremum of a Function in the Nodes of a Square Lattice

The most important element of a structure of the pressure field at an altitude of 5 km
above the Far East is a stable and extensive depression. The coordinates of this depression
(which are usually associated with a square lattice node) and the pressure value H500 at an
altitude of 5 km determine the nature of atmospheric circulation and significantly affect
the weather [19]. This also includes observations represented by a finite number of points
located at the nodes of a square lattice and characterizing a certain meteorological system.
It is known from observations that the extremes of H500 at the nodes of such a grid largely
determine the functioning of the meteorological system. If we assume that H500 is described
by a smooth function defined on a rectangle and having a minimum at the lattice node,
then by decomposing this function into a Taylor series and assuming the lattice step is
small enough, we may approximate the level lines of this function with ellipses [19]. In
turn, the direction of the major axis of the ellipse and its relation to the minor axis allow us
to make meteorological forecasts concerning the behavior of anticyclones in the vicinity of
the minimum point.

Suppose that the function f (x, y), specifying H500, is continuously differentiable twice
in the domain D = {0 ≤ x ≤ Nh, 0 ≤ y ≤ Mh}, and at the point (kh, lh), 0 < k < N,
0 < l < m, its first differential is zero, and its second differential A(x− kh)2 + B(y− lh)2 +
2C(x− kh)(y− lh) is a positive definite quadratic form (A = fx,x(kh, lh), B = fy,y(kh, lh),
C = fx,y(kh, lh)). Then, the point (kh, lh) is the point of the local minimum of the functions
f , and therefore, by virtue of the Sylvester criterion, the inequalities A + B > 0, AB > C2

are fulfilled. The lines of the level of the function f in the vicinity of the point (kh, lh) are
approximately ellipses. The angle of inclination of the major axis and the compression ratio
of these ellipses determine the nature of the atmospheric circulation.

We denote a = A + o(h), b = B + o(h) and c = C + o(h) as the finite difference
approximations of the partial derivatives A, B and C. We approximate the function f by the

function f̂ up to o(h2) in variables X =
x− kh

h
and Y =

y− lh
h

:

f̂ (x, y) = f (kh, lh) +
1
2
(aX2 + bY2 + 2cXY), a + b > 0, ab > c2.

Therefore, for small h values, the quadratic form aX2 + bY2 + 2kxy is also positively
definite.
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We reduce this form to a diagonal form by constructing a matrix A =

(
a c
c b

)
and

writing out the characteristic equation (a− λ)(b− λ)− c2 = 0, whose roots

λ± =
a + b

2
±

√(
a + b

2

)2
− ab + c2 > 0,

are the eigenvalues of the matrix A.
In the coordinate system (u+, u−) with an orthonormal basis −→n +, −→n − from the

eigenvectors of matrix A, the quadratic form aX2 + bY2 + 2cXY is represented by the sum
of squares λ+u2

+ + λ−u2
− with level lines in the form of ellipses λ+u2

+ + λ−u2
− = const > 0,

having a compression ratio k =
√

λ+/λ−. The slopes of the major axis of the ellipses were
found, and the compression ratio at the H500 level line allowed meteorologists to build a
physical reconstruction of various processes occurring in the atmosphere. The lines of the
level of the analyzed function H500, constructed in the form of ellipses, were rechecked
during the construction of a physical meteorological forecast in [19].

4. Recognition of Rare Outliers and Related Algorithms

Another type of observation may be time series in which m = 1 and the length of the
series n is quite large, being to the order of several hundred. Such observations characterize
important and therefore rare events in the system. These include the already described
collapses in mine workings. The miners proposed to characterize the state of the system at
some point in time by a generalized one-dimensional indicator ρ and a Boolean variable
characterizing the presence or absence of a collapse in the system. The task is to recognize
presence or absence of the collapse in the presented one-dimensional series of observations.
An algorithm is proposed for constructing a recognition procedure for the presence or
absence of the collapse, in which the amount of calculations is determined only by the
number of important events N being much smaller than n. This algorithm is based on
maximizing the frequency of correct recognition of the presence or absence of an event
from the critical value ρ∗, determining the recognition result using the inequality ρ ≤ ρ∗.

Let us now turn to the consideration of long series of observations in which the
number of large emissions is small (i.e., n is much larger than one, and N/n is much
smaller than one). Such observations include, in particular, collapses in mine workings.
There is a class of applied problems in which a certain generalized indicator is selected
as a concomitant feature, formed by specialists of this subject area based on the results
of numerous observations, such as mining specialists based on the results of acoustic
monitoring of the rock strata [13,24,25].

4.1. Recognition of Rare Outliers by a Generalized Indicator

In this subsection, we assume that the initial sample is formed as follows. All general-
ized indicators form a sequence {x11, . . . , xn1}, and the numbers k1, . . . , ks of the sample
elements characterizing large outliers are given. It is required to build a recognition rule
for determining emissions by this generalized (single) indicator. Let us place the sequence
{x11, . . . , xn1} on the real line and mark it with crosses with the numbers k1, . . . , ks (see
Figure 1). We are looking for a number x∗ defining the following decisive rule: if xk ≥ x∗,
then the sample element with the number k refers to large outliers. If xk < x∗, then the
sample element with the number k is not recognized as a large outlier.

Figure 1. Representation of a training sample on a straight line by a set of characters ×, •.

For each number c, we compare the frequency ρ×(c) of correctly attributing a sample
element to large outliers and the frequency ρ•(c) of not correctly attributing a sample
element to large outliers. The value ρ∗ is introduced using an expert method, and it is
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required that the solution corresponding to it satisfies the inequality ρ×(c) ≥ ρ∗. Among
all c : ρ×(c) ≥ ρ∗, it is required to find one value that maximizes ρ•(c). Here, ρ×(c)
characterizes the security of the decision being made, and ρ•(c) characterizes its cost-
effectiveness.

Since the function ρ×(c) is stepwise and monotonically non-increasing by the argu-
ment c, being continuous to the left, and the function ρ•(c) is stepwise and monotonically
non-decreasing, being continuous on the right (see Figures 1–3), then this problem has
many solutions that can be represented by some segment. In turn, the task of determining
the maximum value of x∗ at which ρ×(c) ≥ ρ∗ has a unique solution, which is the right
end of the segment specified above. It is natural, for security reasons, to determine the
right end of the segment, which is the solution to the maximization problem ρ•(c), under
the condition ρ×(c) ≥ ρ∗. Due to the specified property of this solution, it is sufficient to
solve the problem for the maximum of the function ρ×(c) under the condition ρ×(c) ≥ ρ∗.

Figure 2. Type of function ρ×(c).

Figure 3. Type of function ρ•(c).

The resulting solution to the problem of recognizing large outliers by sampling
{x11, . . . , xn1} and numbers k1, . . . , ks requires only knowledge of the sequence xk11, . . . xks1,
which significantly reduces the amount of calculations, since s/n is much smaller than one.

Using the method of recognizing a large outburst (exceeding the generalized indicator
of the critical level), the results were obtained for predicting collapses in the mine, which
were confirmed by specialists in mining. Moreover, the frequency of correct recognition
of a critical event (a collapse in a mining operation) constructed in solving this problem
characterizes the safety factor of mining operations, and the frequency of correct recogni-
tion of an absence of a critical event characterizes the cost-effectiveness factor of mining
operations. Therefore, when solving this problem, safety restrictions were first introduced,
and under these restrictions, the efficiency indicator was optimized. The solution of the
concrete problem considered in [13] was verified by comparing the optimization result c
obtained by the author and the result independently obtained by mining specialists (which
practically coincided). It was very important for the mining specialists to independently
verify their own rather cumbersome calculations.

4.2. Clusters of Points in Space

When implementing an acoustic monitoring system, it becomes necessary to deter-
mine acoustically active zones and, on this basis, predict dangerous collapses in mining
according to the generalized indicator introduced by mining specialists [24,25]. In the
previous subsection, to construct a generalized indicator, it was necessary to determine
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the acoustically active zone from a set of n points in three-dimensional space determined
during acoustic monitoring of cod sources in the rock column [13].

In fact, we are talking about constructing a model of an acoustically active zone based
on the available observations and an algorithm for determining it. This procedure is based
on information about the matrix ||rij||ni,j=1 of pairwise distances between the points detected
during acoustic sounding and the critical distance r between them, as set by experts.

For the first step, the matrix ||rij||ni,j=1 is converted to a zero-one matrix ||I(rij <

r)||ni,j=1.
In the second step, the constructed zero-one matrix is further considered as the adja-

cency matrix of an undirected graph, whose edges between the vertices i and j exist only
under the condition rij < r.

In the third step, using the well-known methods of graph theory, in the set of 1, . . . , n
vertices of the graph G, a set of connectivity components is determined, among which the
one with the maximum number of vertices is selected. This set of vertices is defined as an
acoustically active zone (several zones are also possible).

In the forth step, the classification procedure is accelerated in the following way.
Initially, the point 1 is taken, which is denoted by the first class. Let the vertex classes
I1, . . . , Ip from the set {1, . . . , k} be allocated in step k, and the point k+ 1 is connected by the
edges to some of these classes. Then, a new class is formed from them and the point k + 1,
and the classes that are not included in this new class remain the same, together forming a
set of classes in step k + 1. In such an algorithm, information previously used is not lost
at each step of the algorithm. The most significant step is the last step of this algorithm,
in which it is proposed to preserve the classification of the connectivity components of
the graph and not leave only one applicant for the formation of the final connectivity
component.

The selection of clusters of points in the three-dimensional space detected during
acoustic monitoring allows us to build generalized indicators by which critical events (col-
lapses) in a mine are predicted. The solution to the problem considered in [13] was verified
visually by mining specialists, who were interested in convenient computer algorithms for
defining acoustically active zones.

5. Special Classification Algorithms

Classification algorithms allow us to identify some extreme modes in a complex
system. In particular, with the help of classification algorithms, it is possible to determine
the acoustically active zones. Of particular interest are hierarchical classification algorithms
that identify objects, namely those that most influence the behavior of a complex system or
objects that play the role of hubs through which numerous connections between elements
pass. This section of the work is devoted to these issues.

5.1. Hierarchical Classification of Graph Vertices

This problem arose when analyzing a protein network presented by a complete di-
graph containing n vertices [26]. The vertices of such digraphs are proteins and the directed
edges of the connection between them. The procedure of hierarchical classification in such
a digraph is in some sense equivalent to the isolation of clots (aggregates of proteins close
to each other).

Using Floyd’s algorithm, we construct a matrix ||cij||ni,j=1 of the lengths of the minimal
paths between the vertices of the original digraph. We transform the matrix ||cij||ni,j=1
into a symmetric matrix ||rij||ni,j=1, rij = cij + cji. Thus, rij is the minimum length of a
cycle connecting the vertices i and j. It is obvious that the minimum length of a cycle
passing through a pair of vertices can be considered the distance between them, since it is
nonnegative and satisfies the triangle inequality.

Let us construct a finite, monotonically increasing sequence of R = {r1 < r2 < . . . <
rm} nonzero elements of this matrix. Having chosen some critical level r, we transform the
matrix ||rij||ni,j=1 into a zero-one matrix ||I(rij ≤ r)||ni,j=1. Now, let us construct a graph Gr,
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whose edges connect the vertices i and j provided that rij ≤ r. Then, in the undirected graph
Gr, the connectivity components may be distinguished using the classification algorithms
described above. The parameter r may be selected in different ways, such as by assuming
r = r1, . . . , rm. In this case, with 1 ≤ rp < rq ≤ rm, the class defined with r = rq necessarily
enters some class defined with r = rp. Thus, the hierarchical classification of the set of
vertices 1, . . . , n is determined. However, the increasing sequence of values of the critical
level r may be reduced at the choice of the users.

5.2. Allocation of Cyclic Equivalence Classes in a Digraph

The problem considered above requires for its formulation the allocation of cyclic
equivalence classes (clusters) in the digraph. The cyclic equivalence relation between a pair
of digraph vertices assumes the existence of a cycle containing this pair of vertices. Then,
a partial order relation may be introduced between the cyclic equivalence classes in the
digraph. There are different algorithms to define the cyclic equivalence classes and matrix
of their partial order (see, for example, [27,28]).

In order to construct a sequential algorithm for solving this problem, it is required at
each step to establish a partial order relation between the classes of cyclic equivalence. It is
not enough to just allocate cyclic equivalence classes. It is also required to determine the
zero-one matrix of the partial order relationship of clusters (a presence of a path from one
cluster to another).

To accomplish this, at step 1, the vertex 1 is taken, and a cluster and a one-by-one
unit matrix are formed from it. Let the clusters and the matrix of partial order relations
between them be constructed at step t− 1. We take the element t and select the following
sets of clusters: B1, B2 and B. The set B1 contains clusters, each of which has a path from
the vertex t, and the set B2 contains clusters from which there are paths to the vertex t. All
other clusters fall into the set B, and from them, there can be paths only to the clusters of
the set B1, and paths can exist in them only from the set B2. Then, at step t, a new cluster
[t] is built, consisting of the vertex t and the clusters of the set B1 ∩ B2. The matrix of a
partial order at step t is defined by rectangular sub matrices 0 consisting of only zeros,
rectangular sub matrices 1 consisting of only ones and rectangular sub matrices repeating
the corresponding submatrices of the matrix a at step t− 1 (see Table 1).

Table 1. Algorithm of transition from step t− 1 to step t for a matrix of partial order a.

Matrice Partial
Order Clusters Set A1 Clusters Set [t] Clusters Set A2 Clusters Set B

set A1 clusters repeating step
(t− 1) 0

0
set [t] clusters

1
set A2 clusters repeating step (t− 1)

set B clusters repeating step
(t− 1) 0 repeating step

(t− 1)

This method has been applied to the analysis of the thermal stability of some protein
networks [16], and so far, requests have been received from various applied biological
journals for the continuation of this topic.

5.3. Definition of Central Hub Areas on the Map

Another type of such observations may be maps divided into some areas and used
to highlight areas associated with animal movements [29]. Let us assume that there is
some bounded, connected territory with a set of U0 singled-out, single-connection regions
(administrative districts or hunting farms) on it. This territory is defined by a finite set of
bounded regions on the plane. Everywhere else, without limiting generality, we assume
that the boundaries between the regions are polylines. Our task is to compress information
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about this map in order to use it further for studying the movement of rare animals in this
area by traces of these animals found in these areas.

According to this division, it is necessary to build a hierarchical classification of
internal (not touching the border of the map) districts in relation to their neighborhood.
Such a hierarchical classification assumes the allocation on the map of a sequence of sets
of districts Uk, Uk+1 ⊆ Uk, k ≥ 1 so that each district in the set Uk+1 adjoins only the
districts from the set Uk. It is shown that such a sequence is finite, and in real observations,
the number of vertices at the end of the algorithm is usually significantly less than at the
beginning. Thus, the final vertices allow us to compress the original information about
the map.

This compression of map information is based on the “neighborhood” relationship
between the specified areas. For this purpose, a map with the areas highlighted on it is
represented as a planar graph, the faces of which are the regions, and the edges are the
sections of the border between two neighboring regions.

This procedure can be continued in a recurrent way:

Uk+1 = {A ∈ Uk : S(A) ⊆ Uk}, k ≥ 1 (3)

This can continue up to some step n, at which point one of two equalities is fulfilled:
Un+1 = Un or Un+1 = �. Here, for A ∈ U0, we define S(A) as a set of regions bordering it.

The equality Un+1 = Un means that all regions of the set Un border only on the
regions of this set. However, due to the condition of the limitation of all areas of the map,
the finiteness of the number of these areas and the presence of only polylines as boundaries,
this condition cannot be fulfilled. In addition, since at each step k the strict inclusion of
Uk+1 ⊂ Uk is performed, then the number of regions N(Uk) in the set Uk satisfies the
inequality N(Uk+1) < N(Uk). This implies the inequality n < N(U0) < ∞. Therefore, the
algorithm in Equation (3) may be implemented in a finite number of steps n. In the second
case, when Un+1 = �, we have N(Un+1) = 0, so no area from the set Un may be completely
surrounded by areas from the same set. This algorithm requires knowledge of the set of all
inner regions U1 and the sets {S(A) : A ∈ U1} of all regions bordering the inner regions
(of the first kind). Thus, the implementation of the algorithm in Equaiton (3) is working
with lists of the area numbers and not with their view on the plane, which greatly simplifies
its implementation.

Denote Vk = Uk \ Uk+1, 1 ≤ k < n, Vn = Un, and then the equalities are valid
(Uk =

⋃n
j=k Vj, 1 ≤ k ≤ n), and any vertex of the set Vk is connected by an edge to some

vertex of the set Vk−1 where there are no edges connecting this vertex to the vertices of the
sets Vj, j < k− 1. Indeed, if the vertex is v ∈ Vk, then the inclusion of v ∈ Uk is performed.
However, a complete encirclement of a vertex v by vertices from the set Uk is impossible,
because in this case, v ∈ Uk+1 means v ∈ Vj for some j ≤ k− 1. Therefore, there is an edge
connecting the vertex v with the set of vertices Uk−1. However, an edge connecting the
vertex v to the set Uk−2 is also impossible, because the vertex v is completely surrounded
by the vertices of the set Vk−1. Finally, the vertex v ∈ Vk may be connected with some
vertices of this set also. Therefore, each region of the set Un = Vn may be considered some
center on the map. Then, the set Vn−1 consists of the areas bordering it and completely
surrounding it, called its margin or periphery of the first kind. By attaching to the periphery
of the first kind, with the regions bordering on the regions from this periphery, it is possible
to build a periphery of the second kind, and so on. It follows from this construction that the
minimum number of boundaries that the path from the vertex v ∈ Vk to the total boundary
of all districts crossed is equal to k, where k = 1, . . . , n. The proposed algorithm was tested
during the analysis of traces of the Amur tiger in the territory of Primorsky Krai with the
help of ecologists and aroused their serious interest.

6. Discussions

What all the algorithms for processing large outliers given in this paper have in
common is the fact that the algorithms themselves are fairly standard, but when applying
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them to individual samples, it is necessary to select the correct combination of these
algorithms. It is this combination that ensures the novelty of the results obtained. For
example, when processing data on acoustic monitoring of the rock strata for an algorithm
for predicting critical events (collapses), an algorithm for identifying acoustically active
zones was required. In turn, when analyzing critical events in the climate system, it is
necessary not only to highlight the moments of occurrence of these events but also their
spatial localization and behavior in its vicinity.

In the practical application of the proposed algorithms, their computational complexity
and computational speed play an important role. In some cases, for example, when process-
ing data on animal movements over a certain territory, excessive requirements for data
processing algorithms may encounter excessive computational complexity. This led to the
construction and use of hierarchical classification algorithms, which at the top level of the
hierarchy identify some central parts of the study area.

The final results of the proposed algorithms for processing observations are evaluated
by experts from the subject area. Therefore, all elements of the proposed algorithms should
be understood by these experts and allow them to be checked. Moreover, the proposed
algorithms should be convenient to assist experts in constructing various scenarios of the
behavior of the analyzed system. It should be noted that the results of processing large
outliers tend to be some estimates that require estimates of their errors and the impact of
the inaccuracies of the observations of them.

The experience of working with algorithms for processing large outliers shows that
all the elements included in them should be selected as carefully as possible in order to
ensure high quality and demand among specialists in the subject areas. It is also necessary
to combine the proposed algorithms for processing large outliers with classical probabilistic
models. For example, when processing data on animal tracks in a certain territory, it is
convenient to use an inhomogeneous Poisson flow of points [30] as a model of animal
tracks. Now, it is difficult to predict what new algorithms and models will have to be
built to solve the problems discussed in the work. These tasks come from users and
require additional mathematical processing, but it is already clear that various optimization
procedures should play an important role in them.

When identifying flashes in a time series, some difficulties arise that require a set of
different methods to overcome. For example, there are known time series of pink salmon
yields, in which the harvest is small in even years and large in odd years. To analyze this
phenomenon, it is necessary to distinguish stable cycles of a length of two in the Ricker
model. These cycles appear when the growth coefficient of the model belongs to a certain
interval. However, the noted phenomenon occurs only at the right end of the interval, and
this can be detected only after additional and more detailed calculations.

7. Conclusions

This article presents an algorithm for constructing an interval pattern recognition
procedure. The properties of this algorithm were investigated, and it was shown that with
an increase in the dimension of observations, the recognition quality improves:

• An algorithm for recognizing a critical event from a one-dimensional series of obser-
vations was constructed by analyzing the (small) part of the series containing only
critical events.

• An algorithm for determining the acoustically active zone by the coordinates of the
sound source points was constructed. This algorithm is based on the transformation
of an array of coordinates of sound source points into an undirected graph and the
allocation of connectivity components in it.

• A sequential algorithm for determining cyclic equivalence classes and partial order
relations between these classes in the digraph was constructed.

• A (fast) algorithm for the hierarchical classification of districts on the map based on
the presence of common borders (neighborhood) between districts was constructed.
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Therefore, their further development requires assessments of the stability of the results
obtained with variations of these critical levels. In addition, an important role in the devel-
opment of this topic should be played by estimates of the impact of observation errors on
the results obtained in the work. If the array of observations of a system consists of parts
of its elements’ observations, then in the near future, it will be necessary to develop a
procedure for comparing the results of processing these parts in order to determine the
most sensitive part.

From the author’s point of view, this paper is more applied than theoretical. However,
to work with the proposed material, it is required to use a more diverse mathematical tool
kit than the one that is traditionally used in the listed applications. In particular, when
working with mining materials, this allows us to identify economic and safety indicators
and significantly reduce the volume of the analyzed information.

The algorithms presented in this paper appeared as a result of long and rather unsuc-
cessful computational experiments. Practice has shown that in order to obtain reasonable
applied results, it is necessary to strictly follow the initial meaningful statement of the prob-
lem, but the algorithms proposed by the mathematicians themselves should be convenient
in calculations and fast enough. Unfortunately, the consumers of these algorithms are often
impatient users.
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