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Abstract: Aiming at the problem of the terminal guidance phase of hypersonic vehicles (HSV) under
fault condition, and considering the existence of various uncertain parameters and actuator faults in
the control system, a fault-tolerant integrated guidance and control design of a hypersonic vehicle
based on the proximal policy optimization algorithm (PPO) is proposed. First, in view of the problem
that the separate guidance and control loop design cannot make full use of the coupling relationship
between the two, the relationship between the guidance loop and the control loop is considered and
an integrated guidance and control system of HSV is established. Then, the integrated guidance and
control problem is converted into a reinforcement learning model, the action space, state observation
space, and reward function of the PPO agent are designed, and the network is initialized and designed.
Simulations verify the feasibility of the proposed PPO-based IGC system.

Keywords: hypersonic vehicle; integrated guidance and control; proximal policy optimization;
fault-tolerant control
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1. Introduction

Hypersonic vehicles (HSV) generally refer to aircrafts with a flying Mach number
greater than 5 [1]. However, the cost of hypersonic vehicles is high, and they have the char-
acteristics of strong nonlinearity, strong coupling, and severe uncertainty of aerodynamic
parameters during the re-entry flight. At the same time, taking into account the possible
fault of the actuators affected by the environment, the reliability and security of hypersonic
vehicle flight is a problem that cannot be ignored [2–6]. To improve the guidance accuracy
and flight stability of HSV, designing a fault-tolerant guidance and control system becomes
a priority.

At present, the traditional hypersonic vehicle guidance and control system design is
usually decoupled into two loops, the guidance loop and the attitude control loop, and
these two loops are designed separately. However, there is a strong coupling relationship
between the guidance loop and the attitude control loop. Separate designs cannot make full
use of the synergistic relationship between the two, and the uncertainty and fault factors
cannot be comprehensively considered in a single loop. Therefore, a design method of
Integrated Guidance and Control (IGC) has been proposed [7–9]. The method of using the
comprehensive information such as attitude, overload, and line-of-sight angular velocity
in the feedback control design of actuator action to improve the final guidance quality
is usually called the IGC method [8]. This method designs the overall system of the
guidance loop and the attitude control loop, which can take into account the environmental
information and feedback information in the two types of loops and improve the fault-
tolerance capability and final guidance quality of HSV.

At present, many scholars have conducted a lot of research on the algorithm of inte-
grated guidance and control, such as active disturbance rejection control [10,11], sliding
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mode control [12,13], adaptive control [14], and so on. For hypersonic vehicles, Chong
proposed a finite-time IGC method for HSV with improved robustness-to-parameter un-
certainty [15]. Reference [16] proposed an IGC method based on the L1 adaptive state
feedback control to solve the problem of dynamic uncertainty in hypersonic vehicles.
Zhang proposed a multi-constraints finite-time IGC method based on adaptive control [14].
Reference [17] designed a fault-tolerant IGC system under rudder surface faults based on
the predictive correction and backstepping control method. Most of the current research on
integrated guidance and control systems of hypersonic vehicles only considers uncertainty
conditions or actuator fault, and there is little research on the design of IGC systems under
complex fault conditions. Under the condition of considering both uncertainty and actuator
fault, higher requirements are put forward for the fault-tolerance and real-time performance
of IGC systems.

With the continuous development of intelligent algorithms, their combination with
traditional control algorithms has become a new mainstream research direction. Reinforce-
ment learning is a machine learning method that is widely used in various fields. It outputs
actions according to the observation of the environment by the agent and updates the action
output policy according to the reward generated by the action. Reinforcement learning
is an algorithm that can find suitable real-time action policies and is often used to solve
decision-making problems [18,19]. Since RL is a real-time algorithm and can learn policies
according to environmental feedback, it has environmental adaptability and can be used in
fault-tolerant control research. Reference [20] applied reinforcement learning to the control
of fuel-transfer systems without prior information on faults and solved the problem of
gradual fault tolerance. Reference [21] uses Meta-RL to solve slip-steering vehicle control
under actuator failure. Reference [22] compared the fault tolerance of MPC and RL in the
presence of sensor noise and slowly changing faults, and the result shows that reinforce-
ment learning has better fault tolerance. In summary, due to the real-time characteristics of
reinforcement learning, it is feasible to apply it to fault-tolerant control. Proximal Policy
Optimization (PPO) is an advanced RL algorithm with the general advantages of RL and
more stable training [23], it can be applied to design the IGC system of hypersonic vehicles
under the condition of compound faults.

Due to the possible fault problems of hypersonic vehicles in the terminal guidance
phase and the high requirements for guidance accuracy, and aiming at the fault-tolerant
control of terminal guidance of hypersonic vehicles, the main contributions of this paper
can be summarized as follows:

• A nonlinear IGC model of a hypersonic vehicle is established with actuator faults and
parameter uncertainty.

• A PPO-based IGC system is proposed and designed. The IGC system is modeled as
a reinforcement learning problem and the PPO algorithm is applied to the system.
The simulation proves the passive fault tolerance of the method, and the method can
complete the guidance task under complex fault conditions.

2. Problem Formulation
2.1. 3DOF Model of the Hypersonic Vehicle

This paper mainly studies the terminal guidance problem of hypersonic vehicles. Based
on the Winged-Cone model with detailed relevant information published by NASA [24], it
is simplified to a 3DOF vertical plane model for research. During the terminal guidance
phase, HSV is only affected by gravity and aerodynamic force [3]. The aerodynamic rudder
of HSV is simplified to a pitch elevator in the vertical plane δz. The actions of the pitch
elevator will change the aerodynamic force and aerodynamic torque acting on HSV, thereby
changing the flight attitude of HSV.

Assuming that the earth is a non-rotating spherical model, the launch coordinate
system of HSV is an inertial coordinate system, as shown in Figure 1.
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Figure 1. HSV motion diagram.

The equation of motion established in this system is:

ẋ = V cos θ

ẏ = V sin θ

V̇ = −D
m
− g sin θ

ω̇z =
Mz

Izz

θ̇ =
L

mV
− g cos θ

V
α̇ = ωz − θ̇

(1)

where x and y represent the coordinates of HSV in the launch coordinate system; V
represents the flight speed of HSV; g is the local gravitational acceleration of HSV; D and L
represent the drag and lift caused by aerodynamic force; Mz represents the aerodynamic
pitching moment; ωz is the pitch angular velocity of HSV; Izz is the moment of inertia of
the Z axis of HSV; θ represents the flight trajectory inclination of HSV; and α represents the
angles of attack. The calculation of aerodynamic force and aerodynamic moment can be
obtained by (2): 

L = CLqS
D = CDqS

Mz = CmzqS
(2)

In the Equation (2), q = 0.5ρV2 represents the dynamic pressure, where ρ is the
atmospheric density. CD, CL, and Cmz represent the aerodynamic coefficients of lift, drag,
and pitching moment. They are generally fitted as a function of angle of attack α, Mach
number, and elevator δz, expressed as (3):

CL = CL,α + CL,δz

CD = CD,α + CD,δz

Cmz = Cmz,Ma + Cmz,α + Cmz,δz + Cmz,q
ωzc
2V

(3)
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2.2. Line-of-Sight Angle Model

In this paper, the line-of-sight angle model is used as the relative motion model. It
is assumed that the target line-of-sight vector of HSV is expressed as ~R in the launch
coordinate system, and its included angle with the x-axis of the transmission system is q, as
shown in Figure 2:

H

T

q
VH

x

y

Figure 2. Line-of-Sight-Angle.

The relative motion equation of HSV in the longitudinal plane can be obtained as
Equation (4): {

‖ḋ‖ = VT cos(q− θT)−VH cos(q− θH)

dq̇ = −VT sin(q− θT)−VH sin(q− θH)
(4)

where d represents the relative distance; q represents the line-of-sight angle; VT and θT
represent the target’s flight speed and flight trajectory inclination; and VH and θH represent
the HSV’s flight speed and flight trajectory inclination.

2.3. Fault Model

The actuator of HSV works in the air flow and is easily affected by disturbances such
as gusts and atmospheric turbulence. Actuators suffer from loss of effectiveness and jams.
The actuator fault model is shown in (5) [3].

δz f = δz − Eδz + δ̄z (5)

where δz f represents the fault outputs; E represents the fault indicator; and δ̄z represents
the bias fault.

3. Method
3.1. Proximal Policy Optimization Algorithm

The concept of reinforcement learning originated in the 1950s, and since Deepmind
proposed deep reinforcement learning in 2013, reinforcement learning has developed
rapidly. A reinforcement learning process can be described as a Markov decision process,
G = {s, a, p, r, γ}. The basic process of the reinforcement learning algorithm is: the agent
obtains the state observation st of the environment and outputs the action at. The environ-
ment is then transformed into the next state st+1 by the state transition function pt. The
environment gives the agent a feedback reward rt+1 according to the state st+1 after the
environment changes; the process is shown in Figure 3. The agent continues this process
until it reaches the condition to end a single training episode.
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Figure 3. Markov decision process.

The purpose of RL training is to obtain the greatest action output policy function
π : st→p(at|st), which represents the probability map of the observed action output from
the environmental state. The policy function is generally parameterized as πθ . The optimal
policy requires that after the agent performs the current action, the total rewards obtained
in the future reaches the maximum, which is defined as (6):

Vπθ (s) = Eπθ ∑
t
[R(st, at) | s], R(st, at) = ∑

t
(γt−1rt) (6)

where γ ∈ [0, 1] represents the discount factor, which determines whether the agent attaches
to future rewards. In the policy gradient algorithm [25], in order to improve the learning
efficiency and make learning more stable, the advantage function is introduced, as shown
in (8):

Qπ(s, a) = ∑
t
Eπθ

[R(st, at) | s, a] (7)

Aπ(s, a) = Qπ(s, a)−Vπ(s) (8)

the objective function can be defined as (9), the policy parameter θ is updated by the
gradient of the objective function, as shown in (10).

J(θ) = Êt
[
log πθ(at | st)Ât

]
(9)

θk+1 = θk + α∇θEJ(θ) (10)

The policy gradient algorithm has the problems of low sampling efficiency and unsta-
ble training. Based on the traditional policy gradient method, Schulman proposed the PPO
algorithm [23]. PPO is an actor–critic algorithm. Actor refers to the policy function πθ(a|s),
and critic refers to the value function Vπ(s). They are both parameterized neural networks
and are updated during training. The PPO algorithm introduces importance sampling and
clip function in the update, its objective function is shown in (11).

L(θ) = Êt

[
min

(
πθ(at | st)

πθold(at | st)
Ât, clip

(
πθ(at | st)

πθold(at | st)
, 1− ε, 1 + ε

)
Ât

)]
(11)

Importance sampling enables the PPO algorithm to reuse the sampled data when
updating, and the sampling network and the actual policy network update parameters at
the same time, thereby speeding up the training speed. The clip function makes the PPO
algorithm easier to converge and improves the performance of the algorithm.

3.2. PPO-Based IGC System

Firstly, the original IGC problem is modeled as a reinforcement learning problem. For
the IGC problem studied in this paper, the agent is the IGC system of HSV. The overall
structure is shown in Figure 4.
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Figure 4. PPO-Based IGC system.

The input of the PPO-based system is the state space s, and the output is the action
space a. The system will output actions according to the input; the process can be
seen in Section 3.1. Next, the state, action, and reward functions in the system are
specifically designed.

3.2.1. Action Space Design

Since HSV is only affected by aerodynamic force and gravity, the action of the agent is
designed as the elevator offset of HSV, namely δz. Its range is −30◦ ≤ δz ≤ 30◦.

3.2.2. Observation Space Design

Considering the fault-tolerant performance of the algorithm, the state observation
should include as many flight states as possible as feedback input. In this paper, the state
observation space is designed as a collection of position, speed, angular velocity, angle of
attack, and relative motion model S = {x, y, V, θ, ωz, α, R, q}. All state observations need to
be normalized and input into the neural network.

3.2.3. Reward Function Design

The design of reward function is an important part in the PPO algorithm. The simplest
design method is to give a reward when HSV reach the target. However, this reward
design is too sparse, and HSV cannot obtain enough and effective rewards, resulting in
slow learning or even ineffective learning. Therefore, it is necessary to design the reward
function for the intermediate state variables to ensure the learning of the agent. Aiming
at the problem of terminal guidance IGC system design studied in this paper, the reward
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functions of relative distance, relative speed, sight angle, offline distance, and elevator are
designed, namely R = f (d, ḋ, q̇, Z, δz) can be expressed as (12).

Rd =

(
1− |d||d0|

)

Rḋ = βḋ


−→̇
d ·
−→
d∣∣∣∣−→̇d ∣∣∣∣× ∣∣∣−→d ∣∣∣


Rq = −

.
q

Rδz = −
|∆δz|
|∆δz,max|

RZ = − Z
Z0

(12)

Rd gives HSV the reward on the relative distance, and d0 represents the initial relative
distance. The smaller the relative distance, the greater the reward value, which belongs
to the direct reward function based on the terminal guidance task; Rḋ encourages HSV to
move in the direction of decreasing relative distance. When the speed direction is the same
as the relative position direction, the reward is the largest, and when the two directions are
opposite, the reward is the smallest; Rq encourage HSV to move towards the line-of-sight
angular rate of 0; and Rδz prevents the elevator of HSV from frequently swinging in a large
range and is designed with the elevator differential term. When the swing is larger, the
negative reward will be larger. RZ gives HSV rewards according to the amount of zero
effort missed, when the value is larger, the negative reward is larger. The calculation of the
Z is (13):

Z =
R2|q̇|√

Ṙ2 + R2q̇2
(13)

The overall reward function is designed as (14)

R = βdRd + βḋRḋ + βqRq + βδz Rδz + βZRZ (14)

where β represents the weight of each reward, which is set before training.

3.2.4. Network Initialization

According to the PPO algorithm, a four-layer fully connected neural network is used
to represent the evaluation network, as shown in Table 1:

Table 1. Critic Network.

Layers Size

Input Layer 8
Hidden Layer 1 128
Hidden Layer 2 64
Hidden Layer 3 32
Output Layer 1

The network input is state space s, and the output is the estimated reward. According
to the PPO algorithm, a four-layer fully connected neural network is used to represent
the evaluation network, as shown in the following table: A 5-layer fully connected neural
network is used to represent the execution network, as shown in Table 2:

The network input is state space s, and the output is a Gaussian distribution of action a.
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Table 2. Actor network.

Layers Size

Input Layer 8
Hidden Layer 1 128
Hidden Layer 2 64
Hidden Layer 3 32 (variance) + 32 (mean)
Output Layer 1 (variance) + 1 (mean)

The above networks together constitute the PPO-based IGC system. Through training
in the environment, a network with an optimal strategy is finally obtained, thereby realizing
the integrated guidance and control of hypersonic vehicles. The settings of some agent
parameters are shown in Table 3:

Table 3. Hyperparameters.

Parameters Value

Horizon 16 384
Clip Factor 0.2

Discount Factor 0.9999
Mini Batch Size 128

Sample Time 0.01
Learn Rate 1× 10−4

4. Simulation and Results

In this section, the performance of the proposed PPO-based IGC system is verified and
validated by simulation under the conditions of no faults and actuator faults, and an IGC
method based on active disturbance rejection control (ADRC) is adopted for comparison
with a validation of the effectiveness and superiority of the proposed algorithm in dealing
with actuator fault problems. Assume the target is stationary, the initial conditions are
shown in Table 4.

Table 4. Initial Conditions.

Parameters Value Parameters Value

x0 (m) 0 y0 (m) 30,000
V0 (m/s) 4500 θ0 (◦) −5

ωz0 (rad/s) 0 α0 (◦) −10
xtarget (m) 150,000 ytarget (m) 10,000

4.1. Simulation without Actuator Faults

First, the simulation is performed when no fault occurs. The flight trajectories of HSV
are shown in Figure 5.

Under the condition of no fault, both the PPO and ADRC algorithms can complete
the guidance task well. The miss distance of HSV was 0.7 m and 1 m, respectively, and
PPO was slightly better than ADRC The speed change in HSV during flight is shown in the
Figure 6.

Since there is no thrust, HSV glide without power, their speed is continuously reduced,
and the Mach numbers of PPO and ADRC when they land are 2.35 and 4.41, respectively.
The attitude angle changes in HSV during flight are shown in the Figure 7. The angle of
attack of PPO and ADRC both change sharply in the early stage of flight. The reason is that
the atmosphere is thin and the aerodynamic control ability is weak in the early stage of
flight. After the altitude drops, the aircraft gradually tends to be stable. The line-of-sight
angle curve of PPO changes less than that of ADRC. The line-of-sight angle will change
significantly at the end, because the aircraft has already reached the target. The elevator
deflection curve of HSV during flight is shown in Figure 8.
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Figure 5. Trajectory when no fault occurs.

Figure 6. Speed curves when no fault occurs.

Figure 7. Angle curves when no fault occurs.
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(a) (b)

Figure 8. Elevator deflection when no fault occurs. (a) elevator deflection, (b) elevator deflection
without Rδz .

From the comparison result of Figure 8a,b, it can be seen that in the absence of Rδz , the
elevator deflection oscillates more violently, but when Rδz is added, the elevator deflection
almost does not oscillate.

Based on the above results, it can be seen that HSV will oscillate briefly in the first
10 s. At this phase, HSV will adjust their attitude and then enter the stable flight phase
until the guidance task is completed. In the absence of faults, both the PPO-based IGC and
ADRC-based IGC systems can perform the guidance tasks well.

4.2. Simulation with Actuator Faults and Uncertainty

According to Section 2.3, it is assumed that HSV’s fault parameter E = 0.2, δ̄z ∈ [−2, 2]
is a random number. Moreover, 20% deflection is added to the aerodynamic coefficient
CL, CD, Cz. Figure 9 is the curve of the actual elevator deflection, and the expected elevator
deflection when the fault occurs, as well as the curve of the aerodynamic coefficient.

Figure 9. The effect on aerodynamics.
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The pitching moment and lift are greatly affected, and the problem of moment and lift
reversal will occur at certain times. The impact on resistance is relatively small, but there is
also an increase of 25~35%. The elevator deflection difference is between −4 and 3, and the
final difference is roughly around 1. It can be seen that the influence on HSV is relatively
large. The flight curves of HSV are shown in Figure 10.

(a) (b)

(c) (d)

Figure 10. Simulation with fault and uncertainty. (a) Flight Trajectory. (b) Speed curve. (c) Angle
Curve. (d) Elevator Deflection.

The trajectories of HSV are shown in Figure 10a. The miss distance of HSV in the
PPO algorithm is 5.1 m, while that of ADRC is 217 m. This is still an acceptable range
of misses considering the long range, and both of them can be regarded as completing
the guidance task, but it is obvious that PPO is less affected by actuator faults The speed
changes of HSV during flight are shown in Figure 10b. Under fault conditions, the speed
change is still continuously reduced. The attitude angle changes of HSV during flight are
shown in Figure 10c. The angle change trend of the two methods is similar. After the first
few seconds of oscillation, the attitude angle gradually stabilizes. The elevator deflection
curves of HSV during flight are shown in Figure 10d. From the comparison results, it can
be seen that although the two methods can complete the guidance task well under no fault
conditions, the PPO-based IGC has better results under fault conditions and stronger fault
tolerance than the ADRC-based IGC. It can be seen that the PPO-based IGC proposed in
this paper can cope with the fault conditions well and can still complete the guidance task
when the fault occurs.
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5. Conclusions

Based on the PPO algorithm, this paper studies the design of the fault-tolerant guid-
ance and control system in the terminal guidance phase of hypersonic vehicles. Considering
uncertain parameters and actuator faults, a 3DOF motion model of HSV in the longitudinal
plane is established. For this model, the IGC system is modeled as a reinforcement learning
process, and the PPO-based IGC system is designed. According to the terminal guidance
task requirements, the action space, state observation space, and reward function of HSV
are designed, respectively, and the IGC system is trained by the PPO algorithm. Finally, we
carried out the simulation experiments of PPO-based IGC and ADRC-based IGC under the
conditions of actuator faults and without faults, respectively. The simulation verification
shows that the PPO-based IGC system in this paper can complete the terminal guidance
task under no fault conditions and under fault conditions with small miss distance and
does not rely on fault prior information, which verifies its effectiveness and robustness.
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