
Citation: Cui, Y.; Shi, R.; Dong, J.

CLTSA: A Novel Tunicate Swarm

Algorithm Based on Chaotic-Lévy

Flight Strategy for Solving

Optimization Problems. Mathematics

2022, 10, 3405. https://doi.org/

10.3390/math10183405

Academic Editor: José Antonio Sanz

Received: 2 August 2022

Accepted: 15 September 2022

Published: 19 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

CLTSA: A Novel Tunicate Swarm Algorithm Based on
Chaotic-Lévy Flight Strategy for Solving Optimization Problems
Yi Cui, Ronghua Shi and Jian Dong *

School of Computer Science and Engineering, Central South University, Changsha 410083, China
* Correspondence: dongjian@csu.edu.cn

Abstract: In this paper, we proposed a tunicate swarm algorithm based on Tent-Lévy flight (TLTSA)
to avoid converging prematurely or failing to escape from a local optimal solution. First, we combined
nine chaotic maps with the Lévy flight strategy to obtain nine different TSAs based on a Chaotic-
Lévy flight strategy (CLTSA). Experimental results demonstrated that a TSA based on Tent-Lévy
flight (TLTSA) performed the best among nine CLTSAs. Afterwards, the TLTSA was selected for
comparative research with other well-known meta-heuristic algorithms. The 16 unimodal benchmark
functions, 14 multimodal benchmark functions, 6 fixed-dimension functions, and 3 constrained
practical problems in engineering were selected to verify the performance of TLTSA. The results of the
test functions suggested that the TLTSA was better than the TSA and other algorithms in searching for
global optimal solutions because of its excellent exploration and exploitation capabilities. Finally, the
engineering experiments also demonstrated that a TLTSA solved constrained practical engineering
problems more effectively.

Keywords: tunicate swarm algorithm; chaotic mapping; Lévy flight strategy; benchmark test functions;
engineering design problems; meta-heuristic
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1. Introduction

Because of the rapid pace of scientific development and innovation, more and more
engineering design problems need urgent optimization. The problem is to avoid local
solutions yet maintain the optimization trend, and that is the focus of this research [1].
Many of these issues involve complicated nonlinear constraints and high dimensions [2,3].
However, traditional gradient-based optimization methods rely excessively on a large
amount of gradient information. When the target engineering problem has more constraints
or more extreme values, the gradient search becomes inefficient, that is, the optimal solution
obtained may not be the global optimal solution. Therefore, traditional optimization
methods are no longer suitable for solving complex engineering design problems.

In recent years, researchers have applied meta-heuristic algorithms because of their
high efficiency, wide applicability, and expandability. Most have been proposed after
watching and studying natural phenomena or the behavior of creatures. According to
different inspiration sources, these algorithms can be divided into four categories: swarm
intelligence (SI) algorithms, evolutionary algorithms (EAs), physics-based algorithms, and
human-based algorithms. The evolutionary algorithms, inspired by the theory of evolution
by natural selection, simulate the crossover, mutation, selection, and other evolutionary
behaviors in the process of biological evolution, such as genetic algorithms (GAs) proposed
by Holland [4]. Physics-based algorithms are inspired by physical phenomena in nature,
such as simulated annealing (SA) algorithm [5], black hole (BH) algorithm [6], central
force optimization (CFO) [7], water cycle algorithm (WCA) [8], and lightning attachment
procedure optimization (LAPO) [9]. Human-based algorithms are mainly inspired by
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human behaviors, such as human teaching behaviors, social behaviors, learning behaviors,
emotional behaviors, and management behaviors. For example, teaching-learning-based-
optimization (TLBO) simulates teaching and learning behaviors [10]. Political optimizer
(PO) builds a model based on the multistage process of politics [11,12].

The particle swarm algorithm (PSO) proposed by Kennedy and Eberhart is one of the
most widespread and successful [13,14]. By studying the cooperative predation behavior
of birds, PSO uses information sharing among individuals in the population to find the
global optimal solution, which may enable the algorithm to jump from the local optimal
solution. As PSO is paid more attention, more and more swarm intelligence algorithms
like PSO are proposed, such as ant colony optimization (ACO) [15], artificial bee colony
(ABC) algorithm [16], glowworm swam optimization (GSO) [17], cow search algorithm
(CSA) [18], sailfish optimizer (SFO) [19], Harris hawks optimization (HHO) [20,21], manta
ray foraging optimization (MRFO) [22], and mayfly algorithm (MA) [23]. In general,
swarm intelligence algorithms are superior to evolutionary algorithms in some respects, for
example, each individual can improve their fitness by updating position, which enhances
the search efficiency of the population. While in evolutionary algorithms, only the current
best individuals and descendants produced similar to them in terms of features are allowed
to enter the subsequent iterations, individuals with poor fitness are discarded. In addition,
swarm intelligence algorithms are easier to use because of fewer operators [24,25].

Although different algorithms have their advantages, their whole optimization pro-
cesses can be regarded as the combination of the exploration phase and exploitation phase.
In the exploration phase, the algorithm produces a population as random as possible
to explore a potential promising area in the search space. In the exploitation phase, it
attempts to develop the promising region found in the previous phase to search for the
optimal solution.

Chaos, randomness generated by a deterministic system, is an important concept
in nonlinear dynamics [26,27]. Chaotic mapping, because of its traversal behavior and
randomness, has wide application in the search to optimize meta-heuristic algorithms [28].
At present, improved meta-heuristic algorithms based on chaotic maps include chaotic
artificial bee colony (CABC) algorithm [29], chaotic grey wolf optimization (CGWO) algo-
rithm [30], chaotic butterfly optimization algorithm (CBOA) [31], chaotic firefly algorithm
(CFA) [32], and so on.

Although algorithms based on chaotic mapping can escape the local optimal solution,
they have weak exploration. To enhance it while maintaining a balance with exploitation,
the introduction of the Lévy flight strategy is an effective method. Lévy flight is a random
walk strategy with step size that satisfies the Lévy distribution; the research has found that
many animals’ behavior obeys it [33]. For example, animals move around an existing food
source, but they occasionally travel long distances in search of a new food source [34,35].
The small sizes of Lévy flight allow the algorithm to exploit regions near the current
solution. In addition, a long-distance movement sporadically generated by Lévy flight
enables the algorithm to jump out of the local optimal solution. When combined with
chaotic mapping, it produces a step size with greater randomness. From this perspective, it
is feasible to apply the chaotic mapping mechanism to Lévy flight.

In this study, an improved tunicate swarm optimization algorithm based on a Chaotic-
Lévy flight strategy (CLTSA) is proposed to solve the shortcomings of the original TSA.
The strategy is introduced when the search agents move toward the current solution so that
they can update their positions according to the randomly generated step sizes. The next
sections of this paper are displayed as follows: In Section 2, the inspiration, principle, and
mathematical model of the TSA are introduced. Next, several common chaotic maps, Lévy
flight strategy, and application of the two optimization methods to improve the TSA are
described. In the fourth and fifth sections, the TLTSA, as the best performer among CLTSAs,
is selected to evaluate the capability of optimizing benchmark functions by comparing
them with other well-known meta-heuristic algorithms to measure the capability of TLTSA
to solve practical engineering problems. The article concludes in Section 6.



Mathematics 2022, 10, 3405 3 of 39

2. Related Work

Various works recently investigated the use of Lévy flight in swarm intelligence
algorithms. Lévy flight refers to a random walk in which the probability distribution of the
step size is heavy tailed. There is a relatively high probability of large strides in the random
walk, which is widely used to improve swarm intelligence optimization algorithms. Yang
et al. proposed a cuckoo search algorithm (CS) [36] based on Lévy flight, in which search
logic simulates the breeding behavior of cuckoos. The algorithm first generates n initial
positions called nests. Then, a new nest is generated using the Lévy flight mechanism and
compared to the solution of the random nest: If the fitness value of the new position is better
than the previous one, the new solution is used to replace the previous one. In each iteration,
some of the worst solutions are replaced to obtain a better set of nest positions, such that
the process is executed until the optimal solution is found. Another optimization algorithm
based on Lévy flight is the Lévy flight whale optimization algorithm (LWOA) [37]. The
whale’s predation strategy mainly includes three behaviors: encircling prey, bubble-net
attacking, and find prey. Most of the development of search agents take place in bubble-net
attacking. Due to the trajectories of humpback whales during prey being spiral, the search
agent moving towards the food will be replaced by a new random position on spiral curve.
In LWOA, the performance of the algorithm is improved by replacing the spiral walk with
the Lévy flight strategy. The Lévy flight strategy is also introduced in flower pollination
algorithm (FPA) [38]. According to the FPA, each pollen particle represents a solution that
walks in the search space under two different search rules: local pollination and global
pollination. For each step, one of the update rules is selected stochastically: If the local
pollination is selected, the pollen particle walks in a limited around area, and the step-size
is multiplied by a random number generated by the uniform distribution U(0,1); if the
selected movement is global pollination, the pollen particle walks toward the global optimal
solution, and the step-size is multiplied by a random number generated by the Lévy flight.
Amirsadri et al. introduced LF-based grey wolf optimization algorithm blended with back
propagation (LF-BP-GWO) [39] to train neural networks. First of all, the Lévy flight is
applied to improve the exploration ability of GWO. Then, the back propagation which
enhances the exploitation ability in combination with improved GWO was used to train
neural network. Each individual in the proposed LF-BP-GWO is considered as the weights
and the biases set in the neural network. As a random walk strategy, Lévy flight generates
a large step size that keeps a small number of search agents away from the current optimal
solution, which enhances the algorithm’s exploration ability; the generated small step size
allows most search agents to continue at the current optimal solution development near
the solution, thus balancing the exploration and development of the algorithm.

Chaotic mapping is used to generate chaotic sequences, which are sequences of ran-
domness produced by simple deterministic systems. In the field of optimization, chaotic
mapping can be used as an alternative to pseudo-random number generators, generating
chaotic numbers between 0 and 1, often with better results than pseudo-random numbers.
Chaotic mapping is also widely used in swarm intelligence algorithms. Bilal Alatas pro-
posed three chaotic artificial bee colony algorithms (CABC) [29]: CABC1, CABC2, and
CABC3. According to CABC1, the use of the chaos mapping is mainly reflected in the
population initialization period. Through chaotic mapping, a set of initial populations with
better diversity are generated. In CABC2, if a solution called food is not enhanced by a
defined number of trials, the hired bee will give up the position and the scout bee of this
hired bee will perform chaotic search for a better food source. CABC3 is a combination of
the above two improved algorithms. It not only uses the selected chaotic map to generate
a diverse initial population, but also performs chaotic search. Mohammad Tubishat et al.
proposed an improved Sine cosine algorithm (ISCA) for Hadith classification [40]. The first
modification includes replacing a random number with a chaotic sequence generated by
a singer map. This modification allows ISCA to control the switching between sine and
cosine equations, which are applied to update the position of search agents. The second
modification is improving development ability by combining with simulated annealing.
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At the end of each iteration, the best solution obtained by SCA will be considered as the
initial solution of simulated annealing. If simulated annealing finds a better solution, it
will replace the current optimal solution with new one. Talatahari et al. improved the
traditional algorithm and proposed a chaotic imperialist competitive algorithm (CICA) [41].
Through the comparative research and evaluation of different chaos maps, the experimental
results proved the superiority of logistic and sinusoidal maps. In order to enhance the
global exploration ability, the firefly algorithm (FA) [32] also introduces chaotic mapping to
set light and other absorption parameters. The results show that the Gaussian map has the
best effect as the absorption coefficient. The chaotic mapping is also applied to improve
KH algorithm [42]. According to CKH, many types of movements of krill are proposed
using different chaotic maps, among which the singer map performs best.

The TSA has received a lot of attention because of its simplicity and optimal. E. H.
Houssein et al. introduced the local escape operator into TSA (TSA-LEO) to enhance
its optimization effect [43]. In the TSA-LEO, several solutions such as the best position,
two randomly generated individual, two randomly selected individual, and a new ran-
domly generated individual were used to obtain the alternative solutions with excellent
performance of the algorithm. Specifically, the TSA-LEO enhances the quality of solutions
by updating their positions under some criteria. The TSA–LEO was further tested on a
real-world problem, namely, segmentation based on the objective functions of Otsu and
Kapur, and solved multilevel threshold problems while seeking the optimal thresholds
for image separation. F. S. Gharehchopogh proposed an improved TSA with best-random
mutation strategy (QLGCTSA) [44]. According to the QLGCTSA, the Quantum Rotation
Gate mechanism, Lévy Mutation, Cauchy Mutation, and Gaussian Mutation were used
to enhance the TSAs’ performance. These methods have different functions, increasing
the QLGCTSA’s performance at a given stage in the optimization operation. The quantum
rotation gate was proposed to increase the population diversity; Lévy flight enabled each
individual to find better position and increase the ability to search deeper; Cauchy muta-
tion was used to modify the capability to search in search agents or add neighbors of each
generation; and Gaussian mutation helped the algorithm execute the global exploration.
Table 1 is the comparison of improved algorithms.

Table 1. Comparison of algorithms involved in related work.

Year Algorithm Method Used Application Area(s) Shortcoming

2013 CS [36] Lévy flight Global optimization

poor global exploration ability2018 LWOA [37] Lévy flight Global optimization

2012 FPA [38] Lévy flight Nonlinear design benchmark
and global optimization

2017 LF-BP-GWO [39] Lévy flight
Back propagation Neural network poor global exploration ability and

running slow

2010 CABC [29] Chaotic mapping Global numerical optimization

poor solution accuracy

2022 ISCA [40] Singer chaotic map
simulated annealing

Feature selection problem for
Hadith classification

2012 CICA [41] Chaotic mapping Truss structures
design problem

2014 CKH [42] Chaotic mapping Global optimization

2021 TSA-LEO [43] Local escape operator Global optimization and
Image segmentation

2022 QLGCTSA [44]

Quantum Rotation Gate
Lévy flight

Cauchy Mutation
Gaussian Mutation

Numerical optimization
CEC2017 and engineering

design problem

unbalanced exploration and
development and high

computational complexity
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3. The Proposed CLTSA
3.1. TSA

The TSA was proposed by Kaur et al. after observing the social behavior of a tu-
nicate searching for prey [45]. In the process of hunting, this marine invertebrate uses
water jets and swarm intelligence to search for prey. Each tunicate can quickly discharge
previously inhaled seawater through the siphons of the atrium, generating a kind of jet
propulsion, which propels it rapidly. Moreover, tunicates display swarm intelligence when
they share search information about the location of food. To establish the mathematical
model of its jet propulsion mechanism, the tunicate is required to meet the following three
important constraints:

• Avoiding clashes between each search agent.
• Each agent is guaranteed to move in the direction of the optimal individual.
• Make the search agents converge to the region near the optimal individual.

3.1.1. Avoiding Clashes between Each Search Agent

To prevent search agents from generating unnecessary clashes, the following formulas
are used to calculate the new location of the agent:

⇀
A =

⇀
G
⇀
M

(1)

⇀
G = c2 + c3 −

⇀
F (2)

⇀
F = 2·c1 (3)

where
⇀
A is a vector used to find the new position of each agent;

⇀
G is gravity;

⇀
F is the water

flow in the deep sea; and c1, c2, and c3 are three random numbers in the interval 0 to 1

inclusive.
⇀
M is a vector the value of which is expressed as the social strength between the

search agents and is defined as:

→
M = Pmin + c1 · (Pmax − Pmin) (4)

where Pmin and Pmax indicate the incipient and secondary speeds that enable search agents
to build social interaction. In this paper, Pmin and Pmax are set to 1 and 4 respectively.

3.1.2. Move in the Direction of the Optimal Individual

After resolving clashes between adjacent search agents, each one should move toward
the neighboring individual having the highest fitness value. The mathematical model of
moving towards the best search agent is established as:

⇀
PD =

∣∣∣∣ ⇀
Xbest − rrand·

⇀
X(t)

∣∣∣∣ (5)

where
⇀

PD is a vector that represents the spatial distance between the target food and the

tunicate;
⇀

Xbest stands for food that is at the position of the current optimal individual; rrand

is a random number in the interval [0, 1]; and
⇀

X(t) stores the location information of the
current search agent in the t-th iteration.
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3.1.3. Make the Search Agents Converge to the Optimal Individual

To make the search agents carry out sufficient local exploration near the optimal
individual to find the optimal solution of the current iteration, their locations are calculated
by Equation (6):

X(t) =

Xbest −
⇀
A·

⇀
PD, i f rrand < 0.5

Xbest +
⇀
A·

⇀
PD, i f rrand ≥ 0.5

(6)

At iteration t, each search agent explores the region near the optimal individual Xbest
and assigns the result to X(t) to update its position.

3.1.4. Swarm Behavior

The swarm behavior of the tunicate transmits location information between the search
agents. This mechanism is driven by the position of the current search agent in the next
iteration and is obtained according to the position updated by the current search agent.
This is done through the optimal individual and the position updated by the previous
individual through swarm behavior. The mathematical model is defined as:

⇀
Xi(t + 1) =


⇀

Xi(t)+
⇀

Xi−1(t+1)
2+c1

i f i > 1
⇀

Xi(t) i f i = 1
(7)

where i = 1, . . . , N, N is the size of the tunicate population,
⇀

Xi(t + 1) is the position of the

current search agent in the next iteration,
⇀

Xi−1(t + 1) is the position of the previous search

agent in the next iteration, and
⇀

Xi(t) is computed by Equation (6).
To illustrate the detailed process of the TSA, the main steps to update the positions of

search agents are listed below:

Step 1: Initialize the original population of search agents
⇀
X.

Step 2: Assign values to the max-iterations and other initial parameters.
Step 3: Compute the fitness value of each tunicate and select the individual with the

best fitness value as the optimal search agent.
Step 4: Update the location of each search agent by Equation (7).
Step 5: Keep each search agent in the search space.
Step 6: Calculate the fitness value of each updated search agent; if there is a better

individual than the previous optimal search agent in the population, update
⇀

Xbest.
Step 7: If the maximum iteration is reached, then the procedures stop. Otherwise,

continue with steps 4–7.
Step 8: Print the best individual (Xbest) so far.

3.2. Lévy Flight

Lévy flight is a random walk strategy whose step size satisfies the Lévy distribu-
tion [46]. Having stable distribution with infinite mean value and divergent variance, it
enables the search agents to generate a long jump distance during exploration. Another
important advantage of the Lévy flight strategy is its combination of global exploration
and exploitation. When search agents walk randomly, there are usually more small step
sizes and a handful of large step sizes; therefore, the Lévy flight strategy not only helps the
search agents to carry out a local search by jumping in small step sizes near the optimal
solution but also enable the search agents to fully explore the unknown area of the search
space by jumping in large step sizes. Above all, the small step sizes random walk ensures
that the search agents carefully explore the area around the best individual and improve
the possibility of the population’s position in the search space. In addition, exploration
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capability and mutation reflect the advantage in the global exploration. The Lévy flight
strategy is mathematically defined as [47]:

L(s, γ, µ) =


√

γ
2π ·exp

[
− γ

2(s−µ)

]
1

(s−µ)
3
2

, 0 < µ < s < ∞

0 , otherwise
(8)

where s is the samples; γ is a transmission parameter; and µ is the minimum step size.
When s→ ∞ , the above formula can be simplified as:

L(s, γ, µ) ≈
√

γ

2π
· 1

s
3
2

(9)

The Equation (9) is transformed into a Fourier transform:

F(k) = exp
[
−α|k|β

]
, 0 < β ≤ 2 (10)

where α is a transmission parameter. In general, the analytical form of Equation (10) is
described as follows:

L(s) =
1
π

∫ ∞

0
exp
[
−α|q|β

]
cos(qs)dq (11)

L(s)→
αβΓ(β) sin

(
πβ
2

)
π|s|1+β

, s→ ∞ (12)

where Γ(β) is the Gamma Function. In most cases, the most direct and effective method of
symmetric, stable Lévy distribution is to use the Mantegna algorithm, which generates a
random step size that satisfies the Lévy distribution. The random step size is calculated
as follows [48,49]:

S =
u

|v|
1
β

(13)

where u and v satisfy the following normal distribution [47]:

u ∼
(

0, σu
2
)

, v ∼
(

0, σv
2
)

(14)

σu =

Γ(1 + β)· sin
(

πβ
2

)
Γ
[

1+β
2

]
β·2β− 1

2


1
β

(15)

σv = 1 (16)

where 0 < β < 2 is a parameter that controls the shape of the distribution. In general, β
directly affects the balance between development capability and exploration capability.

Figure 1 displays the Lévy flight trajectory of continuous moving 500 times with
different β in a two-dimensional space. The study found that the range of step sizes is
registered with maximal values in the range of 102 × [−14, 2] for the x and 102 × [−2, 12]
for the y dimension when β = 1; the smallest in the range of 10−15 × [−2, 10] for the x
and 10−15 × [−6, 2] for y dimension when β = 2; and kept a balance when β = 1.5 with
range [−100, 0] for the x and [−10, 80] for the y dimension. Hence, β was set to 1.5 in this
research. The factor S depended on the dimension of the problem to be solved; otherwise,
the Lévy flight strategy showed high aggressiveness and generated solutions beyond the
scope of the problem. It is obvious that the Lévy Flight strategy generates both small-step
random walks and large-step random jumps in the search space, simultaneously taking
into account development and exploration.
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3.3. Chaotic Maps

Chaotic mapping is a mechanism used to generate random chaotic sequences gen-
erated by a simple deterministic system. These sequences have the characteristics of
nonlinearity, ergodicity, non-repeatability, and randomness [50]. Therefore, chaotic se-
quences help search agents explore a search space more fully, make the algorithm escape
from the local optimal solution, and increase the diversity of the population. In the field of
optimization algorithms, chaotic maps are often more advantageous than pseudo-random
number generators for generate chaotic numbers between 0 and 1 [51]. The common
mapping functions are listed below, and their distribution graphs are shown in Figure 2:

• Chebyshev map

The mapping function of the Chebyshev map is defined as follows [52]:

xk+1 = cos
(

α cos−1 xk

)
(17)

where α is a control parameter of the Chebyshev map.

• Circle map
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The Circle map could be denoted by Equation (18) [53]:

xk+1 = xk + β−
( α

2π
sin(2πxk)

)
mod(1) (18)

when α is set to 0.5 and β is set to 0.2, the circle map could generate stochastic numbers
between 0 and 1.

• Gauss map

The Gauss chaotic numbers are calculated by the following equation [54]:

xk+1 =

{
0, i f xk = 0

1
xk

mod(1) i f xk 6= 0
(19)

• Iterative chaotic map with infinite collapses (ICMIC)

The mapping function of the iterative map is listed below [55]:

xk+1 = abs
(

sin
(

α

xk

))
(20)

where α is a parameter for controlling the chaotic map, and the iterative map could gain
superior performance when α = 0.7.

• Logistic map

The Logistic map is a one-dimensional nonlinear chaotic map and one of the most
commonly used chaotic maps, and it is represented as follows [56]:

xk+1 = αxk(1− xk) (21)

where α is a control parameter whose value is between 3.5 and 4 to make the Logistic map
produce chaotic sequences. Generally, α is set to 4.

• Sine map

The Sine map is a unimodal map, it is given in Equation (22) [32]:

xk+1 =
α

4
sin(πxk) (22)

where α. is a control parameter with a value range in (0, 4].

• Singer map

The mapping function of the Singer map is defined as follows [57]:

xk+1 = α
(

7.86xk − 23.31x2
k + 28.75x3

k − 13.203875x4
k

)
(23)

when the value of control parameter α is in (0.9,1.08), the Singer map could produce
chaotic sequences.

• Sinusoidal map

The chaotic numbers of the Sinusoidal map are computed as [56]:

xk+1 = αx2
k sin(πxk) (24)

where α is set to 2.3 to generate chaotic numbers.

• Tent map
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The Tent map is shown by Equation (25) [58]:

xk+1 =


xk
α

xk ≤ α

(1− xk)

1− α
α < xk ≤ 1

(25)
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The Logistic map is a one-dimensional nonlinear chaotic map and one of the most 

commonly used chaotic maps, and it is represented as follows [56]: 

Figure 2. Distribution graphs of nine common chaotic maps.

3.4. Chaotic-Lévy Flight TSA

The current research shows that it is feasible to optimize the meta-heuristic algorithm
by combining chaotic mapping and Lévy flight [59,60]. To solve the shortcomings of the
TSA, such as falling easily into local optimal solutions and insufficient exploration [43], this
section introduces an improved TSA from using the Chaotic-Lévy flight strategy (CLTSA).
It allows search agents to find a suitable location in the area near the optimal solution, fully
explore the search space, and avoid the emergence of a local optimal solution.

In this paper, the modification to the TSA is mainly reflected in Equation (6). In short,
the aim was to improve its performance in the stage of convergence towards the candidate
agent. Due to the randomness of chaotic mapping, the Chaotic-Lévy flight generates a
more diverse population that jumps out of the local optimal solution. The convergence
stage formula after introducing the Chaotic-Lévy flight strategy is shown as:

X(t) =


chaos(t) ∗ levy. ∗

(
Xbest −

⇀
A·

⇀
PD
)

, i f rrand < 0.5

chaos(t) ∗ levy. ∗
(

Xbest +
⇀
A·

⇀
PD
)

, i f rrand ≥ 0.5
(26)

where t indicates that the current iteration number belongs to the t-th generation; chaos(t)
represents the chaotic value generated by the chaotic map in the t-th generation; levy is the
step size calculated by Lévy flight strategy; and the meanings of unexplained parameters
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are the same as those in Equation (6). Because the TSA search agents have difficulty
searching randomly in the search space and have not explored the optimal solution, the
algorithm easily falls into a local optimal solution. However, the small step sizes of the
Chaotic-Lévy flight strategy make it possible for the search agents to move to a random
position near the candidate solution, thus greatly improving the probability that the best
solution will be chosen. In addition, the large step sizes of Chaotic-Lévy flight produce
mutability, which occasionally enables search agents to appear elsewhere in the search
space to explore other promising areas and avoid premature convergence. Moreover, the
value between (0, 1) generated by a chaotic map can also prevent search agents from
leaving the search space because of long-distance movement. Due to the randomness and
non-repeatability of chaotic mapping, the Chaotic-Lévy flight strategy can generate steps at
random, which enhances population diversity. Because of the diversity of chaotic maps,
choosing a suitable one to combine with Lévy flight will be studied in the next section.
The main process of the improved TSA can be summarized in the pseudo-code displayed
in Algorithm 1, and the CLTSA process is illustrated in the flow chart in Figure 3, which
describes the important steps of the algorithm.
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Algorithm 1: Algorithm CLTSA

1: procedure CLTSA
2: Initialize the original population X and the chaos(0) randomly

3: Initialize the parameters
⇀
A,

⇀
G,

⇀
F ,

⇀
M, and maximum number of iterations T

4: set Pmin ← 1, Pmax ← 4
5: Calculate fitness of each individual, and choose the best candidate solution as Xbest
6: while (t < T) do
7: for i← 1 to N do
/* Jet propulsion behavior */
8: c1, c2, c3, rrand ← Rand()

9:
⇀
M← bPmin + c1·(Pmax − Pmin)c Equation (4)

10:
⇀
F ← 2·c1 Equation (3)

11:
⇀
G ← c2 + c3 −

⇀
F Equation (2)

12:
⇀
A ←

⇀
G
⇀
M

Equation (1)

13:
⇀

PD ← abs
(

⇀
Xbest − rrand·

⇀
X(t)

)
Equation (5)

14: chaos(t)← FTent map(chaos(t− 1)) Equation (17)–(25)
15: levy← Flevy f light(D) Equation (13)–(16)
/* Swarm behavior */
16: if i = 1
17: if rrand < 0.5

18: Xi(t + 1)← Xbest −
⇀
A·

⇀
PD Equation (6)

19: else
20: Xi(t + 1)← Xbest +

⇀
A·

⇀
PD

21: end if
22: else
23: if rrand < 0.5

24: Xi(t)← chaos(t) ∗ levy. ∗
(

Xbest −
⇀
A·

⇀
PD
)

Equation (26)

25: else

26: Xi(t)← chaos(t) ∗ levy. ∗
(

Xbest +
⇀
A·

⇀
PD
)

27: end if
28: Xi(t + 1)← (Xi(t)+Xi−1(t+1))

(2+c1)
Equation (7)

29: end for
30: Calculate fitness of each individual, and choose the best solution as Xbest
31: t← t + 1
32: end while
33: return Xbest
34: end procedure

3.5. Complexity Analysis of CLTSA

Complexity is an important indicator for evaluating the performance of an algorithm:
time complexity estimates running time, and space complexity represents the amount
of solution space required. This subsection evaluates the time and space complexity of
the CLTSA.

3.5.1. Time Complexity

In the initialization phase, the algorithm generates the original population containing
N search agents for a problem with dimension D, so the time complexity of the initialization
is O(N × D). Moreover, CLTSA requires O(T × N × D) time to compute the fitness of each
individual, where T indicates the maximum number of iterations. Finally, O(M) time is
used to execute the main steps, where M denotes the number of jet propulsion and swarm
behaviors. Therefore, the overall time complexity of CLTSA is O(T × N ×M× D).
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3.5.2. Space Complexity

The number of solution spaces required by CLTSA is N search agents generated for D-
dimensional problems in the initialization phase. Hence, the space complexity is estimated
to be O(N × D).

4. Experimental Results and Analysis

In the field of meta-heuristic algorithms, using benchmark functions with different
characteristics is the most common method for measuring algorithmic performance. These
functions can reflect the convergence speed and value of algorithms to evaluate its explo-
ration and development capabilities. To control the accuracy of the experimental results,
each algorithm runs independently 30 times on the same software and computer. The
software for coding the proposed algorithm is MATLAB 2020a, and the algorithm was run
on a computer with AMD Ryzen 7 4800H processor and 16 GB RAM.

4.1. Benchmark Test Functions

The main characteristics of benchmark function are modality, dimensionality, separa-
bility, differentiability, and continuity. According to the above characteristics, benchmark
functions can be classified to evaluate the performance of algorithms from different per-
spectives. To comprehensively assess the property of CLTSA, a set of benchmark functions
containing all the above features is used [11]. The test set is divided into two groups based
on the number of minimums of benchmark functions in a given interval:

1. Unimodal benchmark functions: The detailed information of the unimodal functions
test set is listed in Table 2, and their mathematical expressions are shown in Table A1
in Appendix A [11].

2. Multimodal benchmark functions: The detailed information of the test set which
is composed of 14 multimodal benchmark functions is listed in Table 3, and their
mathematical expressions are shown in Table A2 in Appendix A [11].

Table 2. Unimodal benchmark functions.

Function Range Dim Fmin

F1-Sphere [−100, 100] 50 0
F2-Quartic Noise [−1.28, 1.28] 20 0
F3-Powell Sum [−1, 1] 50 0
F4-Schwefel’s 2.20 [−100, 100] 50 0
F5-Schwefel’s 2.21 [−100, 100] 50 0
F6-Schwefel’s 1.20 [−100, 100] 50 0
F7-Schwefel’s 2.22 [−100, 100] 50 0
F8-Schwefel’s 2.23 [−10, 10] 50 0
F9-RosenBrock [−30, 30] 50 0
F10-Brown [−1, 4] 50 0
F11-Dixon and Price [−10, 10] 50 0
F12-Powell Singular [−4, 5] 50 0
F13-Zakharow [−5, 10] 50 0
F14-Three-Hump Camel [−5, 5] 2 0
F15-Matyas [−10, 10] 2 0
F16-WayBurn Seader 3 [−500, 500] 2 21.35

4.2. Comparison of Chaotic Maps

The logistic map is used by most optimization algorithms based on the chaos mecha-
nism in current research [58], but its chaotic values are generally distributed in the intervals
[0, 0.1] and [0.9, 1]. This uneven traversal affects the optimization efficiency of the algo-
rithm [43]. To select the most suitable chaotic map, the above nine common chaotic maps
are combined with the Lévy flight strategy to optimize the TSA. Then, the 30 well-known
unimodal test functions and multi-modal test functions (see the Appendix A) are used to
evaluate the algorithm’s performance. The run results are shown in Tables 4 and 5.
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Table 3. Multimodal benchmark functions.

Function Range Dim Fmin

F17-Rastrigin [5.12, 5.12] 50 0
F18-Periodic [−10, 10] 50 0
F19-Alpine N. 1 [−10, 10] 50 0
F20-Xin-She Yang [−5, 5] 50 0
F21-Ackley [−32, 32] 50 0
F22-Trignometric 2 [−500, 500] 50 1
F23-Salomon [−100, 100] 50 0
F24-Griewank [−100, 100] 50 0
F25-Gen. Penalized [−50, 50] 50 0
F26-Penalized [−50, 50] 50 0
F27-Egg Crate [−5, 5] 2 0
F28-Bird [−2π, 2π] 2 −106.7645
F29-Goldstein Price [−2, 2] 2 3
F30-Bartels Conn [−500, 500] 2 1

Table 4. Results of 9 chaotic maps combined with Lévy flight on unimodal benchmark functions.

Fn Criteria Chebyshev Circle Gauss Iterative Logistic Sine Singer Sinusoidal Tent

F1
Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F2
Mean 4.45E−05 1.59E−04 2.16E−05 2.09E−05 8.52E−05 4.65E−05 1.04E−04 6.45E−05 2.04E−05
Best 2.51E−07 5.10E−06 1.57E−06 8.60E−07 8.85E−06 1.34E−05 1.17E−06 1.07E−06 5.05E−07
Std 5.32E−05 9.45E−05 2.18E−05 1.42E−04 4.02E−05 3.50E−05 3.57E−05 3.14E−05 1.48E−05

F3
Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F4
Mean 4.17E−228 1.97E−205 0.00E+00 1.26E−179 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 1.48E−231 3.23E−217 0.00E+00 1.91E−180 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F5
Mean 1.28E−210 8.66E−187 0.00E+00 3.67E−157 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 3.79E−216 2.01E−192 0.00E+00 3.38E−161 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 3.66E−152 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F6
Mean 0.00E+00 0.00E+00 0.00E+00 6.08E−306 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 0.00E+00 0.00E+00 0.00E+00 6.08E−306 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F7
Mean 7.33E−233 3.48E−210 0.00E+00 3.06E−178 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 2.58E−233 6.75E−214 0.00E+00 4.83E−180 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F8
Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F9
Mean 4.87E+01 4.88E+01 4.89E+01 4.89E+01 4.89E+01 4.89E+01 4.90E+01 4.89E+01 4.72E+01
Best 4.81E+01 4.81E+01 4.87E+01 4.81E+01 4.81E+01 4.87E+01 4.81E+01 4.88E+01 4.72E+01
Std 2.44E−01 2.50E−01 7.79E−02 2.54E−01 2.66E−01 9.36E−02 2.51E−01 6.45E−02 5.32E−03

F10
Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F11
Mean 6.67E−01 6.67E−01 6.67E−01 6.67E−01 6.67E−01 6.67E−01 6.67E−01 6.67E−01 6.67E−01
Best 6.67E−01 6.67E−01 6.67E−01 6.67E−01 6.67E−01 6.67E−01 6.67E−01 6.67E−01 6.67E−01
Std 2.78E−08 9.92E−06 2.93E−08 4.24E−08 2.68E−05 2.08E−05 1.91E−08 1.92E−08 1.69E−08

F12
Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F13
Mean 0.00E+00 3.10E−165 0.00E+00 3.77E−260 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 0.00E+00 3.69E−215 0.00E+00 8.92E−273 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
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Table 4. Cont.

Fn Criteria Chebyshev Circle Gauss Iterative Logistic Sine Singer Sinusoidal Tent

F14
Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F15
Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F16
Mean 1.91E+01 1.91E+01 1.91E+01 1.92E+01 1.49E+02 1.91E+01 1.91E+01 1.49E+02 1.91E+01
Best 1.91E+01 1.91E+01 1.91E+01 1.91E+01 1.91E+01 1.91E+01 1.91E+01 1.91E+01 1.91E+01
Std 1.54E−02 1.63E−02 1.82E−02 1.56E−02 9.88E+01 1.76E+02 2.17E−02 2.37E+01 1.30E−02

Table 5. Results of 9 chaotic maps combined with Lévy flight on multimodal benchmark functions.

Fn Criteria Chebyshev Circle Gauss Iterative Logistic Sine Singer Sinusoidal Tent

F17
Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F18
Mean 9.00E−01 1.26E+01 9.00E−01 9.00E−01 9.00E−01 9.00E−01 9.00E−01 9.00E−01 9.00E−01
Best 9.00E−01 1.13E+01 9.00E−01 9.00E−01 9.00E−01 9.00E−01 9.00E−01 9.00E−01 9.00E−01
Std 8.46E−16 5.64E−01 3.64E−16 8.49E−16 4.92E−16 3.77E−16 7.31E−16 6.97E−16 4.52E−16

F19
Mean 1.91E−231 2.58E−211 0.00E+00 5.57E−182 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 7.41E−234 1.89E−218 0.00E+00 3.14E−182 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F20
Mean 0.00E+00 1.93E−218 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 0.00E+00 3.76E−260 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 1.11E−57 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F21
Mean −8.88E−16 −8.88E−16 −8.88E−16 −8.88E−16 −8.88E−16 −8.88E−16 −8.88E−16 −8.88E−16 −8.88E−16
Best −8.88E−16 −8.88E−16 −8.88E−16 −8.88E−16 −8.88E−16 −8.88E−16 −8.88E−16 −8.88E−16 −8.88E−16
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F22
Mean 1.49E+02 1.48E+02 1.61E+02 1.54E+02 1.63E+02 1.48E+02 1.61E+02 1.46E+02 1.53E+02
Best 1.42E+02 1.38E+02 1.38E+02 1.28E+02 1.23E+02 1.29E+02 1.37E+02 1.36E+02 1.30E+02
Std 4.81E+01 6.50E+00 7.57E+00 6.99E+00 4.81E+01 4.95E+01 7.94E+00 7.82E+00 9.19E+00

F23
Mean 0.00E+00 1.79E−145 0.00E+00 3.98E−153 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 1.82E−02 5.07E−02 0.00E+00 3.79E−02 0.00E+00 0.00E+00 1.82E−02 0.00E+00 0.00E+00

F24
Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F25
Mean 4.90E+00 4.73E+00 4.90E+00 4.80E+00 4.99E+00 4.99E+00 4.90E+00 4.90E+00 4.88E+00
Best 4.51E+00 4.35E+00 4.80E+00 4.53E+00 4.84E+00 4.98E+00 4.80E+00 4.80E+00 4.70E+00
Std 9.90E−02 9.85E−02 4.02E−02 8.54E−02 3.79E−02 4.82E−03 4.13E−02 3.29E−02 4.34E−02

F26
Mean 9.11E−01 7.47E−01 9.93E−01 5.76E−01 1.29E+00 1.05E+00 7.85E−01 1.06E+00 9.19E−01
Best 6.94E−01 6.08E−01 5.60E−01 5.48E−01 4.82E−01 4.23E−01 6.39E−01 6.59E−01 5.23E−01
Std 1.11E−01 1.68E−01 1.54E−01 1.56E−01 2.80E−01 2.09E−01 1.30E−01 2.04E−01 1.89E−01

F27
Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F28
Mean −106.722 −106.727 −106.73 −106.74 −87.3035 −106.619 −106.688 −106.716 −106.748
Best −106.764 −106.763 −106.764 −106.764 −106.764 −106.761 −106.763 −106.764 −106.763
Std 4.04E−02 5.28E−02 2.12E−02 4.33E−02 8.37E+00 6.71E+00 7.75E−02 3.42E−02 2.57E−02

F29
Mean 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.01E+00 3.00E+00 3.00E+00 3.00E+00
Best 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00
Std 2.23E−05 3.53E−04 5.85E−05 1.13E−05 6.85E+00 1.60E+01 3.69E−04 1.78E−04 9.53E−16

F30
Mean 8.23E−02 1.19E−01 7.87E−02 9.06E−02 5.93E+01 8.97E−01 6.00E+01 6.45E−03 8.59E+00
Best 3.17E−02 2.30E−02 3.83E−02 2.30E−02 1.56E−02 1.85E−02 5.16E−03 2.76E−03 8.49E−03
Std 1.50E+01 1.46E+00 4.24E+01 9.77E−01 4.80E+01 5.73E+01 1.81E+01 1.50E+01 2.03E+01

To ensure the fairness and validity of the experimental results, each Chaotic-Lévy TSA
was run 30 times independently, and the maximum number of iterations, population size,
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and problem dimension were set to 500, 50, and 50 respectively. The mean was the mean
value of the 30 optimal solutions. Best was the optimal value among the experimental
results obtained by running an algorithm 30 times; std was standard deviation. In this
paper, the ranking rule of algorithm performance was mean, best, and std in that order.
The algorithm with the best results for each benchmark function is emphasized in bold.

From the experimental results, the Tent-Lévy flight TSA (TLTSA) had far better op-
timization compared to the Chaotic-Lévy TSAs (CLTSAs). Among the 30 benchmark
functions, the TLTSA had 25 optimal solutions more than the CLTSAs and ranked first. In
the following research, it was used for comparative experiments and to optimize solutions
to engineering problems.

4.3. Parameter Settings of TLTSA and Other Algorithms

The TSA relies on two main parameters to build social interactions, Pmin and Pmax. Pmin
was taken as 1, 2, 3, 4 for the experiment and other parameter settings were kept unchanged.
The study found that the TSA achieved the best performances when the value of Pmin was
set to 1. In the same way, Pmax was taken as 1, 2, 3, 4 for the experiment and the other
parameter settings were kept unchanged. The TSA achieved the best performances when
the value of Pmax was set to 4 [45]. The proposed TLTSA was compared with TSA and other
metaheuristic algorithms, including grey wolf optimizer (GWO) [61], sine cosine algorithm
(SCA) [62], sparrow search algorithm (SSA) [63], water circle algorithm (WCA) [8], whale
optimization algorithm (WOA) [24], marine predators algorithm (MPA) [64], lighting
search algorithm (LSA) [28], and hybrid glowworm swarm optimization (HGSO) [65]. The
parameter settings of all algorithms are listed in Table 6, and all parameter values were
derived from the literature.

Table 6. The main parameter settings of the algorithms that need to be compared and analyzed.

Algorithm Parameter Setting

Common Settings

Population size: N = 50
maximum number of iterations: T = 500
Dimensions of problem: Dim = 50
Number of independent runs: Repetition = 30

GWO
⇀
a decays from 2 to 0
⇀
A,

⇀
C are calculated by corresponding formulas

SCA a = 2, r1,2,3,4 are calculated by corresponding formulas

SSA Q is a random number and Q ∼ N
(
µ, σ2)

is a random number and β ∼ N(0, 1)

WCA C = 2 and µ = 0.1

WOA
⇀
α decays from 2 to 0
b = 1

MPA p = 0.5, FADs = 0.2
CF is calculated by corresponding formulas

LSA Channel time: chtime = 10

HGSO ρ = 0.4, γ = 0.6, β = 0.08, s = 0.03, CR = 0.9, λ = 0.9415

TSA Pmin= 1 and Pmax = 4

TLTSA Pmin= 1 and Pmax = 4
lévy and chaos(t) are calculated by corresponding formulas
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4.4. Results and Analysis
4.4.1. Experimental Data Analysis

Since a fixed-dimensional function is closer to a real-world optimization problem, six
were selected to verify TLTSA convergence speed and accuracy. These functions are listed
in Table 7, and the mathematical expressions are detailed in Table A3 in the Appendix A.

Table 7. Fixed-dimension benchmark functions.

Function Range Dim Fmin

F1-Shekel’s Foxholes [−65, 65] 2 1
F2-Kowalik [−5, 5] 4 0.0003075
F3-Hartman 3 [0, 1] 4 −3.86
F4-Shekel 1 [0, 10] 4 −10.1532
F5-Shekel 2 [0, 10] 4 −10.4029
F6-Shekel 3 [0, 10] 4 −10.5364

Because unimodal benchmark functions have only one global minimum, it is not
only suitable for assessing development capability, but also for examining the algorithm
convergence speed. According to the experimental data in Table 8, the TLTSA was more
competitive in the unimodal benchmark functions compared to other algorithms. For F1,
F3, F4, F5, F6, and F7, only the TLTSA quickly and accurately found the standard optimal
value 0. In addition, the std was also zero, which showed that running TLTSA 30 times
produced the best global solution and fully reflected its stability. For the other algorithms,
it was difficult for them to find the global optimal solution with an order of magnitude
less than −100, especially the SCA, SSA, and LSA. These three converged prematurely
because they could not escape the local optimal solution. For F10, F12, F13, F14, and F15,
although some of the other comparison algorithms also had good performance, there was
still a large gap with the TLTSA, which quickly found the exact global optimal solution.
For these unimodal benchmark functions, the order of magnitude of the mean value of the
HGSO reached −100 even −200, and the std reached 0. However, the mean, best, and std
of the TLTSA were all zero, which meant that the TLTSA had strong optimization capability
and stability. From the comparison of these three criteria, it more carefully developed the
vicinity of the optimal solution than did the HGSO, thereby enhancing the selectivity of
the optimal solution. For F2, F9, and F11, although the best result of TLTSA is not optimal
solution 0, it has the best mean value, optimal solution, and std among the algorithms
selected for comparison. It was proven that the proposed TLTSA was indeed focused on
exploration and exploitation to improve performance. For F8, although both the TLTSA
and HGSO had the best calculation accuracy, the convergence curve indicates that the
convergence speed of TLTSA was significantly better, showing that it has more exploration
and exploitation advantages. For F16, TLTSA obtains the same global optimal solution as
the other algorithms, but was slightly unstable. In addition, compared with the original
TSA algorithm, the TLTSA had a greatly improved mean value and standard deviation as
well as a high-er search accuracy. Overall, in the test of 16 unimodal benchmark functions,
the TLTSA took first place 15 times and eighth once among 10 algorithms.

It was clearly better suited to solving precise engineering problems, and its higher
sensitivity to unimodal benchmark functions proved a strong exploitation capability. The
Tent-Lévy flight strategy generated a number of small step sizes with greater randomness,
which made search agents explore the search space fully when converging towards the
candidate solution, and improve the possibility of the optimal solution being selected.
Tent-Lévy flight as a random-walk strategy efficiently enhanced the algorithm’s exploration
and exploitation abilities.
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Table 8. Comparison of TLTSA with other optimization algorithms for unimodal benchmark functions.

Fn Criteria GWO SCA SSA WCA WOA MPA LSA HGSO LFPSO
[47]

chTLBO
[66] TSA TLTSA

F1
Mean 8.11E−24 5.78E+02 2.35E−03 9.98E−10 4.43E−83 5.10E−21 1.13E−04 4.52E−114 1.06E−04 7.32E−05 9.65E−18 0.00E+00
Best 5.29E−25 2.13E+00 6.05E−05 6.97E−14 9.90E−93 6.88E−23 7.36E−08 6.97E−150 1.45E−06 7.93E−20 0.00E+00
Std 1.10E−23 7.67E+02 2.17E−03 2.33E−09 2.19E−82 7.53E−21 3.07E−04 2.48E−113 1.58E−04 1.40E−17 0.00E+00

F2
Mean 2.12E−03 2.16E+00 3.41E−01 3.78E−02 2.55E−03 1.32E−03 7.88E−02 2.47E−04 4.34E−02 1.63E−01 1.14E−02 4.03E−05
Best 8.10E−04 1.54E−01 1.67E−01 2.12E−02 1.34E−05 2.63E−04 5.21E−02 1.69E−05 7.61E−02 2.55E−03 7.99E−07
Std 9.10E−04 2.55E+00 8.43E−02 1.26E−02 3.17E−03 6.51E−04 1.44E−02 2.46E−04 1.11E−02 4.85E−03 4.00E−05

F3
Mean 3.54E−107 6.52E−03 7.77E−07 2.23E−22 7.09E−124 8.98E−62 8.36E−32 5.16E−207

—— ——
1.14E−75 0.00E+00

Best 1.13E−118 1.56E−04 4.63E−08 6.84E−29 3.47E−153 5.70E−72 1.21E−39 1.45E−234 6.46E−92 0.00E+00
Std 1.53E−106 1.15E−02 8.57E−07 7.45E−22 3.88E−123 3.66E−61 4.52E−31 0.00E+00 3.67E−75 0.00E+00

F4
Mean 1.10E−13 2.52E+00 4.22E+01 1.29E−04 8.52E−53 2.70E−11 7.13E−01 5.68E−71

—— ——
1.25E−10 0.00E+00

Best 7.13E−14 7.05E−02 1.27E+01 1.42E−05 3.87E−58 3.05E−12 3.24E−03 2.94E−75 4.08E−11 0.00E+00
Std 3.95E−14 2.33E+00 2.47E+01 2.51E−04 2.54E−52 1.78E−11 8.78E−01 8.55E−71 8.80E−11 0.00E+00

F5
Mean 5.80E−05 6.33E+01 1.58E+01 2.98E+00 8.14E+01 2.93E−08 1.64E+01 3.03E−66 1.21E+01 2.10E−03 4.62E+00 0.00E+00
Best 5.88E−06 4.21E+01 1.39E+01 8.40E−01 6.45E+01 1.52E−08 9.02E+00 2.73E−73 2.10E−03 6.55E−01 0.00E+00
Std 6.34E−05 1.01E+01 1.61E+00 9.16E−01 9.43E+00 1.01E−08 4.59E+00 7.42E−66 6.22E+00 2.84E+00 0.00E+00

F6
Mean 5.43E−03 3.91E+04 4.64E+03 7.44E+00 1.52E+05 1.86E−02 2.84E+03 4.34E−126 1.18E+03 1.84E−02 2.11E+00 0.00E+00
Best 3.01E−06 1.42E+04 1.46E+03 2.36E+00 7.99E+04 2.79E−04 1.25E+03 4.94E−144 1.30E−03 8.37E−03 0.00E+00
Std 1.14E−02 1.50E+04 3.18E+03 4.92E+00 3.20E+04 2.74E−02 6.87E+02 2.31E−125 5.66E+02 3.51E+00 0.00E+00

F7
Mean 2.02E−13 3.64E+00 6.49E+28 1.74E+25 6.01E−53 2.79E−11 1.21E+02 1.19E−66 1.73E−03 1.00E−02 1.99E−10 0.00E+00
Best 7.59E−14 1.44E−01 6.69E+08 7.88E−07 6.42E−59 5.29E−13 2.30E−01 1.58E−75 1.61E−01 2.70E−12 0.00E+00
Std 9.92E−14 4.69E+00 3.35E+29 9.54E+25 2.97E−52 4.13E−11 1.47E+02 6.34E−66 4.53E−03 1.89E−10 0.00E+00

F8
Mean 6.74E−77 1.13E+08 1.13E−03 2.14E−25 9.77E−226 4.43E−94 1.68E−18 0.00E+00

—— ——
3.87E−42 0.00E+00

Best 2.32E−85 4.09E+06 8.06E−08 1.51E−34 3.93E−293 2.50E−101 6.12E−24 0.00E+00 3.46E−59 0.00E+00
Std 2.48E−76 1.50E+08 3.16E−03 1.13E−24 0.00E+00 1.52E−93 4.90E−18 0.00E+00 1.84E−41 0.00E+00

F9
Mean 4.66E+01 5.12E+06 4.55E+02 9.41E+01 4.76E+01 4.88E+01 1.45E+02 4.88E+01 9.78E+01 1.99E+01 4.87E+01 4.54E+01
Best 4.58E+01 2.00E+05 8.01E+01 4.32E+01 4.68E+01 4.81E+01 2.98E+01 4.87E+01 1.86E+01 4.85E+01 4.48E+01
Std 5.25E−01 6.33E+06 7.95E+02 3.62E+01 5.00E−01 2.57E−01 5.99E+01 1.02E−01 6.53E+01 1.17E−01 4.92E−01

F10
Mean 2.30E−26 2.11E−01 6.37E−05 1.33E−13 1.46E−87 8.85E−24 2.62E−05 7.86E−136

—— ——
5.73E−20 0.00E+00

Best 1.26E−27 2.93E−03 4.30E−07 7.28E−17 5.40E−96 8.02E−25 2.01E−09 6.09E−160 3.01E−22 0.00E+00
Std 3.23E−26 3.43E−01 2.04E−04 2.72E−13 4.77E−87 7.70E−24 6.42E−05 3.82E−135 1.16E−19 0.00E+00

F11
Mean 6.67E−01 2.26E+04 1.30E+01 6.67E−01 6.67E−01 6.67E−01 6.05E+00 6.67E−01

—— ——
7.56E−01 6.67E−01

Best 6.67E−01 1.77E+02 1.80E+00 6.67E−01 6.67E−01 6.67E−01 1.03E+00 6.67E−01 6.67E−01 6.67E−01
Std 1.41E−05 3.49E+04 1.38E+01 3.83E−04 1.87E−04 8.56E−08 3.35E+00 2.87E−06 1.50E−01 4.32E−08

F12
Mean 1.63E−05 2.24E+02 9.05E+00 1.10E−03 9.15E−13 2.08E−15 4.20E−01 8.34E−116

—— ——
5.15E−04 0.00E+00

Best 2.27E−06 2.64E+00 1.08E+00 3.03E−04 5.82E−95 5.71E−23 5.57E−02 1.93E−150 8.95E−05 0.00E+00
Std 1.09E−05 2.32E+02 6.07E+00 4.65E−04 4.84E−12 1.13E−14 5.10E−01 4.57E−115 4.46E−04 0.00E+00

F13
Mean 8.68E−05 1.28E+02 2.60E+02 1.75E+02 8.52E+02 1.70E−01 1.09E+02 1.85E−119

—— ——
1.27E−06 0.00E+00

Best 4.11E−07 5.14E+01 1.55E+02 2.86E+01 5.96E+02 4.60E−02 6.30E+01 1.81E−138 1.67E−08 0.00E+00
Std 1.03E−04 4.94E+01 6.69E+01 7.29E+01 1.09E+02 9.01E−02 2.18E+01 9.73E−119 2.30E−06 0.00E+00

F14
Mean 1.89E−240 8.74E−78 3.49E−15 1.45E−39 1.21E−95 7.53E−80 5.67E−253 9.51E−183

—— ——
2.99E−02 0.00E+00

Best 1.39E−307 5.19E−87 2.81E−18 9.77E−45 9.31E−119 1.42E−119 1.88E−263 4.51E−220 4.96E−150 0.00E+00
Std 0.00E+00 3.35E−77 4.60E−15 4.31E−39 6.62E−95 4.12E−79 0.00E+00 0.00E+00 9.11E−02 0.00E+00

F15
Mean 2.45E−140 5.74E−61 8.63E−16 1.91E−40 2.15E−213 1.04E−70 1.60E−149 1.39E−181

—— ——
1.25E−86 0.00E+00

Best 1.23E−165 2.56E−79 4.10E−18 3.89E−46 1.09E−270 1.25E−90 5.17E−171 5.05E−213 3.25E−101 0.00E+00
Std 1.29E−139 3.14E−60 1.05E−15 4.12E−40 0.00E+00 5.68E−70 8.64E−149 0.00E+00 5.64E−86 0.00E+00

F16
Mean 1.91E+01 1.91E+01 1.91E+01 1.91E+01 1.91E+01 1.91E+01 1.91E+01 1.93E+01

—— ——
6.80E+01 1.91E+01

Best 1.91E+01 1.91E+01 1.91E+01 1.91E+01 1.91E+01 1.91E+01 1.91E+01 1.91E+01 1.91E+01 1.91E+01
Std 1.03E−05 2.15E−02 2.86E−10 9.49E−15 3.61E−03 5.15E−15 1.35E−14 1.85E−01 1.24E+02 3.71E−02

Table 9 is the experimental data of multimodal benchmark functions. A significant
characteristic of the multimodal benchmark functions is that they may have multiple local
minimum values in a given interval, so the multimodal benchmark functions are important
tools to evaluate the global search capability of optimization algorithms. For F18, F19,
F20, F23, F27, and F29, the three statistics of TLTSA are all better than other comparison
algorithms, which means that TLTSA can always easily jump out of the local optimal value
and concentrate on finding the global optimal solution. It can be seen that TLTSA ranks
first in each group. For F17, F21, and F24, the optimization effect of mean, best, and std of
TLTSA is obvious. The proposed TLTSA enhances the global exploration capability on the
basis of TSA and solves the premature convergence problem, tied for first place with some
algorithms in each group. For F22 and F25, the mean of TLTSA is better than SCA, SSA,
HGSO, and TSA, which demonstrates that TLTSA makes progress on exploring in search
space. For F26, F28, and F30, the performance of TLTSA is greatly ameliorated compared
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with TSA, which makes TLTSA more competitive. Through the above experimental results
analysis, it is shown that TLTSA has enough global exploration capability to escape from
the local optimal solution. The ergodicity and randomness of the Tent map promote the
search agents to distribute in search space randomly, which improves the diversity of the
population. In addition, when the Tent-Lévy flight strategy executes random walk, the
large step sizes are generated with a certain probability, which enables TLTSA to effectively
search for possible areas in the space.

Table 9. Comparison of TLTSA with other optimization algorithms for multimodal benchmark functions.

Fn Criteria GWO SCA SSA WCA WOA MPA LSA HGSO LFPSO
[47]

chTLBO
[66] TSA TLTSA

F17
Mean 3.27E+00 1.05E+02 7.11E+01 8.48E+01 0.00E+00 0.00E+00 1.22E+02 0.00E+00 2.96E+01 3.58E+02 3.72E+02 0.00E+00
Best 5.68E−14 1.35E+01 3.28E+01 5.57E+01 0.00E+00 0.00E+00 7.36E+01 0.00E+00 3.48E+02 2.32E+02 0.00E+00
Std 3.98E+00 6.25E+01 1.89E+01 2.74E+01 0.00E+00 0.00E+00 2.33E+01 0.00E+00 4.29E+00 7.09E+01 0.00E+00

F18
Mean 1.67E+00 1.25E+01 1.00E+00 1.00E+00 1.24E+00 1.08E+00 1.00E+00 9.03E−01

—— ——
8.73E+00 9.00E−01

Best 1.17E+00 9.76E+00 1.00E+00 1.00E+00 9.00E−01 1.00E+00 1.00E+00 9.00E−01 6.64E+00 9.00E−01
Std 3.77E−01 1.13E+00 7.12E−05 1.60E−11 8.27E−01 6.78E−02 1.67E−03 1.75E−02 1.13E+00 4.52E−16

F19
Mean 7.42E−04 6.62E+00 5.63E+00 2.06E−04 5.67E−55 5.95E−13 3.78E−01 7.13E−71

—— ——
5.87E+01 0.00E+00

Best 9.42E−14 6.05E−02 1.38E+00 5.13E−09 2.22E−60 2.22E−14 3.98E−03 1.58E−79 3.07E+01 0.00E+00
Std 8.85E−04 5.37E+00 2.14E+00 7.50E−04 2.18E−54 5.64E−13 4.70E−01 1.80E−70 1.10E+01 0.00E+00

F20
Mean 1.38E−20 1.04E+09 2.58E+01 9.62E−05 5.06E−03 5.91E−16 2.44E−08 4.94E−73

—— ——
4.74E−01 0.00E+00

Best 1.14E−45 8.95E−01 7.61E−02 1.38E−09 2.96E−36 1.06E−27 2.13E−13 1.14E−113 3.30E−03 0.00E+00
Std 7.57E−20 3.40E+09 6.00E+01 5.15E−04 2.72E−02 3.18E−15 6.38E−08 2.70E−72 1.13E+00 0.00E+00

F21
Mean 5.35E−13 1.87E+01 3.33E+00 4.23E−01 2.43E−15 1.03E−11 3.56E+00 −8.88E−162.99E−02 5.62E−02 1.66E+00 −8.88E−16
Best 2.51E−13 3.34E+00 2.01E+00 7.13E−07 −8.88E−16 5.71E−13 2.20E+00 −8.88E−16 5.12E−02 1.75E−10 −8.88E−16
Std 1.80E−13 4.88E+00 6.61E−01 8.73E−01 2.79E−15 5.17E−12 1.66E+00 0.00E+00 1.18E−01 1.59E+00 0.00E+00

F22
Mean 5.66E+01 1.31E+04 5.14E+02 7.11E+01 1.23E+02 4.76E+01 1.50E+02 1.58E+02

—— ——
2.23E+02 1.56E+02

Best 3.83E+01 8.29E+02 3.22E+02 9.02E+00 6.58E+01 3.49E+01 5.80E+01 1.51E+02 1.49E+02 1.35E+02
Std 9.32E+00 1.88E+04 1.36E+02 5.04E+01 3.22E+01 7.42E+00 5.00E+01 3.13E+00 3.77E+01 1.11E+01

F23
Mean 2.07E−01 3.29E+00 3.27E+00 9.57E−01 1.23E−01 1.80E−01 1.00E+00 1.91E−18

—— ——
4.80E−01 0.00E+00

Best 9.99E−02 1.30E+00 2.20E+00 7.00E−01 5.97E−44 9.99E−02 6.00E−01 4.03E−69 3.00E−01 0.00E+00
Std 3.65E−02 1.25E+00 5.31E−01 1.30E−01 6.26E−02 4.07E−02 2.57E−01 1.04E−17 7.61E−02 0.00E+00

F24
Mean 1.04E−03 1.17E+00 3.54E−02 6.97E−03 0.00E+00 0.00E+00 1.20E−02 0.00E+00 1.13E−02 8.21E−07 4.91E−03 0.00E+00
Best 0.00E+00 4.15E−01 1.24E−02 7.18E−13 0.00E+00 0.00E+00 2.37E−10 0.00E+00 1.39E−08 0.00E+00 0.00E+00
Std 4.02E−03 3.85E−01 1.79E−02 1.45E−02 0.00E+00 0.00E+00 1.74E−02 0.00E+00 1.61E−02 8.38E−03 0.00E+00

F25
Mean 1.59E+00 2.01E+07 5.71E+01 3.66E−04 4.65E−01 6.81E−02 1.14E−01 4.88E+00 1.33E−02 5.42E−06 5.37E+00 4.85E+00
Best 9.77E−01 4.33E+04 2.72E+01 4.96E−14 1.43E−01 6.01E−03 5.57E−07 4.79E+00 3.73E−07 4.24E+00 4.73E+00
Std 3.51E−01 2.24E+07 1.65E+01 2.01E−03 1.81E−01 6.24E−02 2.40E−01 3.94E−02 2.59E−02 7.47E−01 3.87E−02

F26
Mean 6.58E−02 1.05E+07 9.15E+00 4.31E−08 2.32E−02 9.92E−04 3.08E−01 9.28E−01 2.91E−01 7.91E−08 9.94E+00 9.14E−01
Best 2.33E−02 7.18E+00 3.70E+00 1.07E−13 3.22E−03 4.44E−05 1.28E−06 8.34E−01 1.61E−09 2.96E+00 6.08E−01
Std 2.21E−02 1.42E+07 4.52E+00 1.38E−07 7.11E−02 1.30E−03 4.67E−01 4.81E−02 6.59E−01 4.39E+00 1.88E−01

F27
Mean 3.14E−261 3.05E−76 7.12E−14 1.40E−38 8.54E−141 9.38E−93 2.03E−258 8.73E−183

—— ——
6.42E−121 0.00E+00

Best 1.03E−305 1.25E−86 2.24E−15 2.09E−45 2.89E−168 3.46E−128 3.47E−266 3.57E−203 9.57E−162 0.00E+00
Std 0.00E+00 1.49E−75 6.91E−14 4.05E−38 4.54E−140 5.14E−92 0.00E+00 0.00E+00 3.44E−120 0.00E+00

F28
Mean −105.468 −106.721 −106.765 −106.765 −106.765 −106.765 −106.765 −106.371

—— ——
−104.17 −106.723

Best −106.765 −106.763 −106.765 −106.765 −106.765 −106.765 −106.765 −106.757 −106.765 −106.764
Std 4.94E+00 4.72E−02 1.05E−12 3.75E−14 6.76E−06 6.92E−14 3.73E−14 3.95E−01 6.73E+00 5.47E−02

F29
Mean 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00

—— ——
9.30E+00 3.00E+00

Best 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00
Std 2.21E−05 7.52E−05 2.69E−13 1.16E−15 1.11E−05 1.81E−15 1.59E−04 2.29E−03 1.69E+01 8.45E−16

F30
Mean 3.16E+01 3.10E−01 1.97E+00 1.27E−05 7.90E+00 1.27E−05 5.92E+00 2.99E+00

—— ——
4.64E+01 6.52E+00

Best 3.00E−05 1.54E−02 1.27E−05 1.27E−05 1.28E−05 1.27E−05 1.27E−05 3.69E−03 9.80E−04 1.51E−02
Std 3.00E+01 2.96E−01 1.08E+01 0.00E+00 2.05E+01 4.66E−14 1.81E+01 3.09E+00 4.90E+01 1.80E+01

Table 10 depicts the experimental results of the fixed-dimension functions. For F33,
the TLTSA always found the optimal solution and kept the std to a minimum. For other
functions, it greatly improved solution accuracy compared with the original algorithms and
was significantly better than most optimization algorithms, showing that it had sufficient
ability to jump out of the local optimal solution. Because fixed-dimensional functions are
closer to real-life optimization problems and the TLTSA is competitive at solving them, it
showed that it could solve constrained engineering problems.
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Table 10. Comparison of TLTSA with other optimization algorithms for fixed-dimension functions.

Fn Criteria GWO SCA SSA WCA WOA MPA LSA HGSO LFPSO
[47]

chTLBO
[66] TSA TLTSA

F31
Mean 2.81E+00 1.66E+00 1.16E+00 9.98E−01 2.21E+00 9.98E−01 6.89E+00 1.41E+00 9.98E−01 1.02E+01 8.41E+00 1.06E+00
Best 9.98E−01 9.98E−01 9.98E−01 9.98E−01 9.98E−01 9.98E−01 9.98E−01 9.98E−01 9.99E+00 1.99E+00 9.98E−01
Std 2.35E+00 9.51E−01 5.87E−01 8.25E−17 2.47E+00 1.62E−16 4.79E+00 5.21E−01 9.21E−17 4.96E+00 2.52E−01

F32
Mean 4.20E−03 1.07E−03 2.12E−03 4.30E−04 7.26E−04 3.07E−04 5.93E−04 4.82E−04 1.18E−03 3.61E−02 5.87E−03 5.08E−04
Best 3.07E−04 3.83E−04 3.08E−04 3.07E−04 3.15E−04 3.07E−04 3.07E−04 3.41E−04 9.10E−03 3.08E−04 3.35E−04
Std 1.16E−02 3.85E−04 4.97E−03 3.17E−04 4.65E−04 2.76E−15 4.59E−04 7.56E−05 3.63E−03 8.99E−03 1.29E−04

F33
Mean −3.86E+00 −3.85E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.85E+00 −3.86E+00 −3.60E+00 −3.86E+00 −3.86E+00
Best −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.69E+00 −3.86E+00 −3.86E+00
Std 2.37E−03 2.39E−03 2.94E−13 2.61E−15 5.39E−03 2.71E−15 3.49E−03 5.98E−03 2.66E−15 2.55E−03 2.32E−15

F34
Mean −9.31E+00 −3.23E+00 −8.30E+00 −3.60E+00 −8.12E+00 −1.02E+01 −7.38E+00 −3.86E+00 −8.28E+00 −6.05E+00 −6.93E+00 −8.80E+00
Best −1.02E+01 −7.89E+00 −1.02E+01 −5.04E+00 −1.02E+01 −1.02E+01 −1.02E+01 −6.98E+00 −6.85E+00 −1.01E+01 −1.02E+01
Std 1.92E+00 1.92E+00 2.73E+00 1.96E+00 2.77E+00 3.00E−11 2.91E+00 9.06E−01 2.74E+00 3.04E+00 2.28E+00

F35
Mean −1.04E+01 −3.33E+00 −8.97E+00 −3.88E+00 −7.49E+00 −1.04E+01 −6.75E+00 −3.84E+00 −9.97E+00 −1.04E+01 −5.50E+00 −1.00E+01
Best −1.04E+01 −5.62E+00 −1.04E+01 −5.08E+00 −1.04E+01 −1.04E+01 −1.04E+01 −5.22E+00 −1.19E+01 −1.04E+01 −1.04E+01
Std 8.68E−04 1.69E+00 2.70E+00 1.87E+00 3.44E+00 3.34E−11 3.34E+00 5.28E−01 1.66E+00 3.01E+00 1.35E+00

F36
Mean −1.01E+01 −4.49E+00 −4.98E+00 −9.24E+00 −7.60E+00 −1.05E+01 −8.68E+00 −3.98E+00 −1.01E+01 −9.23E+00 −5.75E+00 −8.88E+00
Best −1.05E+01 −8.60E+00 −9.31E+00 −1.05E+01 −1.05E+01 −1.05E+01 −1.05E+01 −7.55E+00 −1.05E+01 −1.05E+01 −1.05E+01
Std 1.75E+00 1.76E+00 1.84E+00 2.41E+00 3.46E+00 3.64E−11 3.16E+00 8.86E−01 1.67E+00 3.63E+00 3.10E+00

To evaluate the fairness and accuracy of TLTSA, the LFPSO [47], chTLBO [66], TSA-
LEO [43], and QLGCTSA [44] were selected for comparison. The experimental data of
them came from the original literature. Tables 8–10 show that the TLTSA was superior to
LFPSO and chTLBO just using chaotic mapping or Lévy flight. From Table 11, it can be seen
that the optimization performance of TLTSA and QLGCTSA was significantly better than
that of TSA-LEO because local escape operator was difficult to help search agents explore
potential areas. Compared with QLGCTSA, the proposed TLTSA performed better in uni-
modal functions and was similar in multimodal functions, thus demonstrating that chaotic
mapping combined with Lévy flight had a stronger global exploration and development
ability. In the proposed TLTSA, a number of search agents executing small-step random
walks improved the development ability, and several large-step random walks and chaotic
mapping enhanced the global exploration. This method overcame the QLGCTSA’s disad-
vantage that used too many operators to improve the global exploration ability, resulting in
unbalanced exploration and development. Hence, the proposed Tent-Lévy flight strategy
is more suitable for algorithms like the TSA, which converged prematurely from a lack of
exploration and exploitation ability.

Table 11. Comparison of TLTSA with other improved TSAs for benchmark functions.

Fn F1 F2 F5 F6 F7 F9 F13 F17 F21

QLGCTSA [44]
Mean 0.00E+00 9.06E−05 6.34E−209 0.00E+00 1.15E−213 3.54E−05 0.00E+00 8.88E−16
Best 0.00E+00 7.77E−06 3.67E−251 0.00E+00 7.16E−240 9.23E−06 —— 0.00E+00 8.88E−16
Std 0.00E+00 1.09E−04 0.00E+00 0.00E+00 0.00E+00 1.81E−05 0.00E+00 0.00E+00

TSA-LEO [43]
Mean 5.80E+02 6.44E+04 7.07E+02 3.31E+04
Best —— —— —— —— ——
Std 7.25E+01 8.79E+03 3.71E+01 2.69E+04

TLTSA
Mean 0.00E+00 4.03E−05 0.00E+00 0.00E+00 0.00E+00 4.54E+01 0.00E+00 0.00E+00 −8.88E−16
Best 0.00E+00 7.99E−07 0.00E+00 0.00E+00 0.00E+00 4.48E+01 0.00E+00 0.00E+00 −8.88E−16
Std 0.00E+00 4.00E−05 0.00E+00 0.00E+00 0.00E+00 4.92E−01 0.00E+00 0.00E+00 0.00E+00

Fn F24 F26 F31 F32 F33 F34 F35 F36

QLGCTSA [44]
Mean 0.00E+00 3.11E−09 1.33E+00 3.72E−04 −3.86E+00 −1.02E+01 −1.04E+01 −1.05E+01
Best 0.00E+00 7.05E−10 9.98E−01 3.07E−04 −3.86E+00 −1.02E+01 −1.04E+01 −1.05E+01
Std 0.00E+00 1.53E−09 7.78E−01 2.36E−04 6.83E−14 1.36E−12 1.23E−12 6.51E−13

TSA-LEO [43]
Mean 5.05E+03
Best —— —— —— —— —— —— ——
Std 6.32E+03

TLTSA
Mean 0.00E+00 9.14E−01 1.06E+00 5.08E−04 −3.86E+00 −8.80E+00 −1.00E+01 −8.88E+00
Best 0.00E+00 6.08E−01 9.98E−01 3.35E−04 −3.86E+00 −1.02E+01 −1.04E+01 −1.05E+01
Std 0.00E+00 1.88E−01 2.52E−01 1.29E−04 2.32E−15 2.28E+00 1.35E+00 3.10E+00
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4.4.2. Convergence Curve and Boxplot Analysis

The convergence curve intuitively reflects the convergence speed and calculation
precision. The boxplot is frequently used in the analysis of variance (ANOVA) test, which
is useful for observing outliers and comparing algorithm stability. Figure 4 shows the
convergence curves and boxplot of some benchmark functions. For F1, F3, F4, F7, F8,
F10, F12-F15, F17, F19, F20, F23, F27, and F29, the TLTSA generally converged to 0 after
150–300 iterations. Its convergence curves show that it found global optimal solutions
with fewer iterations. For F11, the TLTSA greatly improved convergence speed without
changing the TSA calculation precision, which put its convergence speed at the forefront
of all algorithms. For F2, F18, F21, and F28, where the Tent-Lévy flight strategy was
introduced, the exploration and exploitation capabilities of the TLTSA were boosted greatly.
For F30, some of the other algorithms had an ad-vantage in global optimization ability, but
the TLTSA overcame the problem of local optimal solutions, avoided search stagnation,
and improved both calculation precision and convergence speed allowing it to escape the
local optimal solution. In addition, the boxplots also reflected its superior stability. It was
obvious that the TLTSA box-plots had fewer or no outliers compared to the original TSA.

In conclusion, the proposed TLTSA combined the merits of the Lévy flight strategy and
Tent map and solved the original algorithm’s lack of global exploration and exploitation
ability. The Tent map made step sizes of the Lévy flight strategy mutate randomly, which
led to each search agent having a chance to be selected. The large step sizes of the Tent-Lévy
flight strategy boosted the global exploration ability, and the small step-sized random
walk improved exploitation ability such that the TLTSA maintained a dynamic equilibrium
between exploration and exploitation, which not only widened the search scope to avoid
the search stagnation but also enhanced the search diversity near the candidate solution.
Synthesizing the above analytical results and experimental data, the calculation precision
and convergence speed of the TLTSA were evidently the best. Moreover, the boxplots
also attested to its strong stability and robustness. Hence, it is feasible to introduce the
Tent-Lévy flight strategy into the TSA to solve the function optimization problem.

4.4.3. Statistical Test

The statistical test is an important criterion for evaluating the fairness and accuracy of
the proposed algorithm. A Wilcoxon nonparametric test was performed at a significance
level of 0.05 to verify that the experimental results of the TLTSA were significantly different
from those of other algorithms. A p-value lower than 0.05, would be sufficient proof of the
null hypothesis. The test in 50 dimensions is shown in Table 10, and p > 0.05 is displayed in
bold. NaN suggested that the result generated by the sum-of-values test was not a number.
The last row shows all counts in (+/≈/−) format, where “+” means that the proposed
TLTSA was superior at the 95% significance level (α = 0.05); “−” means that the TLTSA
optimization was less effective; and “≈” means that there was no significant statistical
difference between the TLTSA and other algorithms. Table 12 shows the Wilcoxon test
results and it is easy to see that the vast majority of p-values were less than 0.05 compared to
the other algorithms. It also shows that the TLTSA had a statistically significant advantage
on optimizing problems compared to other algorithms.
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Table 12. Statistical results of the Wilcoxon rank-sum test.

Fn GWO SCA SSA WCA WOA MPA LSA HGSO TSA

F1 4.11E−12 4.11E−12 4.11E−12 4.11E−12 4.11E−12 4.11E−12 4.11E−12 4.11E−12 4.11E−12
F2 7.39E−11 3.02E−11 3.02E−11 3.02E−11 1.96E−10 2.37E−10 3.02E−11 9.83E−08 3.02E−11
F3 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12
F4 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11
F5 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11
F6 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11
F7 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11
F8 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 NaN 1.21E−12
F9 4.50E−11 3.02E−11 3.02E−11 0.589451 3.02E−11 3.02E−11 5.57E−10 3.02E−11 4.50E−11

F10 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12
F11 3.02E−11 3.02E−11 3.02E−11 0.0962628 3.02E−11 3.08E−08 3.02E−11 7.09E−08 7.37E−10
F12 1.10E−11 1.10E−11 1.10E−11 1.10E−11 1.10E−11 1.10E−11 1.10E−11 1.10E−11 1.10E−11
F13 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11
F14 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12
F15 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12
F16 3.02E−11 3.02E−11 1.85E−03 1.48E−11 2.00E−06 1.83E−11 1.99E−11 2.20E−07 6.52E−09
F17 4.50E−12 1.21E−12 1.21E−12 1.21E−12 0.333711 NaN 1.21E−12 NaN 1.21E−12
F18 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.26E−05 1.21E−12 1.21E−12 0.333711 1.21E−12
F19 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11
F20 1.27E−11 1.27E−11 1.27E−11 1.27E−11 1.27E−11 1.27E−11 1.27E−11 1.27E−11 1.27E−11
F21 8.85E−12 8.85E−12 8.85E−12 8.85E−12 3.53E−06 8.85E−12 8.85E−12 2.70E−03 8.85E−12
F22 3.02E−11 3.02E−11 3.02E−11 8.15E−11 4.64E−05 3.02E−11 0.118817 2.57E−07 3.34E−11
F23 3.02E−11 3.02E−11 3.02E−11 2.46E−11 2.35E−10 4.11E−11 3.02E−11 1.68E−04 3.02E−11
F24 2.79E−03 1.21E−12 1.21E−12 1.21E−12 0.160802 NaN 1.21E−12 NaN 6.61E−05
F25 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 8.99E−11 3.56E−04
F26 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 1.29E−06 5.26E−04 3.02E−11
F27 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12
F28 5.57E−10 3.01E−11 4.43E−03 1.29E−11 3.02E−11 2.83E−11 1.46E−11 3.20E−09 2.50E−03
F29 3.03E−03 3.02E−11 0.0594279 1.69E−11 0.311188 2.33E−11 1.88E−11 3.02E−11 2.05E−03
F30 6.77E−05 8.46E−09 0.56922 1.21E−12 6.77E−05 2.10E−11 2.47E−08 1.25E−05 1.95E−03
F31 2.68E−10 1.78E−07 4.84E−10 0.198282 3.27E−10 2.18E−07 8.02E−12 8.67E−10 1.69E−11
F32 1.77E−03 7.04E−07 2.39E−08 5.43E−10 2.71E−02 3.02E−11 2.15E−02 0.0701266 0.0750587
F33 8.10E−10 3.02E−11 0.0656713 4.08E−12 0.0678689 7.57E−12 1.72E−12 0.17145 3.02E−11
F34 9.70E−04 7.21E−05 1.30E−10 1.30E−10 3.04E−04 7.51E−03 0.228715 5.36E−11 3.49E−06
F35 5.35E−07 1.07E−07 2.36E−10 3.21E−11 9.76E−09 7.30E−07 0.202628 1.41E−11 4.77E−09
F36 3.50E−03 9.79E−05 4.22E−04 1.67E−06 4.46E−04 4.71E−04 1.22E−02 6.77E−05 4.35E−05

+/≈/− 36/0/0 36/0/0 33/0/3 33/0/3 32/0/4 34/2/0 33/0/3 30/3/3 35/0/1

5. TLTSA for Complex Problems in the Engineering Field

An improved optimization algorithm was proposed to settle practical problems in
engineering more efficiently. The benchmark functions were different because engineering
problems are often constrained. In addition, the optimal solutions to most engineering
problems are not clear. Therefore, a practical, constrained engineering problem is an
important criterion for measuring the performance of optimization algorithms. In this
section, three constrained engineering problems were selected to verify the ability of the
TLTSA to solve them: Three-bar truss design problem, welded beam design problem, and
optimal design of an industrial refrigeration system. The best results of each experiment
are highlighted in bold.

5.1. Three-Bar Truss Design Problem

The three-bar truss design problem is a classic in the engineering structure field. The
optimization goal is to design a truss with the smallest weight while satisfying three
constraints on stress, deflection, and buckling. The structural model and parameters are
displayed in Figure 5. The mathematical expression is defined as follows [67]:
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Deem:
⇀
x = [x1, x2] = [A1, A2] (27)

Objective function:
f
(
⇀
x
)
=
(

2
√

2x1 + x2

)
× L (28)

Constraint functions:

g1

(
⇀
x
)
=

√
2x1 + x2√

2x2
1 + 2x1x2

P− σ ≤ 0

g2

(
⇀
x
)
=

x2√
2x2

1 + 2x1x2
P− σ ≤ 0 (29)

g3

(
⇀
x
)
=

1√
2x2 + x1

P− σ ≤ 0

Variable range:
0 ≤ x1, x2 ≤ 1

where L = 100 cm, P = 2
KN
cm2 , σ = 2

KN
cm2 .

Table 13 shows the experimental results of the TLTSA and other algorithms. According
to the experimental results and convergence curve in Figure 6, the results for the TLTSA
were the same as those for the MPA, WCA, and SSA; its optimal cost was the smallest.
This demonstrated that the proposed TLTSA is feasible for settling the three-bar truss
design problem.
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Algorithm Optimal Variable A1 Optimal Variable A2 Optimal Cost
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SCA 0.77940 0.30414 186.4062
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5.2. Welded Beam Design Problem

The welded beam design problem is also well-known. The optimization objective was
found to be the most suitable value for each variable in calculating the minimum cost of a
welded beam subject to shear stress (τ), beam-bending stress (σ), bar buckling load (Pc)
and beam end deflection (δ). This design problem is influenced by four variables: weld
thickness (h), clamped-bar length (l), bar height (t), and bar thickness (b). The structural
model and the meaning of the parameters are shown in Figure 7. The mathematical
expression is listed below [68]:

Deem:
⇀
z = [z1, z2, z3, z4] = [h, l, t, b] (30)

Objective function:

f
(
⇀
z
)
= 1.10471z2

1z2 + 0.04811z3z4(14 + z2) (31)

Constraint functions:

g1

(
⇀
z
)
= τ

(
⇀
z
)
− 13600 ≤ 0

g2

(
⇀
z
)
= σ

(
⇀
z
)
− 30000 ≤ 0

g3

(
⇀
z
)
= δ

(
⇀
z
)
− 0.25 ≤ 0

g4

(
⇀
z
)
= z1 − z4 ≤ 0

g5

(
⇀
z
)
= 6000− Pc

(
⇀
z
)
≤ 0

g6

(
⇀
z
)
= 0.125− z1 ≤ 0

g7

(
⇀
z
)
= 1.10471z2

1z2 + 0.04811z3z4(14 + z2)− 5 ≤ 0

(32)

Variable range:
0.1 ≤ z1, z2 ≤ 2, 0.1 ≤ z2, z3 ≤ 10
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Other parameters:

τ
(
⇀
z
)
=

√√√√
(τ′)2 + (z2τ′τ′′ )/

√(
z2

2 + (z1 + z3)
2
)

4
+ (τ′′ )2

τ′ =
6000√
2z1z2

, σ
(
⇀
z
)
= 504,000

z2
3z4

, δ
(
⇀
z
)
= 65,856,000

(30×106)z1z3
3

τ′′ =
6000(14 + 0.5z2)

√
0.25

(
z2

2 + (z1 + z3)
2
)

2

[
0.707z1z2

(
1

12z2
2
+ 0.25(z1 + z3)

2

)]
(33)

Table 14 shows the comparison between the proposed TLTSA and the other al-
gorithms in optimal variables and optimal costs. The Figure 8 displays the conver-
gence curves. It can be seen that the proposed TLTSA is the most competitive. TLTSA
gains the optimal cost f(z1−4) = 1.6952 at the most suitable position (z1, z2, z3, z4) =
(0.20573, 3.2530, 9.0336, 0.20573), and ranked first. The experimental results showed that
it had strong global exploration and exploitation ability to optimize the welded beam
design problem to reduce engineering costs.
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Table 14. Comparison of TLTSA with other optimization algorithms for welded beam design problem.

Algorithm
Optimal Variable

Optimal Cost
h l t b

GWO 0.20095 3.3454 9.0465 0.20569 1.7000
SCA 0.20044 3.8852 9.4553 0.20645 1.8402
SSA 0.20648 3.2282 9.0796 0.20645 1.7686
WOA 0.21850 4.1900 5.6288 0.53853 2.3655
MPA 0.16971 3.9050 10 0.20207 1.8539
LSA 0.20573 3.2530 9.0366 0.20573 2.0274
HGSO 0.14780 4.8333 8.9045 0.21856 2.1737
TSA 0.20054 3.4016 9.0598 0.20624 1.7142
TLTSA 0.20573 3.2530 9.0366 0.20573 1.6952

5.3. Optimal Design Problem of Industrial Refrigeration System

As a nonlinear inequality-constrained optimization design problem, because it con-
tains a lot of constraints, the optimal design problem of the industrial refrigeration system
is suitable for evaluating the ability of the algorithm to solve an actual engineering problem.
The optimal objective is to reduce the design costs as much as possible. The mathematical
model is [69]:

Objective function:

f
(
⇀
x
)
= 63098.88x2x4x12 + 5441.5x2

2x12 + 115055.5x1.664
2 x6 + 6172.27x2

2x6

+63098.88x1x3x11 + 5441.5x2
1x11 + 115055.5x1.664

1 x5 + 6172.27x2
1x5

+140.53x1x11 + 281.29x3x11 + 70.26x2
1 + 281.29x1x3

+281.29x2
3 + 14437x1.8812

8 x0.3424
12 x10x−1

14 x2
1x7x−1

9

+20470.2x2.893
7 x0.316

11 x2
1

(34)

Constraint functions:

g1

(
⇀
x
)
= 1.524x−1

7 ≤ 1

g2

(
⇀
x
)
= 1.524x−1

8 ≤ 1

g3

(
⇀
x
)
= 0.07789x1 − 2x−1

7 x9 − 1 ≤ 0

g4

(
⇀
x
)
= 7.05305x−1

9 x2
1x10x−1

8 x−1
2 x−1

14 − 1 ≤ 0

g5

(
⇀
x
)
= 0.0833x−1

13 x14 − 1 ≤ 0

g6

(
⇀
x
)
= 47.136x0.333

2 x−1
10 x12 − 1.333x8x2.1195

13 + 62.08x2.1195
13 x−1

12 x0.2
8 x−1

10 − 1 ≤ 0

g7

(
⇀
x
)
= 0.04771x10x1.8812

8 x0.3424
12 − 1 ≤ 0

g8

(
⇀
x
)
= 0.0488x9x1.893

7 x0.316
11 − 1 ≤ 0

g9

(
⇀
x
)
= 0.099x1x−1

3 − 1 ≤ 0

g10

(
⇀
x
)
= 0.0193x2x−1

4 − 1 ≤ 0

g11

(
⇀
x
)
= 0.0298x1x−1

5 − 1 ≤ 0

g12

(
⇀
x
)
= 0.056x2x−1

6 − 1 ≤ 0

g13

(
⇀
x
)
= 2x−1

9 − 1 ≤ 0

g14

(
⇀
x
)
= 2x−1

10 − 1 ≤ 0

g15

(
⇀
x
)
= x12x−1

11 − 1 ≤ 0

(35)

Variable range:
0.001 ≤ xi ≤ 5, i = 1, . . . , 14



Mathematics 2022, 10, 3405 34 of 39

Six well-known meta-heuristic optimization algorithms—-GWO, SSA, WCA, WOA,
and HGSO, and the original TSA—-were selected for comparison with TLTSA. The experi-
mental results of optimal costs and variables are given in Table 15. The TLTSA obtained
optimal costs f (x1−14) = 0.19637, which were significantly lower. In addition, the conver-
gence curves in Figure 9 also indicate the proposed TLTSA is superior.

Table 15. Comparison of TLTSA with other algorithms for optimal design problem of industrial
refrigeration system.

Optimal Value GWO SSA WCA WOA HGSO TSA TLTSA

Optimal variable x1 0.001 0.001 0.001 0.001 0.0010561 0.001 0.001
Optimal variable x2 0.0010912 0.001 0.001 0.001 0.0029744 0.0010534 0.0010461
Optimal variable x3 0.0010052 0.0010118 0.001 0.015982 0.0028955 0.0010950 0.0010241
Optimal variable x4 0.0013333 4.8584 0.001 0.001 0.0032518 0.0076186 0.10488
Optimal variable x5 0.0010012 2.7978 0.001 0.001 0.1921 0.0048673 0.074202
Optimal variable x6 0.0011156 1.2464 0.001 0.011293 0.0045721 0.0040403 0.01525
Optimal variable x7 1.5252 3.5466 1.5240 1.5787 2.1326 1.5383 1.7251
Optimal variable x8 1.5249 3.9266 1.5240 1.5235 4.4739 1.5280 1.5473
Optimal variable x9 5 3.7794 5 2.8120 2.1012 4.8173 4.5901
Optimal variable x10 2.5139 2.0191 2 3.7725 2.0096 2.1429 2.3255
Optimal variable x11 0.019292 0.001 0.001 0.023963 0.0016401 0.0089912 0.001
Optimal variable x12 0.019167 0.001 0.001 0.001 0.0015673 0.0083106 0.001
Optimal variable x13 0.032051 0.0057349 0.0072934 0.0074685 0.0020327 0.020283 0.0057234
Optimal variable x14 0.38109 0.065408 0.087557 0.061517 0.001172 0.24036 0.049644
Optimal cost 286.4233 357.3893 93.9437 1.6727 59.7011 211.5825 0.19637

Mathematics 2022, 10, x FOR PEER REVIEW 34 of 39 
 

 

𝑔10(𝑥⃑) = 0.0193𝑥2𝑥4
−1 − 1 ≤ 0 

𝑔11(𝑥⃑) = 0.0298𝑥1𝑥5
−1 − 1 ≤ 0 

𝑔12(𝑥⃑) = 0.056𝑥2𝑥6
−1 − 1 ≤ 0 

𝑔13(𝑥⃑) = 2𝑥9
−1 − 1 ≤ 0 

𝑔14(𝑥⃑) = 2𝑥10
−1 − 1 ≤ 0 

𝑔15(𝑥⃑) = 𝑥12𝑥11
−1 − 1 ≤ 0 

Variable range: 

0.001 ≤ 𝑥𝑖 ≤ 5,   𝑖 = 1,… ,14  

Six well-known meta-heuristic optimization algorithms––GWO, SSA, WCA, WOA, 

and HGSO, and the original TSA––were selected for comparison with TLTSA. The exper-

imental results of optimal costs and variables are given in Table 15. The TLTSA obtained 

optimal costs 𝑓(𝑥1−14) = 0.19637, which were significantly lower. In addition, the conver-

gence curves in Figure 9 also indicate the proposed TLTSA is superior. 

 

Figure 9. Convergence curve for optimal design problem of industrial refrigeration system. 

Table 15. Comparison of TLTSA with other algorithms for optimal design problem of industrial 

refrigeration system. 

Optimal Value GWO SSA WCA WOA HGSO TSA TLTSA 

Optimal variable 𝑥1 0.001 0.001 0.001 0.001 0.0010561 0.001 0.001 

Optimal variable 𝑥2 0.0010912 0.001 0.001 0.001 0.0029744 0.0010534 0.0010461 

Optimal variable 𝑥3 0.0010052 0.0010118 0.001 0.015982 0.0028955 0.0010950 0.0010241 

Optimal variable 𝑥4 0.0013333 4.8584 0.001 0.001 0.0032518 0.0076186 0.10488 

Optimal variable 𝑥5 0.0010012 2.7978 0.001 0.001 0.1921 0.0048673 0.074202 

Optimal variable 𝑥6 0.0011156 1.2464 0.001 0.011293 0.0045721 0.0040403 0.01525 

Optimal variable 𝑥7 1.5252 3.5466 1.5240 1.5787 2.1326 1.5383 1.7251 

Optimal variable 𝑥8 1.5249 3.9266 1.5240 1.5235 4.4739 1.5280 1.5473 

Optimal variable 𝑥9 5 3.7794 5 2.8120 2.1012 4.8173 4.5901 

Optimal variable 𝑥10 2.5139 2.0191 2 3.7725 2.0096 2.1429 2.3255 

Optimal variable 𝑥11 0.019292 0.001 0.001 0.023963 0.0016401 0.0089912 0.001 

Optimal variable 𝑥12 0.019167 0.001 0.001 0.001 0.0015673 0.0083106 0.001 

Optimal variable 𝑥13 0.032051 0.0057349 0.0072934 0.0074685 0.0020327 0.020283 0.0057234 

Optimal variable 𝑥14 0.38109 0.065408 0.087557 0.061517 0.001172 0.24036 0.049644 

Optimal cost 286.4233 357.3893 93.9437 1.6727 59.7011 211.5825 0.19637 

Figure 9. Convergence curve for optimal design problem of industrial refrigeration system.

6. Conclusions and Future Work

In this paper, an improved TSA based on Chaotic-Lévy flight strategy (CLTSA) was
proposed to overcome defects of the original algorithm, such as premature convergence
and poor solution accuracy. As a random walk strategy, Chaotic-Lévy flight made the
search agents produce a mass of small step-sized moves and a small number of large ones
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when converging towards the candidate solution. The small-step random walks enabled
search agents to exploit the vicinity of the candidate solution fully, which improves its
exploitation ability. The mutability generated by the large-step random walks gave the
search agent a chance to appear at any position in the solution space, thereby boosting the
global exploration capability of the CLTSA and increasing tunicate population diversity.
However, it was crucial to combine a suitable chaotic map with Lévy flight, and from a
comparison of chaotic maps, the tent map was the most appropriate. Because the chaotic
values generated by the tent map were more evenly distributed in (0, 1), the combination
with the step sizes generated by the Lévy flight strategy had a high degree of randomness,
so it was easier for TLTSA to strengthen the richness of the population and avoid becoming
trapped in local minimization. In addition, the values in (0,1) generated by the tent map
ensured that the search agents moved within the search range as much as possible. The
Tent-Lévy flight strategy not only helped the search agents find potential areas, but also
strengthened exploration around the current solution, which made the algorithm maintain
an exploration–exploitation equilibrium that enhanced the TLTSA optimization efficiency.

To verify the feasibility of the TLTSA in finding the optimal solution and solving
the practical problem, 36 benchmark functions and 3 practical constrained engineering
problems were selected for contrast experiments. The data indicates that the proposed
TLTSA was a great improvement over the original algorithm in performing test functions.
TLTSA not only overcame the shortcomings of the original algorithm, such as search
stagnation and premature convergence, but also had greater calculation accuracy. Another
advantage was that it had a smaller standard deviation, which meant greater stability. In
addition, the convergence curves also attested to a more competitive convergence speed. In
addition, the design costs optimized by the TLTSA for three engineering design problems
were clearly lower than those of other algorithms. Therefore, TLTSA, the best algorithm
among the CLTSAs, provides new possibilities for solving real-world engineering problems.

Even though our proposed TLTSA is a great improvement over the original TSA, it
still had research value. Our research is limited to combining one-dimensional chaotic
mapping with Lévy flight. In the following research, we will consider applying two-
dimensional chaotic mapping to algorithm optimization. Furthermore, because of the
characteristic antenna design problems, the proposed TLTSA can only optimize the antenna
with continuous parameters (the antenna structure needs to be specified), and we will
propose the binary and multi-objective versions of the TSA algorithm to improve the
TLTSA’s optimization efficiency to solve complex antenna and frequency-selective surface
design problems.
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Appendix A

Table A1. Mathematical expressions of unimodal benchmark functions.

Function Expressions

F1 = ∑n
i=1 x2

i

F2 = ∑n
i=1 ix4

i + random[0, 1]

F3 = ∑D
i=1|xi|i+1

F4 = ∑n
i=1|xi|

F5 = max(|xi|, 1 ≤ i ≤ n)

F6 = ∑n
i=1

(
∑i

j=1 xj

)2

F7 = ∑n
i=1|xi|+

n
∏
i=1
|xi|

F8 = ∑n
i=1 x10

i

F9 = ∑n−1
i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

F10 = ∑n−1
i=1
(

x2
i
)(xi+1

2+1)
+
(

x2
i+1

)(x2+1)

F11 = (x1 − 1)2 + ∑D
i=2 i

(
2x2

i − xi−1
)2

F12 = ∑
D
4

i=1(x4i−3 + 10x4i−2)
2 + 5(x4i−1 − 10x4i)

2 + (x4i−2 − x4i−1)
2 + 10(x4i−3 − x4i)

2

F13 = ∑n
i=1 x2

i +

(
n
∑

i=1
0.5ixi

)2
+

(
n
∑

i=1
0.5ixi

)4

F14 = 2x2
1 − 1.05x4

1 +
x6

1
6 + x1x2 + x2

2

F15 = 0.26
(

x2
1 + x2

2
)
− 0.48x1x2

F16 = 100
(

x2 − x2
1
)2

+ (1− x1)
2f

Table A2. Mathematical expressions of multimodal benchmark functions.

Function Expressions

F17 = ∑n
i=1
[
x2

i − 10 cos(2πxi) + 10
]

F18 = 1 + ∑n
i=1 sin2(xi)− 0.1e(∑

n
i=1 x2

i )

F19 = ∑n
i=1|xi sin(xi) + 0.1xi|

F20 = ∑n
i=1 εi|xi|i

F21 = −20 exp
(
−0.2

√
1
n ×∑n

i=1 x2
i

)
− exp

(
1
n ×∑n

i=1 cos(2πxi)
)
+ 20 + e

F22 = ∑n
i=1 8 sin2

[
7(xi − 0.9)2

]
+ 6 sin2

[
14(x1 − 0.9)2

]
+ (xi − 0.9)2

F23 = 1− cos
(

2π
√

∑n
i=1 x2

i

)
+ 0.1

√
∑n

i=1 x2
i

F24 = 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 1

F25 = 0.1
{

sin2(3πx1) + ∑n
i=1(xi − 1)2[1 + sin2(3πxi + 1)

]
+ (xn − 1)2[1 + sin2(2πxn)

]}
+ ∑n

i=1 u(xi, 5, 100, 4)

F26 = π
n

{
10 sin(πyi) + ∑n−1

i=1 (yi − 1)2[1 + 10 sin2(πyi+1)
]
+ (yn − 1)2

}
+ ∑n

i=1 u(xi, 10, 100, 4)

F27 = x2 + y2 + 25
[
sin2(x) + sin2(y)

]
F28 = sin(x)e(1−cos (y))2

+ cos(y)e(1−sin (x))2
+ (x− y)2

F29 =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2
)]

×
[
30 + (2x1 − 3x2)

2(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2
)]

F30 =
∣∣x2 + y2 + xy

∣∣+ |sin(x)|+ |cos(y)|
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Table A3. Mathematical expressions of fixed-dimension functions.

Function Expressions

F31 =

(
1

500
+

25
∑

j=1

1
j+∑2

i=1(xi−aij)
6

)−1

F32 = ∑11
i=1

[
ai −

x1
(
b2

i + bix2
)

b2
i + bix3 + x4

]2

F33 = −∑4
i=1 ciexp

[
−∑4

j=1 aij

(
xj − pij

)]
F34 = −∑5

i=1

[
(x− ai)(x− ai)

T + ci

]−1

F35 = −∑7
i=1

[
(x− ai)(x− ai)

T + ci

]−1

F36 = −∑10
i=1

[
(x− ai)(x− ai)

T + ci

]−1
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