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Abstract: Single-cell RNA sequencing (scRNA-seq) technology has been a significant direction for
single-cell research due to its high accuracy and specificity, as it enables unbiased high-throughput
studies with minimal sample sizes. The continuous improvement of scRNA-seq technology has
promoted parallel research on single-cell multi-omics. Instead of sequencing bulk cells, analyzing
single cells inspires greater discovery power for detecting novel genes without prior knowledge of
sequence information and with greater sensitivity when quantifying rare variants and transcripts.
However, current analyses of scRNA-seq data are usually carried out with unsupervised methods,
which cannot take advantage of the prior distribution and structural features of the data. To solve
this problem, we propose the SCAFG (Classifying Single Cell Types Based on an Adaptive Threshold
Fusion Graph Convolution Network), a semi-supervised single-cell classification model that adap-
tively fuses cell-to-cell correlation matrices under various thresholds according to the distribution of
cells. We tested the performance of the SCAFG in identifying cell types on diverse real scRNA-seq
data; then, we compared the SCAFG with other commonly used semi-supervised algorithms, and it
was shown that the SCAFG can classify single-cell data with a higher accuracy.

Keywords: single cell; semi-supervised classification; graph convolution network

MSC: 92-08

1. Introduction

The study of gene expression matrices is a critical step in single-cell RNA sequencing
analysis [1–3]. We can further study the correlations between cells by analyzing a gene
expression matrix and creating a molecular map of a cell’s developmental lineage, thus
promoting the analysis of the genome, transcriptome, epigenome, and proteome of a single
cell. In most cases, we do not know most of the cell types, and it takes much effort to
discover them. Even if we know the cell types, it is possible for people to accidentally
mislabel the cells with multiple labels. So, we need a mechanical, automated algorithm
that recognizes cell types using only a subset of cells. Therefore, the effective application of
semi-supervised learning algorithms and obtention of satisfying classification results by
using as few single-cell types as possible are fields worth investigating [4,5].

At present, the common semi-supervised learning algorithms mainly include semi-
supervised support vector machines (S3VMs) [6], generative semi-supervised models [7],
self-training [8], collaborative training (co-training) [9], and graph-theory-based meth-
ods [10,11]. The core of supervised support vector machine classification is the use of
structural risk minimization [12], while the semi-supervised form of an SVM, S3VM, aims
to find a decision boundary in the low-density interval of unlabeled data [13]. Similarly to
the principle of entropy regularization, S3VMs make full use of the distribution of unla-
beled data and keep unlabeled data as far as possible from the decision boundary; S3VMs
indicate that the decision boundary goes as far as possible through low-density regions of
unlabeled data, but not through dense unlabeled data. If this assumption is not satisfied,
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S3VMs may lead to poor performance. Supervised support vector machines use structural
risk minimization for classification [12], while semi-supervised support vector machines
also use the spatial distribution information of unlabeled data [14]. The choice of a decision
hyperplane should concentrate on the consistent distribution of low-density unlabeled and
labeled data [13]. However, if this assumption is not true, information about the spatial
distribution of unlabeled data can mislead the decision hyperplane and lead to worse
performance than that obtained when using only labeled data. Generative semi-supervised
learning is a method based on a generative model. Generative semi-supervised learning
methods assume that all data are generated by the same underlying model, whether they
are labeled or not. This assumption makes it possible to link unlabeled samples to learning
objectives through the parameters of the latent model [15]. The labels of unlabeled samples
can be regarded as the missing parameters of the model, which can usually be solved by a
maximum likelihood estimation based on the expectation maximization (EM) algorithm.
However, the model assumption must be accurate, that is, the assumed generative model
must be consistent with the real data distribution; otherwise, using unlabeled data will
reduce the generalization performance. Self-training splits the labeled data into a training
set and a test set. Firstly, a classification algorithm is trained on the labeled training data.
A trained classifier is used to predict the class labels of all unlabeled data, and among
these predicted class labels, the one with the highest accuracy is considered to be a pseudo-
label [16]. The pseudo-labeled data are concatenated with the correctly labeled training
data. Secondly, the classifier is retrained on the combined pseudo-labeled and correctly
labeled training data. A trained classifier is used to predict the class label of the labeled test
data. Finally, the above steps are repeated until either the predicted class label no longer
satisfies a specific probability threshold or no more unlabeled data remain. Co-training is a
divergence-based method that assumes that each datum can be classified from different
angles and that different classifiers can be trained from different angles; then, these classi-
fiers that are trained from different angles are used to classify unlabeled samples, and the
unlabeled samples that are believed to be credible are selected and added to the training set.
Since these classifiers are trained from different angles, they can form a complementarity
and improve the classification accuracy.

Semi-supervised algorithms have made great progress in the last twenty years be-
cause of the rise of artificial neural networks [17–19]. The label propagation algorithm is a
graph-based semi-supervised learning method [20]. The basic idea is to predict the label
information of unlabeled nodes from the label information of the labeled nodes and use the
relationships between samples to build a complete graph model. The label of each node is
propagated to adjacent nodes according to the similarity. At each step of the node propaga-
tion, each node updates its label according to the label of the adjacent node. The greater
the similarity with the node is, the greater the influence weight of the neighboring nodes
on its labeling will be. The more consistent the labels of similar nodes are, the easier it
is for the labels to be propagated. In the process of propagation, the label of the labeled
data is kept unchanged so that it passes the label to the unlabeled data. Finally, when the
iteration ends, the probability distributions of similar nodes tend to be similar and can be
classified into one class [21]. In fact, there are many genes in each cell. This means that
every single cell has a high dimension of features, which cannot be learned by using a
single classical classifier. Therefore, we consider using a GCN (graph convolutional neural
network) to process high-dimensional complicated connections [22–24]. A GCN transforms
the similarities between cells into the connections between graph edges and further extracts
the classification features of edges through a convolution operation. On account of its
powerful feature extraction capabilities, it has shown good capabilities in semi-supervised
scRNA-seq. However, many parameters need to be adjusted in the practical application of
this algorithm; the key to solving the problem is the conversion of the gene expression ma-
trix in the cell into a graph that effectively reflects the similarity relationships between cells.
In previous work, Peng proposed the SCMAG [25], which divides the similarity matrices
of cells through four different thresholds and then aggregates the obtained matrices for
semi-supervised classification with a GCN. However, there is a problem: It cannot select
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the optimal number of aggregations or the optimal threshold for aggregation according to
the data distribution in different single-cell datasets.

To address this problem, we propose the SCAFG, which adaptively fuses cell associa-
tion matrices under different thresholds according to the cell data distribution, allowing
the GCN to fully exploit its performance. Figure 1 depicts the workflow of the SCAFG.
Then, we tested the algorithm on different datasets, proving that the SCAFG has the best
classification capability among the semi-supervised algorithms.

Figure 1. Overview of the SCAFG. (a) Data preprocessing, including normalization and similarity
transformation of the gene expression matrix. (b) Dividing the similarity matrix into nine incidence
matrices through threshold segmentation, then converting the similarities between the incidence
matrices into a similarity distance matrix. (c) Finding the row and column index of the largest element
value in the similarity distance matrix. (d) Fusing the incidence matrix and saving the consensus
matrix as a graph. (e) The graph is the input of the GCN, and the output is a probability matrix.
The column index corresponding to the maximum probability value of each row in the probability
matrix is the category to which the cell belongs.

2. Materials and Methods
2.1. Real Datasets

In this paper, we collected five public single-cell datasets to test the performance of the
SCAFG. Each column in the dataset denotes an observation or cell, while each row denotes
a feature or gene. These datasets’ raw files are listed in Table 1, and all were downloaded
from the Gene Expression Omnibus (GEO) with the GEO accession number.

Table 1. Key information of the five datasets.

Datasets Number of Cells Class Number of
Genes Data Sources References

Chung 563 13 57915 GSE75688 Chung et al. [26].
Chu 1018 7 19097 GSE75748 Chu et al. [27]
Patel 430 6 5948 GSE57872 Patel et al. [28].
Xin 1600 8 39851 GSE81608 Xin et al. [29].

Ning 460 4 19084 GSE64016 Ning et al. [30].
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2.2. Data Normalization

The dimension of the gene expression matrix X is O(N × G), which means that
each column has N cells and each row has G genes. Because the count starts from zero,
in reality, X(i, j) represents the expression level of the (j + 1)th gene in the (i + 1)th cell.
The expression levels in the gene expression matrix vary widely and have numerous zero
values, so we employed PsiNorm to normalize the single-cell data [31]:

X̃(i, :) = X(i, :)× α̂i =
X(i, :)× G

∑G
j=1 log

(
xij + 1

) (1)

Here, α̂i is used as a multiplicative normalization factor, X(i, :) is equal to the vector of
counts of cell i, and X̃(i, :) is the normalized vector of X(i, :).

2.3. Cosine Similarity

After data normalization, we obtained the normalized matrix X̃(N, G); next, we
transformed the cell-to-gene relationships into cell-to-cell relationships, so we adopted
cosine similarity to measure the similarity between cells and map the element values to
(0, 1) [32]:

M(i, j) =
X̃(i, :) · X̃(j, :)

‖X̃(i, :)‖ × ‖X̃(j, :)‖
(2)

where X̃(i, :) denotes the ith row of X̃(N, G), and “·” denotes the inner product. ‖X̃(i, :)‖
denotes the L2-norm of X̃(i, :), and M(i, j) is the similar value in the ith row and jth column.

2.4. Threshold Segmentation

We used different thresholds to divide the similarity matrix M into different incidence matrices:

T = {Tk = 0.1× k : k = 1, 2, 3, · · ·, 9} (3)

S = {Sn : n = 1, 2, 3, · · ·, 9} (4)

Sij
k =

{
1, M(i, j) ≥ Tk

0, M(i, j) < Tk
(5)

where Tk are thresholds, Sk denotes the incidence matrix after the segmentation of threshold
Tk, the dimension of Sk is N × N, and N is the number of cells. Sij

k denotes the value in the
ith row and jth column, where 1 indicates two cells are relevant and 0 indicates that two
cells are irrelevant.

2.5. Similarity Distance Between Matrices

From Equation (5), we obtained 9 individual incidence matrices; each incidence matrix
represented the relationships of the connections between cells under the threshold. We
considered that the similarity between different incidence matrices could be measured by
a value, so we decided to construct a matrix H to depict the similarity distance between
incidence matrices. The dimension of H was 9× 9, and these values were stored in H.
For instance, for the incidence matrix Si and incidence matrix Sj, their similarity can
be defined as the same number of all corresponding elements in the incidence matrix.
Therefore, H(i, j) indicates the similarity distance between incidence matrices Si and Sj;
a greater value of H(i, j) denotes that Si and Sj are more similar. The structure is shown in
Algorithm 1.
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Algorithm 1 Construction of the Similarity Distance Matrix H

Require: Incidence matrix: S = {Sn, n = 1, 2, 3, ..., 9};
For each Sn in S, they have the same dimension O(S0

n, S1
n), S0

n = S1
n;

Ensure:
1: for x = 0; x < 8; x ++ do
2: for y = x + 1; y < 9; y ++ do
3: N = 0;
4: Calculate H(x, y):
5: for i = 0; i < S0

x − 1; i ++ do
6: for j = i + 1; j < S1

x; j ++ do
7: if Sij

x == Sij
y then

8: N ⇐ N + 1
9: end if

10: end for
11: end for
12: return H(x, y) = H(y, x)⇐ N;
13: end for
14: end for
15: return H

2.6. Fusion

According to Algorithm 1, we constructed the similarity distance matrix H and found
the largest element from H and its corresponding position (r + 1, c + 1). Based on the
position, we then fused the two incidence matrices Sr+1 and Sc+1 to form a new consensus
matrix Q according to Equation (6). The concrete process of matrix fusion is shown in
Algorithm 2.

Algorithm 2 Incidence Matrix Fusion to Form the Consensus Matrix Q

Require: Similarity Distance Matrix H, t, r, c, Max = 0;
Ensure:

1: for x = 0; x < 8; x ++ do
2: for y = x + 1; y < 9; y ++ do
3: if H(x, y) >= Max then
4: Max = H(x, y)
5: r = x
6: c = y
7: end if
8: end for
9: end for

10: return r, c
11: Select the incidence matrix Sr+1, Sc+1
12: for i = 0; i < S0

r+1 − 1; i ++ do
13: for j = i + 1; j < S1

r+1; j ++ do

14: if Sij
r+1 == Sij

c+1 then

15: Q(x, y) = Sij
r+1

16: else
17: t = MAX(c + 1, r + 1)
18: Q(x, y) = Sij

t
19: end if
20: Q(y, x) = Q(x, y)
21: end for
22: end for
23: return Q
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Qij =

{
Sij

r+1, Sij
r+1 = Sij

c+1

Sij
max(r+1,c+1) Sij

r+1 6= Sij
c+1

(6)

From Equation (6), Sij
r+1 is the value of the elements in row i and column j of the

(r + 1)th incidence matrix. The dimension of the consensus matrix Q is the same as that of
the incidence matrix; they are both N × N, where N is the number of cells. According to
Algorithm 2, the value of Qij depends on whether the values of Sij

r+1 and Sij
c+1 are the same.

If they are the same, the same value is taken. If they are not the same, the element value
corresponding to the matrix with the larger matrix number is taken. Simultaneously, it is
not difficult to find that after the threshold segmentation, the element value of the incidence
matrix can only change from 1 to 0 as the threshold increases. Indeed, the matrix after the
fusion of the two incidence matrices is the same as the matrix after the segmentation with a
larger threshold value. Meanwhile, in the consensus matrix Q, the largest element value
indicates that the two consistent matrices have the highest similarity, which can better
reflect the characteristic relationships of cells after fusion. So, the fusion of the two matrices
not only better reflects the characteristic connections of the cells, but also helps us discover
the best threshold.

Certainly, more matrix fusions are available. Based on the use of two matrix fusions,
using three matrix fusions involves the selection of the second largest value of the column
corresponding to the maximum value in the similarity distance matrix H. If we continue
to fuse the matrices, we pick the second largest value of the row corresponding to the
maximum value. Its coordinates are the labels of the incidence matrix to be fused.

2.7. Construction of the GCN

Transferring the obtained consensus matrix Q to a graph Gn(V, E) was the first step in
building the GCN. Here, we used the DGL package from the public Python Deep Learning
Frameworks to set up. The vertices Vn(G) in the graph represent the number of cells,
and the edges En(G) represent the elements with a value of 1 in the consensus matrix
Q. The value in the incidence matrix determines whether two vertices in the graph are
connected; specifically, 1 means that two edges are connected, and 0 means that they are
disconnected. The structure of the GCN can be seen in Figure 2.

Figure 2. Structure of the graph convolutional neural network structure.

For the selection of the label proportions, we referred to the study by Kipf [22]; we
used random numbers to select 5%, 10%, and 20% of the cells of known classes to predict
the remaining cells of unknown classes for the experiments. For the five single-cell datasets
of different scales mentioned above, the experimental results showed that the accuracy of
10% and 20% of the labels was close, while the experimental results for 5% of the labels were
unsatisfactory. So, we chose 10% of the cells to have known labels in order to predict the
labels of the remaining 90% of cells. For example, in Figure 2, the dimension of the Chung
dataset was 563× 563, the dimension of the hidden layer that we set was 256, the activation
function was ReLU, and the output layer was 13. These were the same as the categories
in the Chung dataset, so the dimension of the output layer was 563 × 13. We named
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the output of the GCN the probability matrix I. The dimension of I was N × K, where
N represents the number of cells and K represents the class of cells. I(i, j) indicates the
probability of the (i + 1)th cell belonging to the (j + 1)th class. A higher probability value
means a higher probability that the cell belongs to this class. For each row, we chose the
element with the largest probability value Imax(i, j0) = max{I(I, 0), I(I, 1), ..., I(I, K− 1)};
finally, we concluded that the class of the cell i + 1 was j0 + 1.

3. Results and Discussion
3.1. Results

We used the Chung dataset to go through the algorithm and repeat the whole process
ten times, and we took the average of ten different output results as the final accuracy
of the model. To testify that the fusion effect when using two matrices was the best, we
used three matrices, four matrices, and the average accuracy of fusing one matrix to nine
matrices. Then, we recorded the classification accuracy of training for 25, 50, and 75 rounds,
as shown in Figure 3. The experimental environment in this article was Win10 Python3.8
(Anaconda3), the CPU was an AMD R5 3600, the memory size was 32 GB, and the GPU
was an NVIDIA GTX2070s (8G).

Figure 3. The classification accuracy of the Chung dataset with different numbers of matrices being
fused.

In Figure 3, the horizontal axis represents the training rounds, and the vertical axis
represents the classification accuracy. k represents the number of fused matrices. It can be
explicitly seen in Figure 3 that when the training reached 25 rounds, the accuracy of using
two fused matrices was slightly higher than that of using three or four fusions matrices,
and the average accuracy was the lowest. When training for 75 rounds, the classification
accuracy obtained when using two fusion matrices was 82.2%, which was more than 5%
higher than that when using three and four fusion matrices, and this was much higher than
the average level of matrix fusions. We found that excessive matrix fusion could not reflect
the features of the matrix well. On the contrary, the features when fusing many matrices
became disordered and the efficiency became worse. From Section 2.6, we know that
the two matrices to be fused have the highest similarity, indicating that the two matrices
have the most common characteristics.

To verify the reliability of the experimental results, we repeated the above experiments
10 times and obtained a box plot of the experimental accuracy with the running rounds,
as shown in Figure 4, where the horizontal axis represents the number of matrix fusions
and the vertical axis represents the classification accuracy. From Figure 4, we can conclude
that the cell classification accuracy obtained by using the fusion of the two matrices was
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the highest, and mean and quantile were also much higher than those obtained with other
methods. The mean, maximum, and minimum values of the box plots obtained when
using the three fusion matrices were slightly higher than the results obtained using the four
fusion matrices.

Figure 4. The box plot of the Chung dataset, recording the highest accuracy for each of the 10 experi-
ments.

3.2. Discussion

We tested the classification accuracy when fusing different matrices from four other
datasets. In the Chu dataset, which is shown in Figure 5, the highest accuracy was nearly
97% when using the fusion of two matrices; this was 1–2% higher than that obtained when
using three-matrix fusion and much higher than those of the four-matrix fusion and average
fusion. In the Patel, Xin, and Ning datasets, the classification accuracy of the fusion of two
matrices was also significantly higher than those of the other numbers of matrices.

Figure 5. Box plots for four datasets—comparison of the classification accuracies with fusion of
different matrices: (a) Chu, (b) Patel, (c) Xin, and (d) Ning.
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We also compared the SCAFG with four common semi-supervised learning algorithms,
namely, label propagation, label spreading, self-training, and a GCN. Their classification
accuracies on the five different datasets (see Table 1) with 25, 50, and 75 rounds are shown
in Table 2.

Table 2. The performance of different semi-supervised methods.

Dataset Iteration Label
Propagation

Label
Spreading Self-Training GCN SCAFG

25 36.6 47.5 36.6 32.3 46.4
Chung 50 44.6 56.1 49.8 44.6 64.2

75 47.7 59.2 54.2 58.8 82.2
25 44.1 53.2 58.8 64.2 70.1

Chu 50 58.3 55.6 69.5 86.7 92.3
75 61.5 56.9 73.2 89.2 96.4
25 50.6 46.2 49.7 65.1 76.7

Patel 50 67.1 58.3 59.4 73.8 89.9
75 70.6 64.8 65.2 77.6 96.3
25 70.2 64.6 60.1 80.9 87.4

Xin 50 76.2 74.5 68.5 82.2 88.1
75 80.1 74.8 74.2 83.6 91.2
25 51.2 56.7 46.8 82.6 91.1

Ning 50 58.4 69.2 63.1 85.4 93.3
75 62.4 74.6 69.2 89.8 97.6

From Table 2, we can see that for the Chung dataset, the label spreading was more
accurate than label propagation and self-training before 50 rounds. Even though label
spreading is similar to the basic label propagation algorithm, label spreading uses an affinity
matrix based on the normalized graph Laplacian and soft clamping across the labels. When
it ran for 75 rounds, the GCN surpassed all three methods and was second only to the
SCAFG in accuracy. This may have been due to the fact that graph convolutional neural
networks exploit deeper features between cells through convolution. For the other four
datasets (Chu, Patel, Xin, and Ning), the accuracy of the GCN was higher than those of
label spreading, label propagation, and self-training with 25, 50, and 75 rounds. For the
Chu dataset, the accuracy of the GCN was 64.2% when running for 25 rounds, and the
accuracy of the SCAFG was 70.1%, which was 5.9% higher than that of the GCN. When
run for 75 rounds, the accuracy of the SCAFG was 96.4%, which was higher than that of
the GCN by 7.2%. This is because the SCAFG fused two cell matrices, which could better
represent the features between cells than using a single cell matrix. Overall, the average
accuracy of the SCAFG was 5–10% higher than that of the GCN, and it was better than
those of the other semi-supervised methods. For the Ning dataset, the SCAFG achieved a
97.6% classification accuracy after 75 rounds of training. Notably, the SCAFG was the most
accurate method in semi-supervised cell recognition.

4. Conclusions

With the rapid development of single-cell sequencing technology, the scale of cells is
also increasing. We are faced with the challenge of a large number of cells and a high feature
dimension, so it is a time-consuming task to gradually identify their categories. Therefore,
some semi-supervised learning algorithms were developed to solve this problem.

In this study, we proposed a semi-supervised classification algorithm, the SCAFG.
We used PsiNorm to normalize the single-cell data, which made the distribution of cells
more uniform; then, we used threshold segmentation to divide the cell connection features
under different distributions, used the similarity distance to measure the similarity between
matrices, and used matrix fusion to take full advantage of the information between matrices
to reduce data redundancy. Finally, the experimental results on different sizes of single-
cell datasets showed that the SCAFG had better performance than that of other methods,
and that it is a robust single-cell semi-supervised classification algorithm that can be
widely used.

At the same time, we think that the SCAFG can be improved in some areas. Firstly,
under the existing experimental conditions, saving graphs will take some time and memory,
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which will affect the efficiency of the algorithm. Perhaps, we can consider using distributed
technology to store graphs. Secondly, the fusion of two matrices does not necessarily have
the highest accuracy, but only the highest similarity. We will continue to pay attention to
these issues in the future and look forward to achieving some breakthrough solutions and
promising results.
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