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Abstract: The family of the generalized Schrödinger equations with Kerr nonlinearity of unrestricted
order is considered. The solutions of equations are looked for using traveling wave reductions. The
Painlevé test is applied for finding arbitrary constants in the expansion of the general solution into
the Laurent series. It is shown that the equation does not pass the Painlevé test but has two arbitrary
constants in local expansion. This fact allows us to look for solitary wave solutions for equations of
unrestricted order. The main result of this paper is the theorem of existence of optical solitons for
equations of unrestricted order that is proved by direct calculation. The optical solitons for partial
differential equations of the twelfth order are given in detail.
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1. Introduction

The investigation of the effect of high-order dispersion on the propagation of pulses
in a nonlinear optical medium has been presented in several papers (see, for example,
papers [1–17]). Usually, these studies were aimed at constructing optical solitons for
specific high-order equations. The appearance of terms with a high order of dispersion
in the generalized nonlinear Schrödinger equation is explained by taking into account
the expansion of the mode propagation constant in a Taylor series around the carrier
frequency [18–20]. The influence of terms with high-order derivatives is usually neglected,
since the coefficients of these derivatives have smaller values compared to the coefficients
for low-order derivatives. However, it is known that neglecting the influence of high-
order derivatives in nonlinear mathematical models is often incorrect, since their influence
appears at late times and long distances of wave propagation. In this connection, in the
paper [12], a hypothesis about the form of an optical soliton for the generalized nonlinear
Schrödinger equations with Kerr nonlinearity and an unrestricted order of dispersion was
formulated.

In this paper, we consider the family of the generalized nonlinear Schrödinger equa-
tions in the form

i qt +
n

∑
j=1

α2j q2j,x + i
n

∑
j=2

α2j−1 q2 j−1,x = β |q|2 q,

n ∈ N, qm,x =
∂mq
∂xm , m ∈ N,

(1)

where i2 = −1, q(x, t) is a complex function, and t and x are independent variables.
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The following equations belong to the equations of family (1). We have the famous
nonlinear Schrödinger equation at n = 1 [19]:

i qt + α2 qxx = β |q|2 q. (2)

Substituting n = 2 into (1) yields the partial differential equation of the fourth or-
der [11]:

i qt + α2 qxx + i α3 qxxx + α4 qxxxx = β |q|2 q. (3)

The differential equation of the sixth order in the form [12]

i qt + α2 qxx + i α3 qxxx + α4 qxxxx + i α5 qxxxxx + α6 qxxxxxx = β |q|2 q (4)

is obtained by substituting n = 3 into (1), and so on.
At first glance, it seems that Equation (1) does not have any physical meaning and

cannot have any physical applications. However, it should be kept in mind that the second
term of the Taylor series expansion of the function q(x, t) is used to take into account the
effect of dispersion in the nonlinear Schrödinger equation [19]. Equation (1) is interesting
in that it takes into account higher orders of dispersion when describing the propagation of
a pulse in an optical medium.

The objective of this paper is to find the optical solitons of Equation (1) at all integer
n ∈ N in analytical form.

The paper is organized as follows. In Section 2, we use the Painlevé test to investigate
the integrability of Equation (1). Using traveling wave reduction, we obtain two arbitrary
constants in the expansion of the general solution in the Laurent series. In Section 3, we
prove the theorem of existence of optical solutions for the generalized nonlinear Schrödinger
equation with the Kerr nonlinearity and dispersion of unrestricted order. We present the
form of optical soliton for the equation with the unrestricted order of dispersion. In
Section 4, we present the calculations of parameters of the equation and optical soliton of
the generalized nonlinear Schrödinger equation of the twelfth order.

2. Application of the Painlev é Test to Equation (1)

We look for the optical solitons of Equation (1) in the form

q(x, t) = y(z) ei(kx+ω t+θ0). (5)

Substituting (5) into Equation (1), we obtain the imaginary part of Equation (1) in the
linear form

n

∑
j=1

P2j−1 y2 j−1,z = 0 (6)

and the real part of the nonlinear equation in the form

n

∑
j=1

P2j y2 j,z − β y(z)3 = 0, (7)

where P2 j and P2j+1 are expressions depending on the coefficients α2 j, (j = 1, . . . , n) and
α2 j+1, (j = 0, . . . , n− 1).

In the next section, we demonstrate that the problem of finding optical solitons of
Equation (1) is reduced to the solution of Equation (7). In this section, we apply the Painlevé
test to understand the integrability of Equation (7).

It is well known that the Painlevé analysis is one of the powerful approaches for
determining the integrability of nonlinear differential equations. It allows us to find the
necessary conditions for the existence of a general solution of a differential equation. The
application of the Painlevé test to the analysis of nonlinear differential equations consists,
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as a rule, of three consecutive steps. In the first step, an equation with leading terms
corresponding to Equation (7) and the number of branches of the expansion in the Laurent
series are found.

Taking into account Equation (7), we obtain the equation with the leading members in
the form

α2n y2n,z − β y3 = 0. (8)

Equation (8) is autonomous, and the first term in the expansion of the general solution
of Equation (7) in the Laurent series is determined by substituting the expression

y(z) = d0 zp (9)

into (8).
We obtain two branches of the expansion of the general solution of Equation (7):

p = −n, d0 = ±

√
α2n (3n− 1)!

β (n− 1)!
. (10)

In the second step, we define the Fuchs indices that can determine the arbitrary
coefficients of the expansion of the general solution into a Laurent series. With this aim, we
substitute the solution in the form

y(z) = ±

√
α2n (3n− 1)!

β (n− 1)!
z−n + dj zj−n (11)

into Equation (8) and equate the coefficients of dj to zero. As a result, we obtain the algebraic
equation for the index j in the form

E = (n− j)(n− j + 1)(n− j + 2) . . . (3n− 2− j) (3n− j− 1)−

3 n (n + 1)(n + 2) . . . (3n− 2) (3n− 1) = 0.

(12)

From Equation (12), the two following integer Fuchs indices follow in the form

j1 = −1. j2 = 4 n. (13)

We cannot find the other Fuchs indices in the general case. We performed calculations
for n = 2, 3, 4, 5, and n = 6 and found that remaining Fuchs indices are complex numbers.
As a result, we obtain that Equation (7) does not pass the Painlevé test.

We see that there is always one arbitrary constant z0 in the expansion of the solution
into the Laurent series because we can shift z → z− z0. However, in the third step, we
have to check the coefficient at j = 4 n in the Laurent series expansion. Unfortunately, for
this step of the Painlevé test, one can only check easily for the first several values of n.

For example, let us consider Equation (7) at n = 3. It takes the form

a6 yzzzzzz + a4 yzzzz + a2 yzz − a0 y− β y3 = 0, (14)

where the coefficients a6, a4, a2, and a0 depend on coefficients α6, α4, α2, k, and ω by
formulas

a6 = α6, a4 = α4 + 15 k2 α6, a2 = α2 + 6 k2α4 + 75 k4 α6,

a0 = ω + k2α2 + 3 k4 α4 + 35 k6 α6.

(15)

The equation with leading members corresponding to Equation (14) can be written as
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a6 yzzzzzz − β y3 = 0. (16)

Substituting

y =
b0

zp (17)

into Equation (14), we obtain two branches of the expansion of the general solution of
Equation (14):

p = 3, b0 = ±24

√
35 a6

β
. (18)

Substituting the solution y(z) in the form

y = ±24

√
35 a6

β
z−3 + bj zj−3 (19)

again into Equation (16) and equating coefficients of aj to zero, we find the following Fuchs
indices

j1 = −1, j2 = 12, j3,4,5,6 =
11
2
±
√
−67± 4 i

√
1151

2
. (20)

We obtain that Equation (14) does not pass the Painlevé test and therefore is not
integrable.

However, we need to check the arbitrary coefficient corresponding to the Fuchs index
j2 = 12. With this aim we use the Laurent series for the solution of Equation (14) with
undetermined coefficients in the form

y(z) =
b0

z3 +
b1

z2 +
b2

z
+ b3 + b4 z + b5 z2 + b6 z3 + b7 z4 + b8 z5+

b9 z6 + b10 z7 + b11 z8 + b12 z9 + . . . .

(21)

Substituting series (21) into Equation (14), we obtain the following values of coeffi-
cients for the expansion of the solution in the Laurent series

b0 = ±24

√
35 a6

β
, b1 = 0, b2 =

12 a4
√

35 βa6

83 βa6
, b3 = 0, (22)

b4 =
a2
√

35 β a6

210 β a6
−

1177 a4
2√35 β a6

1446690 β a62 , b5 = 0, (23)

b6 = −
a0
√

35 β a6

2520 β a6
−

11 a2 a4
√

35 β a6

209160 β a62 +
967 a4

3√35 β a6

120075270 βa63 , b7 = 0, (24)

b8 =

√
35 β a6 a0 a4

418320 β a62 −
√

35 β a6 a2
2

1058400 β a62 +
2857

√
35 β a6 a2 a4

2

3645658800 βa63 −

4775989
√

35 β a6 a4
4

50229886946400 β a64 , b9 = 0,

(25)

b10 =

√
35 β a6 a0 a2

23284800 β a62 −
337

√
35 β a6 a0 a4

2

13367415600 β a63 +
431

√
35 β a6a2

2a4

20292703200 β a63−

1524433
√

35 βa6 a2 a4
3

139796432344800 β a64 +
2194769053

√
35 β a6 a4

5

1926115244846654400 β a65 , b11 = 0.

(26)
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We also obtain that b12 is an arbitrary constant. As a result, we obtain the expansion
in the Laurent series with two arbitrary constants, taking into account the arbitrariness of
b12 and z0 because we can change the variable z → z− z0. Therefore, Equation (7) is not
integrable but this equation can have the special solution with two arbitrary constants. This
fact tells us that the solution of Equation (7) can be found using the method of simplest
equations [21].

3. Theorem of Existence for the Optical Soliton of Equation (1) with
Unrestricted Dispersion

In this section, we prove that Equation (1) at any integer n has the solution in the form
of bright optical soliton. We formulate this fact in the form of the following theorem.

Theorem 1. The function of x and t in the form

q(x, t) =
22n An µn ei (k x+ω t−θ0)(

4 µ ν e−
√

µ(x−C0t−x0) + e
√

µ(x−C0t−x0)
)n , (27)

where An, µ, ν, k, x0, and θ0 are arbitrary constants and value 2 n gives the order of equation, is a
bright soliton of Equation (1) at any integer n ∈ N and certain constraints on αj (j = 1, 2, . . . n),
C0, and ω.

Proof. The proof of this theorem is obtained using direct calculations.
For compatibility of the system of Equations (6) and (7) we first find the constraints on

the coefficients α2j−1 (j = n, n− 1, . . . , 2) and C0 from the linear Equation (6). In this case,
any smooth function y(z) is a solution of Equation (6). Therefore, the problem of finding
the solution of Equation (1) is reduced to the solution of Equation (7).

We look for the solution of Equation (7) as follows [21–25]:

y(z) = An R(z)n, (28)

where R(z) is a solution of Equation [21]:

R2
z = µ R2 − ν R4. (29)

Differentiating (29) with respect to z, we obtain

Rzz = µ R− 2 ν R3. (30)

It is easy to see that all solutions of Equation (29) are also solutions of Equation (30).
Taking into account the solution (28) and Equations (29) and (30), we obtain

yzz = An n2 µ Rn − An ν n(n + 1) Rn+2, (31)

yzzzz = An µ2 n4 Rn − 2 An µ ν
(

n4 + 3 n2 + 4 n2 + 2n
)

Rn+2+

An ν2
(

n4 + 6 n3 + 11 n2 + 6n
)

Rn+4.

(32)

By induction we obtain the equality

y2n,z = An Fn µn Rn + ... + An νn Gn R3n, y2n,z =
d2ny
dz2n , (33)

where Fn and Gn are polynomials in n.
One can also note that

y3 = A3
n R(z)3n. (34)
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Taking into account (33) and (34), we can find the coefficient from Equation (7) in
the form

a2n = (−1)n A2
n β

Gn νn . (35)

Then, using the value a2n, we can find the coefficients a2j (j = n− 1, n− 2, . . . , 1) and
ω.

The solution of Equation (29) takes the form [21–25]

R(z) = ± 4 µ

4 µ ν e−
√

µ(z−z1) + e
√

µ(z−z0)
. (36)

Substituting (36) into (28), we obtain the function (27) that is a solution of Equation (1)
with constraints on the parameters of the equation. Thus, there is always solution (27) of
Equation (1).

We have to note that solution (27) of Equation (1) in the case of an unrestricted order
is new. However, earlier, in papers [11,12,26], solutions were found at n = 1, n = 2, and
n = 3. These solutions coincide with solutions obtained by formulas (27) at n = 1, n = 2,
and n = 3. The approach of this section can also be used to study fractional differential
equations considered in papers [27–29].

4. Optical Solitons of the Twelfth-Order Equation (1)

Let us demonstrate the application of the method for construction of solution (27) of
the twelfth-order Equation (1). Assuming n = 6 in Equation (1), we obtain the equation in
the form

i qt + α2 q2,x + i α3 q3,x + α4 q4,x + i α5 q5,x + α6 q6,x + i α7 q7,x+

α8 q8,x + i α9 q9,x + α10 q10,x + i α11 q11,x + α12 q12,x = β |q|2 q.
(37)

Substituting solution (5) into Equation (37) and equating the imaginary and real parts
to zero, we obtain the system of Equations (6) and (7). The equation for the imaginary part
takes the form

(12 α12 k + α11) y11,z +
(

10 α10 k− 220 α12 k3 − 55 α11 k2 + α9

)
y9,z+(

792 α12 k5 + 330 α11 k4 − 120 α10 k3 − 36 α9 k2 + 8 α8 k + α7

)
y7,z+(

252 α10 k5 − 792 α12 k7 − 462α11k6 + 126α9 k4 − 56 α8, k3 − 21 α7 k2+

6 α6 k + α5) y5,z +
(

220 α12 k9 + 165 α11 k8 − 120 α10 k7 − 84 α9 k6+

56 α8 k5 + 35 α7 k4 − 20 α6 k3 − 10 α5 k2 + 4 α4 k + α3

)
y3,z+(

10 α10 k9 − 12 α12 k11 − 11 α11 k10 + 9 α9 k8 − 8 α8 k7 − 7 α7 k6+

6 α6 k5 + 5 α5 k4 − 4 α4 k3 − 3 α3 k2 + 2 α2 k− C0

)
yz = 0

(38)

The equation for the real part can be written as
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α12y12,z +
(

α10 − 66α12 k2 − 11α11 k
)

y10,z +
(

495α12 k4 + 165 α11 k3−

45α10 k2 − 9α9 k + α8

)
y8,z +

(
210α10 k4 − 924 α12 k6 − 462 α11 k5+

84α9 k3 − 28α8 k2 − 7 α7 k + α6

)
y6,z +

(
α4 + 495α12 k8 + 330 α11 k7−

210α10 k6 − 126α9 k5 + 70α8 k4 + 35 α7 k3 − 15α6 k2 − 5 α5 k
)

y4,z+(
45α10 k8 − 66α12 k10 − 55α11 k9 + 36α9 k7 − 28α8 k6 − 21 α7 k5+

15α6 k4 + 10 α5 k3 − 6 α4 k2 − 3 α3 k + α2

)
y2,z +

(
α12 k12 + α11 k11−

α10 k10 − α9 k9 + α8 k8 + α7 k7 − α6 k6 − α5 k5 + α4 k4 + α3 k3−

α2 k2 −ω
)

y− β y3 = 0.

(39)

From Equation (38) we obtain the constraints on the parameters of Equation (1) in the
form

α11 = −12 α12 k, (40)

α9 = −440 α12 k3 − 10 α10 k, (41)

α7 = −12672 α12 k5 − 240 α10 k3 − 8 α8 k, (42)

α5 = −215424 α12 k7 − 4032 α10 k5 − 112 α8 k3 − 6 α6 k (43)

α3 = −1745920 α12 k9 − 32640 α10 k7 − 896 α8 k5 − 40 α6 k3 − 4 α4 k (44)

C0 = 4245504 α12 k11 + 79360 α10 k9 + 2176 α8 k7+

96 α6 k5 + 8 α4 k3 + 2 α2 k.

(45)

Equation (38) is satisfied for any smooth function y(z) at conditions (40)–(45).
We look for the solution of Equation (39) in the form

y(z) = A6 R(z)6, (46)

where R(z) is the function (36). Substituting (36) into Equation (39) and taking into account
the derivatives of R(z) and conditions (40)–(45), we obtain the polynomial in R(z) which
has to be equal to zero. Equating the coefficients of this polynomial to zero, we find the
additional constraints on the parameters of Equation (1) in the form

α12 =
A6

2β

2964061900800 ν6 , (47)

α10 = −
β
(
33 k2 + 398 µ

)
A6

2

1482030950400 ν6 , (48)

α8 =
A6

2β
(
165 k4 + 11940 k2µ + 82256 µ2)

988020633600 ν6 , (49)

α6 = −
A6

2β
(
231 k6 + 41790 k4µ + 1727376 k2µ2 + 9460432 µ3)

741015475200 ν6 , (50)
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α4 =
A6

2β k8

5988003840 ν6 +
199 k6µ A6

2β

3528645120 ν6 +
5141 k4µ2 A6

2β

882161280 ν6 +

34781 k2µ3 A6
2β

181621440 ν6 +
2930269 µ4 A6

2β

2894591700 ν6 ,

(51)

α2 = − A6
2β k10

44910028800 ν6 −
199 A6

2β k8µ

16467010560 ν6 −
5141 A6

2β k6µ2

2205403200 ν6 −

34781 A6
2β k4µ3

181621440 ν6 − 2930269 A6
2β k2µ4

482431950 ν6 − 3131984 µ5 A6
2β

80405325 ν6 ,

(52)

ω =
A6

2β k12

269460172800 ν6 +
199 A6

2β k10µ

82335052800 ν6 +
5141 A6

2β k8µ2

8821612800 ν6 +

34781 A62β k6µ3

544864320 ν6 +
2930269 A6

2β k4µ4

964863900 ν6 +
3131984 A6

2β k2µ5

80405325 ν6 −

4096 A6
2β µ6

7293 ν6 .

(53)

The solution of the generalized Schrödinger Equation (37) can be written as follows:

q(x, t) =
4096 A6 µ6 ei(kx+ω t+θ0)(

4 µ ν e−
√

µ(x−C0 t−z0) + e
√

µ(x−C0 t−z0)
)6 . (54)

One can note that A6, µ, ν, k, z0, and θ0 are arbitrary constants in solution (54).
However, the parameters C0 and ω are determined by formulas (45) and (53). The other
parameters of Equation (37) are found taking into account formulas (40)–(44) and (47)–(52).

5. Conclusions

In this paper, we considered the generalized Schrödinger equation with Kerr nonlin-
earity and unrestricted order of dispersion. We applied the Painlevé test and showed that
equations of this family are not integrable in the general case, and the Cauchy problem
cannot be solved by the inverse scattering transform. However, we obtained that there
are two arbitrary constants in the expansion of the general solution into the Laurent series
and we showed there are special solutions of Equation (1). We looked for solutions of this
equation using the traveling wave reduction. We proved the theorem claiming that all
differential equations of this family have optical solitons in analytical form. We presented
the detailed calculations for the nonlinear differential equations of the twelfth order.
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