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Abstract: The measurement of the process capability is a key part of quantitative quality control, and
process capability indices are statistical measures of the process capability. Six Sigma level represents
the maximum achievable process capability, and many enterprises have implemented Six Sigma
improvement strategies. In recent years, many studies have investigated Six Sigma quality indices,
including Qpk. However, Qpk contains two unknown parameters, namely δ and γ, which are difficult
to use in process control. Therefore, whether a process quality reaches the k sigma level must be
statistically inferred. Moreover, the statistical method of sampling distribution is challenging for the
upper confidence limits of Qpk. We address these two difficulties in the present study and propose
a methodology to solve them. Boole’s inequality, Demorgan’s theorem, and linear programming
were integrated to derive the confidence intervals of Qpk, and then the upper confidence limits were
used to perform hypothesis testing. This study involved a case study of the semiconductor assembly
process in order to verify the feasibility of the proposed method.

Keywords: Six Sigma quality index; linear programming; estimations; upper confidence limit; statistic
hypothesis testing

MSC: 62C05

1. Introduction

The measurement of the process capability is crucial for quantitative quality control,
and process capability indices (PCIs) are statistical measures of the process capability [1].
Many PCIs have been proposed in recent decades, and they have been widely applied in
various industries [2–4]. For example, the Cp index, which was proposed by Juran [5], is
defined as follows:

Cp =
USL− LSL

6σ
=

d
3σ

(1)

where USL and LSL are the upper and lower specification limits, respectively, d refers to
half of the length of the specification interval, and σ denotes the process standard deviation
for an in-control process. However, because this index lacks a measure of the process
mean µ, the deviation of the process mean is not included in the value of Cp. Therefore,
for processes with equal standard deviations σ but different means µ, the values of Cp
are equal. However, a larger difference in the process means µ corresponds to a greater
probability of exceeding the process specification; this results in a loss of accuracy in the
evaluation of the process capability.
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Consequently, Kane [6], proposed another process capability index, Cpk, which is
defined as follows:

Cpk = Min
{

USL− µ

3σ
,

µ− LSL
3σ

}
=

d− |µ− T|
3σ

(2)

where T = (USL + LSL)/2 denotes target value and d = (USL− LSL)/2. Boyles [7]
described the Cpk index as a bilateral specification process capability index based on
process yield. Assuming that the quality characteristic X has a normal distribution, the
inequality Yield% ≥ 2Φ

(
3Cpk

)
− 1 holds, where Φ(·) refers to the cumulative distribution

function of N(0, 1). Because the Cpk index fully reflects the characteristics of the process
yield, it is widely used in many manufacturing industries to measure the potential process
capability in practical applications [8].

Six Sigma is a statistical tool that has been used by companies to improve process capa-
bility [9]. The main goal of Six Sigma is to improve the process capability to Six Sigma level
for all “critical to quality” characteristics. When the process capability reaches Six Sigma
level, the output of the process is only 3.4 ppm defective [10,11]. To measure the quality
level of the process capability, a corresponding process capability index must be defined.
In recent years, many studies have focused on the topic of quality indices for Six Sigma.
These studies have investigated the relationships of PCIs with Six Sigma level of process
capability, and they have utilized the multicharacteristic process quality analysis chart to
determine whether the quality of a process meets customers’ expectations [12–18].

According to Aldowaisana et al. [8], Linderman et al. [19], and Chen et al. [20], a
process capability can reach Six Sigma level if the process mean µ is no more than 1.5σ
from the target value, where the process standard deviation is defined as σ = d/6. In other
words, the process capability reaches Six Sigma level when |µ− T| ≤ 1.5σ and 6σ = d.
Chen et al. [21] defined Y = (X− T)/d, and assumed that Y has a normal distribution with
a mean δ and variance γ2 (i.e., Y ∼ N

(
δ, γ2)). The estimate of γ is also the square root of

MSE [22]. They then proposed the following quality index:

Qpk =
1− |δ|

γ
+ 1.5 (3)

where δ = (µ− T)/d and γ = σ/d. Chen et al. [21] noted that when a process reaches k
sigma level, it obeys the following conditions:

Qpk ≥ Qpk(k) =
1− |1.5/k|

1/k
+ 1.5 = k, (4)

Yield% ≥ 2Φ(Qpk − 1.5). (5)

This quality index for Six Sigma fully indicates the process quality level and process
yield. Thus, it is a convenient and effective tool for assessing whether a process capability
reaches Six Sigma level. However, the Qpk index includes the two unknown parameters
of δ and γ. Hence, to determine whether the process capability reaches the k sigma level,
these parameters must be inferred through statistical methods. Moreover, the statistical
method of sampling distribution is difficult for the upper confidence limit of Qpk. The
purpose of the present study was to address these two difficulties and develop a simple
operational procedure.

The remainder of this paper is organized as follows: Section 2 derives the expected
value, bias, and mean square error of the natural estimator for the Six Sigma quality index.
Boole’s inequality, Demorgan’s theorem, and linear programming are integrated to derive
the confidence intervals of Qpk in Section 3. Section 4 details the process of statistical
hypothesis testing for the upper confidence limits of Qpk in this study. Section 5 presents
a case study from the semiconductor assembly process for verification of the statistical
hypothesis testing results. Conclusions are presented in Section 6.
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2. Point Estimation for the Six Sigma Quality Index

Let (Y1, Y2, · · · , Yn) be a random sample from N
(
δ, γ2); the sample mean and sample

standard deviation are then defined as follows:

δ̂ =
1
n∑n

i=1 Yi, γ̂ =

√
1

n− 1∑n
i=1

(
Yi −Y

)2.

Thus, the estimator of Qpk can be written as follows:

Q̂pk =
1− |δ̂|

γ̂
+ 1.5 (6)

Under the assumption of normality, let θ =
√

nδ/γ,

Z′ =
√

nδ̂

γ
, and K =

(n− 1)γ̂2

γ2 ;

Z′ and K have distributions of N(θ, 1) and χ2
n−1, respectively. Hence,

Q̂pk =
1− |δ̂|

γ̂
+ 1.5 =

√
n

γ −
|
√

nδ̂|
γ√

n
n−1 K

+ 1.5 = K−1/2

(√
n− 1
γ

−
√

n− 1
n
|Z′|

)
+ 1.5. (7)

To obtain the expected value of Q̂pk, the following calculations are first performed:

E
[
|Z′|

]
=

√
2
π

exp
(
− θ2

2

)
+ |θ|(1− 2Φ(−|θ|)) (8)

E
[
K−1/2

]
=

Γ((n− 2)/2)
Γ((n− 1)/2)

× 1√
2

. (9)

The expected value of Q̂pk can subsequently be obtained as follows:

E
[

Q̂pk

]
= E

[
K−1/2

]{√
n−1
γ −

√
n−1

n [E|Z′|]
}
+ 1.5

=A(n)
{

1
γ −

1√
n

(√
2
π exp

(
− θ2

2

)
+ |θ|[1− 2Φ(−|θ|)]

)}
+ 1.5

=A(n)
{(

1
γ −

|θ|√
n

)
−
√

2
nπ exp

(
− θ2

2

)
+ 2 |θ|√n Φ(−|θ|)

}
+ 1.5

,

where

A(n) =
Γ[(n− 2)/2]

√
n− 1

Γ[(n− 1)/2]
√

2
. (10)

Because θ =
√

nδ/γ, this can be rewritten as

E
[

Q̂pk

]
= An

{(
Qpk − 1.5

)
+

(
2
|δ|
γ

Φ
(
−
√

n|δ|
γ

)
−
√

2
nπ

exp
(
− nδ2

2γ2

))}
+ 1.5 (11)

Q̂pk is a biased estimator of Qpk, and its bias can be computed as follows:

Bias
[

Q̂pk

]
=
(

Qpk − 1.5
)
(An − 1)

+An

{
2 |δ|γ Φ

(
−
√

n|δ|
γ

)
−
√

2
nπ exp

(
− nδ2

2γ2

)} . (12)
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Furthermore, the mean square error of Q̂pk can be computed as follows:

MSE
[

Q̂pk

]
= E

[(
Q̂pk −Qpk

)2
]

= E
[((

1− |δ̂|
)
/γ̂− (1− |δ|/γ)

)2
]

= E
[([

Q̂pk − 1.5
]
−
[

Qpk − 1.5
])2
]

= E
[(

Q̂pk − 1.5
)2
]
− 2
(

Qpk − 1.5
)

E
[

Q̂pk − 1.5
]
+
(

Qpk − 1.5
)2

. (13)

Based on Equation (11) and Appendix A, the procedure of deriving the mean square
error of Q̂pk.

E
[

Q̂pk − 1.5
]
= An

{(
Qpk − 1.5

)
+

(
2 |δ|γ Φ

(
−
√

n|δ|
γ

)
−
√

2
nπ exp

(
− nδ2

2γ2

))}
,

E
[(

Q̂pk − 1.5
)2
]
= n−1

n−3 ×
{(

Qpk − 1.5
)2

+ 1
n −

2
γ

×
(

2 |δ|γ Φ
(
−
√

n|δ|
γ

)
−
√

2
nπ exp

(
− nδ2

2γ2

))} . (14)

Thus,

MSE
[

Q̂pk

]
= n−1

n−3 ×
{(

Qpk − 1.5
)2

+ 1
n −

2
γ ×

(
2 |δ|γ Φ

(
−
√

n|δ|
γ

)
−
√

2
nπ exp

(
− nδ2

2γ2

))}
+2An

(
Qpk − 1.5

){(
Qpk − 1.5

)
+

(
2 |δ|γ Φ

(
−
√

n|δ|
γ

)
−
√

2
nπ exp

(
− nδ2

2γ2

))}
+
(

Qpk − 1.5
)2

. (15)

Bias
[

Q̂pk

]
and MSE

[
Q̂pk

]
can be computed following Equations (12) and (15) under

the assumption that the value of k is 6, 5, 4, or 3 and the sample size (n) is 10, 20, 30, 40,
50, 60, or 70. The results of these calculations are shown in Table 1. Figure 1 illustrates
the relationship between Bias

[
Q̂pk

]
and sample size (n) for δ = 1/4. As the sample size

increases, Bias
[

Q̂pk

]
tends to decrease to the same stable value for all k. Figure 2 presents

the relationship between MSE
[

Q̂pk

]
and sample size for δ = 1/4. As the sample size

increases, MSE
[

Q̂pk

]
tends to decrease to the same stable value for all k.

In addition, the influence of a small change in δ on Bias
[

Q̂pk

]
and MSE

[
Q̂pk

]
is also

worth discussing. Therefore, we calculate Bias
[

Q̂pk

]
and MSE

[
Q̂pk

]
with δ increments of

0.01 according to Equations (12) and (15) for k values of 6, 5, 4, or 3 and sample sizes of 10,
20, 30, 40, 50, 60, or 70. The results are shown in Table 2. Figure 3 illustrates the relationship
between Bias

[
Q̂pk

]
and sample size for k = 6. As the sample size increases, Bias

[
Q̂pk

]
tends

to decrease to the same stable value for all k. Figure 4 shows the relationship between
MSE

[
Q̂pk

]
and sample size for k = 6. As the sample size increases, MSE

[
Q̂pk

]
tends to

decrease to the same stable value for all k.
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Table 1. Bias and MSE for various Q̂pk.

K n
δ = 0 δ = 1/4 δ = 1/2 δ = 3/4

Bias MSE Bias MSE Bias MSE Bias MSE

6 10 0.1480 91.1658 0.4241 90.7310 0.4241 90.7310 0.4241 90.7310
20 0.0021 85.2514 0.1879 85.1295 0.1879 85.1295 0.1879 85.1295
30 −0.0288 83.6844 0.1207 83.6224 0.1207 83.6224 0.1207 83.6224
40 −0.0397 82.9602 0.0889 82.9212 0.0889 82.9212 0.0889 82.9212
50 −0.0442 82.5433 0.0704 82.5160 0.0704 82.5160 0.0704 82.5160
60 −0.0461 82.2724 0.0582 82.2518 0.0582 82.2518 0.0582 82.2518
70 −0.0467 82.0825 0.0497 82.0663 0.0497 82.0663 0.0497 82.0663

5 10 0.0536 55.2756 0.3298 54.9375 0.3298 54.9375 0.3298 54.9375
20 −0.0397 51.6150 0.1462 51.5202 0.1462 51.5202 0.1462 51.5202
30 −0.0557 50.6487 0.0939 50.6005 0.0939 50.6005 0.0939 50.6005
40 −0.0595 50.2029 0.0692 50.1726 0.0692 50.1726 0.0692 50.1726
50 −0.0599 49.9466 0.0547 49.9253 0.0547 49.9253 0.0547 49.9253
60 −0.0590 49.7801 0.0453 49.7641 0.0453 49.7641 0.0453 49.7641
70 −0.0578 49.6634 0.0386 49.6509 0.0386 49.6509 0.0386 49.6509

4 10 −0.0405 28.3338 0.2347 28.0949 0.2356 28.0923 0.2356 28.0923
20 −0.0815 26.3809 0.1044 26.3132 0.1044 26.3132 0.1044 26.3132
30 −0.0825 25.8686 0.0671 25.8341 0.0671 25.8341 0.0671 25.8341
40 −0.0792 25.6328 0.0494 25.6112 0.0494 25.6112 0.0494 25.6112
50 −0.0755 25.4975 0.0391 25.4823 0.0391 25.4823 0.0391 25.4823
60 −0.0720 25.4097 0.0323 25.3983 0.0323 25.3983 0.0323 25.3983
70 −0.0688 25.3482 0.0276 25.3393 0.0276 25.3393 0.0276 25.3393

3 10 −0.1347 10.3404 0.1245 10.2241 0.1414 10.1955 0.1414 10.1955
20 −0.1232 9.5491 0.0606 9.5112 0.0626 9.5085 0.0626 9.5085
30 −0.1093 9.3439 0.0399 9.3236 0.0402 9.3232 0.0402 9.3232
40 −0.0990 9.2499 0.0296 9.2370 0.0296 9.2369 0.0296 9.2369
50 −0.0911 9.1961 0.0234 9.1870 0.0235 9.1870 0.0235 9.1870
60 −0.0849 9.1613 0.0194 9.1544 0.0194 9.1544 0.0194 9.1544
70 −0.0799 9.1369 0.0166 9.1316 0.0166 9.1316 0.0166 9.1316
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Table 2. Bias and MSE for various Q̂pk (δ increment is 0.01).

K n
δ = 0 δ = 0.01 δ = 0.02 δ = 0.03 δ = 0.04 δ = 0.05

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

6 10 0.148 91.166 0.195 91.116 0.237 91.066 0.274 91.017 0.306 90.969 0.333 90.925
6 20 0.002 85.251 0.046 85.237 0.082 85.220 0.112 85.202 0.136 85.185 0.153 85.170
6 30 −0.0288 83.684 0.013 83.677 0.047 83.667 0.073 83.656 0.091 83.646 0.104 83.638
6 40 −0.0397 82.960 0.001 82.956 0.033 82.949 0.055 82.941 0.070 82.934 0.079 82.929
6 50 −0.0442 82.543 −0.0039 82.541 0.026 82.535 0.046 82.529 0.058 82.524 0.065 82.520
6 60 −0.0461 82.272 −0.0065 82.271 0.022 82.266 0.040 82.261 0.050 82.257 0.055 82.254
6 70 −0.0467 82.083 −0.0077 82.081 0.019 82.077 0.035 82.073 0.044 82.070 0.048 82.068

K n
δ = 0.06 δ = 0.07 δ = 0.08 δ = 0.09 δ = 0.10

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

6 10 0.356 90.885 0.374 90.850 0.388 90.821 0.399 90.796 0.407 90.777
6 20 0.166 85.157 0.175 85.148 0.180 85.141 0.184 85.136 0.186 85.133
6 30 0.112 83.632 0.116 83.628 0.119 83.625 0.120 83.624 0.120 83.623
6 40 0.085 82.925 0.087 82.923 0.088 82.922 0.089 82.922 0.089 82.921
6 50 0.068 82.518 0.070 82.517 0.070 82.516 0.070 82.516 0.070 82.516
6 60 0.057 82.253 0.058 82.252 0.058 82.252 0.058 82.252 0.058 82.252
6 70 0.049 82.067 0.050 82.067 0.050 82.066 0.050 82.066 0.050 82.066
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6 30 0.112 83.632 0.116 83.628 0.119 83.625 0.120 83.624 0.120 83.623 
6 40 0.085 82.925 0.087 82.923 0.088 82.922 0.089 82.922 0.089 82.921 
6 50 0.068 82.518 0.070 82.517 0.070 82.516 0.070 82.516 0.070 82.516 
6 60 0.057 82.253 0.058 82.252 0.058 82.252 0.058 82.252 0.058 82.252 
6 70 0.049 82.067 0.050 82.067 0.050 82.066 0.050 82.066 0.050 82.066 
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3. Upper Confidence Limits of the Six Sigma Quality Index

As mentioned, under the assumption of normality, K follows the χ2
n−1 distribu-

tion. Therefore,

p
{

χ ≤ χ2
1−α/2;n−1

}
= p

{
(n− 1)γ̂2

γ2 ≤ χ2
1−α/2;n−1

}
= p

{
γ ≥

√
n− 1

χ2
1−α/2;n−1

γ̂

}
= 1− α

2
.

Furthermore, when we let

T =

√
n
(
δ̂− δ

)
γ̂

, (16)

T follows a tn−1 distribution. Thus, we have

p
{
−tα/4;n−1 ≤ T ≤ tα/4;n−1

}
= p

{
δ̂− tα/4;n−1 ×

γ̂√
n− 1

≤ δ ≤ δ̂ + tα/4;n−1 ×
γ̂√

n− 1

}
= 1− α

2
.
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To derive the (1− α)× 100% upper confidence limit on Qpk, some events are defined
as follows:

Eδ =

{
δ̂− tα/4;n−1 ×

γ̂√
n− 1

≤ δ ≤ δ̂ + tα/4;n−1 ×
γ̂√

n− 1

}
(17)

and

Eγ =

{
γ2 ≥ n− 1

χ2
1−α/2;n−1

γ̂2

}
, (18)

where tα/4;n−1 is the upper α/4 quintile of tn−1, χ2
1−α/2;n−1 is the lower 1 − α/2 quin-

tile of χ2
n−1, and α is the confidence level. In fact, P(Eδ) = P(Eγ) = 1 − (α/2) and

P
(
EC

δ

)
= P

(
EC

γ

)
= α/2. Based on Boole’s inequality and Morgan’s theorem,

P(Eδ ∩ Eγ) ≥ 1− P
(

EC
δ

)
− P

(
EC

γ

)
= 1− α. (19)

This is equivalent to

p

{
δ̂− et ≤ δ ≤ δ̂ + et, γ ≥

√
n− 1

χ2
1−α/2;n−1

γ̂

}
≥ 1− α, (20)

where
et = tα/4;n−1

γ̂√
n

. (21)

Therefore, the 100(1− α)% confidence interval of (δ, γ) can be calculated as follows:

CR =

{
(δ, γ)|δ̂− et ≤ δ ≤ δ̂ + et, γ ≥

√
n− 1

χ2
1−α/2;n−1

γ̂

}
(22)

Qpk is a function of parameter δ and γ. According to Chen et al. [21], mathematical
programming can be used to compute the upper confidence limit of Qpk.

In this computation method, Qpk is treated as the objective function, and the confidence
region is regarded as the feasible solution area. Therefore, parameters δ and γ are the two
decision variables of this objective function. The optimization problem can then be defined
as follows: 

UQpk = Max Qpk(δ, γ) = Max 1−|δ|
γ + 1.5

s.t.
δ̂− et ≤ δ ≤ δ̂ + et

γ ≥
√

n−1
χ2

1−α/2;n−1
γ̂

(23)

The feasible solution area in this problem is a rectangle (convex set), and when δ is
closer to 0, Qpk increases because 1− |δ| becomes closer to 1. Similarly, the value of Qpk(δ)
increases as the value of γ decreases. Therefore, Qpk increases as (δ, γ) approaches the
origin. The maximum of Qpk is obtained at the bottom of the rectangle. Therefore, the
feasible solution area in this problem is a line segment (convex set). Thus, mathematical
programming can be applied to determine the upper confidence limit of Qpk. Consequently,
the model for the index UQpk can be rewritten as follows:

UQpk = Max Qpk(δ) =

√
χ2

1−α/2;n−1
n−1

1−|δ|
γ̂ + 1.5

s.t.
δ̂− et ≤ δ ≤ δ̂ + et

(24)
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Qpk(δ) can be simplified to a function of δ as follows:

Qpk(δ) =

√
χ2

1−α/2;n−1

n− 1
1− |δ|

γ̂
+ 1.5 (25)

Equation (25) shows that Qpk(δ) increases as δ becomes closer to 0.
Furthermore, the maximum value of UQpk is closely related to δ̂ and et. Hence, we

consider three cases for δ̂ and et in this study.

Case 1: 0 ∈
[
δ̂− et, δ̂ + et

]
Because 0 ∈

[
δ̂− et, δ̂ + et

]
, the maximum of UQpk is obtained for Qpk(δ = 0); this

maximum is defined as

UQpk = Qpk(δ = 0) =

√
χ2

1−α/2;n−1

n− 1
1
γ̂
+ 1.5 (26)

Case 2: δ̂− et > 0

Because δ̂− et > 0, δ > δ̂− et > 0. Therefore, the maximum of UQpk is obtained for
Qpk

(
δ = δ̂− et

)
:

UQpk = Qpk
(
δ = δ̂− et

)
=

√
χ2

1−α/2;n−1

n− 1
1− δ̂ + et

γ̂
+ 1.5 (27)

Case 3: δ̂ + et < 0

Because δ̂ + et < 0, δ < δ̂ + et < 0. Therefore, the maximum of UQpk is obtained for
Qpk

(
δ = δ̂ + et

)
:

UQpk = Qpk
(
δ = δ̂ + et

)
=

√
χ2

1−α/2;n−1

n− 1
1− δ̂− et

γ̂
+ 1.5 (28)

On the basis of the relationships described in Equations (26)–(28), we define

I =
{

0 i f 0 ∈
[
δ̂− et, δ̂ + et

]
1 i f δ̂− et > 0 or δ̂ + et < 0

and

i =
{

0 i f δ̂− et > 0
1 i f δ̂ + et < 0

Subsequently, the 100(1− α)% upper confidence limit of Cpmh can be obtained as follows:

UQpk =

√
χ2

1−α/2;n−1

n− 1
1
γ̂
×
(

1− δ̂ + (−1)iet

γ̂

)I

+ 1.5 (29)

4. Hypothesis Testing

As defined previously, UQpk is a function of the process parameters δ̂ and γ̂. To
determine whether the process quality level reaches the k sigma level, statistical hypothesis
testing was conducted. The relationship between Qpk and k should be constructed and then
verified using a hypothesis test. A case study is presented to verify the proposed inferences
in Section 5.

Hypothesis testing entails the following steps:

Step 1: Determine the required process quality level.
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The process quality level is assumed to be k sigma.

Step 2: Propose the null hypothesis H0 and the alternative hypothesis H1.

The null and alternative hypotheses are as follows:

Null hypothesis H0: Qpk ≥ k

Alternative hypothesis H1: Qpk < k

The upper confidence limit UQpk can then be obtained through statistical testing, and
the hypotheses are judged as follows:

(1) If UQpk ≥ k, then do not reject H0 and conclude that Qpk ≥ k
(2) If UQpk < k, then reject H0 and conclude that Qpk < k

Step 3: Design the sampling plan.

The sample size and significance level α are assigned. Random sampling should then
be conducted during the process control.

Step 4: Compute δ̂ and et to determine the suitable formula for UQpk.

The suitable formula for UQpk can be determined on the basis of the three for δ̂ and et
after these two parameters have been calculated from the original measurement data.

δ̂ =
1
n∑n

i=1 Yi, where Yi = (Xi − T)/d

et = tα/4;n−1
γ̂√
n

, where γ̂ =

√
1

n− 1∑n
i=1

(
Yi −Y

)2

Step 5: Compare UQpk and k.

After UQpk has been computed, k and UQpk can be compared. The process capability
is considered to reach Six Sigma level if UQpk ≥ 6.

5. A Case Study

This article proposed a new Six Sigma index, which can quickly and easily determine
the process capability by simply calculating the value of the collected data. For managers
and engineers, this index can be used to monitor the process in real time, taking into
account the economy and immediacy.

To demonstrate the suitability of the proposed method for practical application, a case
study from the semiconductor assembly process is presented as an example for statistical
testing. A chip package with a leadframe carrier must pass through the plating process
to provide protection for the metal plating layer and the medium, which are required for
the subsequent surface-mounted technology (SMT) process. Because the plating thickness
affects the SMT quality, process control is crucial at the plating stage. The plating layer
on the outer lead of the leadframe is an important medium, providing a mechanical
and electrical connection between the package and the printed circuit board (PCB). The
composition and thickness of the plating layer affect the soldering quality between the
package and the PCB. When the plating thickness exceeds the specification, the package
body and the PCB cannot be effectively joined, resulting in an open-circuit or short-circuit
current. In this study, the thickness specification for the plating layer was 550 ± 150 µm;
that is, T = 550 µm and d = 150 µm.

The statistical testing procedure accords with the five steps defined in the previous section:

Step 1: Determine the required process quality level.

Six Sigma level (k = 6) is the desired process quality level for this case.

Step 2: Propose the null hypothesis H0 and the alternative hypothesis H1.

The null and alternative hypotheses are as follows:
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Null hypothesis H0: Qpk ≥ 6

Alternative hypothesis H1: Qpk < 6

The upper confidence limit UQpk can be obtained through statistical testing, and the
hypotheses are judged as follows:

(1) If UQpk ≥ 6, then do not reject H0 and conclude that Qpk ≥ 6
(2) If UQpk < 6, then reject H0 and conclude that Qpk < 6

Step 3: Design the sampling plan.

The sample size (n) and the significance level α are defined as 70 and 0.05, respectively.

Step 4: Compute δ̂ and et to determine the suitable formula for UQpk.

δ̂ =
1
n∑n

i=1 Yi = −0.1955,

γ̂ =

√
1

n− 1∑n
i=1

(
Yi −Y

)2
= 0.1900, where et = tα/4;n−1

γ̂√
n
= 0.00489.

Thus,
δ̂− et = −0.20039 < 0, δ̂ + et = −0.19061 < 0

Because δ̂− et and δ̂ + et are both less than 0.00, I and i are both 1.00, according to
Equation (25). Finally,

UQpk =

√
χ2

1−α/2;n−1

n− 1
1
γ̂
×
(

1− δ̂ + (−1)iet

γ̂

)I

+ 1.5 = 8.48.

Step 5: Compare UQpk and k.

Because UQpk = 8.48 > 6, do not reject H0 and conclude that Qpk ≥ k = 6. This result
is consistent with the assumption that UQpk ≥ k. That is, the minimum value of UQpk is
8.48, but it exceeds the required value of k (6) for a sample size of 70. Hence, statistical
testing reveals that Qpk ≥ k = 6, and the process capability is considered to reach Six
Sigma level.

6. Conclusions

A PCI is necessary for determining whether a process capability meets Six Sigma level,
which is indicative of an extremely good process capability.

Following the research of Chen et al. [21], this study employed Qpk as a measure
of process capability. However, Qpk includes unknown parameters δ̂ and γ̂. Therefore,

statistical inference was used to verify Bias
[

Q̂pk

]
and MSE

[
Q̂pk

]
for different k values and

sample sizes (n). Finally, the results revealed that Bias
[

Q̂pk

]
and MSE

[
Q̂pk

]
exhibit stable

convergence trends. Furthermore, we derived the upper limit of Qpk. First, Boole’s inequal-
ity and Morgan’s theorem were used to compute the error et, and linear programming was
then applied to calculate the upper confidence limit UQpk of Qpk.

The maximum value of Qpk was separated into three categories based on the relation-
ship between δ̂ and et.

The maximum value of UQpk was determined from a comparison of the combination
of δ̂ and et with 0.00. Three combinations of δ̂ and et were explored in this study. For each
combination, we obtained a general formula for UQpk.

Finally, a case study from the semiconductor assembly process was employed to verify
the hypotheses of the Six Sigma quality index. For this case, UQpk was deduced to be 8.48
for k = 6 and n = 70. Therefore, UQpk ≥ k was a valid hypothesis. That is, the process
capability reached Six Sigma level.
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This study utilized Qpk as a Six Sigma quality index to make statistical inferences, and
the upper limits of the confidence intervals of point estimations were then obtained. The
integrated definition of UQpk is simple and convenient for industrial application.
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Appendix A

To obtain the mean square error of Q̂pk, we first calculate the followings:

E
[
|Z′|

]
=

√
2
π

exp
(
− θ2

2

)
+ |θ|(1− 2Φ(−|θ|)).

E
[
|Z′|2

]
= θ2 + 1.

E
[
K−1/2

]
=

Γ((n− 2)/2)
Γ((n− 1)/2)

× 1√
2

.

E
[
K−1

]
=

1
n− 3

.

Therefore, the mean square error of may be obtained as:

E
[(

Q̂pk − 1.5
)2
]
= E

[
K−1]E[(√n−1

γ −
√

n−1
n |Z|

)2
]

= 1
n−3

{
n−1
γ2 − 2 n−1√

nγ
E[|Z|] + n−1

n E
[
|Z|2

]}
= n−1

n−3

{
1

γ2 − 2
γ

(√
2

nπ exp
(
− θ2

2

)
+ |θ|√

n [1− 2Φ(−|θ|)]
)
+ θ2+1

n

}
= n−1

n−3

{(
1

γ2 −
|θ|√

n

)2
− 2

γ

(√
2

nπ exp
(
− θ2

2

)
− 2 |θ|√n Φ(−|θ|)

)
+ 1

n

}
= n−1

n−3

{(
Qpk − 1.5

)2
− 2

γ

(√
2

nπ exp
(
− nδ2

2γ2

)
− 2 |δ|γ Φ

(
−
√

n|δ|
γ

))
+ 1

n

}

E
[

Q̂2
pk

]
= E

[(
Q̂pk − 1.5

)2
]
+ 3E

[
Q̂pk

]
− (1.5)2.
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