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Abstract: In this paper we study the magnetic trajectories as the solutions of the Lorentz equation
defined by the cross product corresponding to the 7-dimensional Euclidean space. We find several
examples of such trajectories and moreover, we strongly motivate our results making a comparison
with the 3-dimensional Euclidean case, ambient space which was among the first ones approached in
the study of magnetic trajectories.
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1. Introduction

As it is well known, the cross product gained the interest of scientists in many physical
applications. For example, the cross product in the three dimensional Euclidean space is
used to describe the angular velocity, the torque of a force, or even to describe the Lorentz
force,

−→
F = q−→v ×−→B , i.e., a force acting on a particle with charge q which moves at velocity

−→v in a magnetic field
−→
B . As it is well known, the magnetic curves in R3 are classified and

the study was extended also for higher dimensional ambient spaces as follows.
Let (M, g) be a complete Riemannian manifold endowed with the metric g. A closed 2-

form on M defines a magnetic field F and its corresponding Lorentz force φ is a (1, 1)-tensor
field F(X, Y) = g(φX, Y), X, Y ∈ X(M). A smooth curve γ on M is called a magnetic curve,
or a trajectory corresponding to the the magnetic field F if it is a solution of the Lorentz
equation ∇γ̇γ̇ = φγ̇, where ∇ denotes the Levi-Civita connection associated to g on M.
We easily notice that if the magnetic field vanishes, F = 0, then the particle moves only
under the influence of gravity, and hence the trajectory is a geodesic of M. Moreover, it was
shown that the trajectories have constant speed. In our study we consider only arclength
paramatrized trajectories, which are called normal trajectories.

The first results were obtained for the Landau-Hall problem— i.e., the study of the
trajectories of charged particles moving on a surface under the influence of an uniform
magnetic field. Recall that in the 2-dimensional case [1], the uniform magnetic fields
(those magnetic fields which are parallel) are defined by the scalar multiples of the area
element, F = qdA, where q denotes the strength of the magnetic field. It was proven that the
trajectories have constant curvature κ = q on the surface. For example, on the plane R2 they
are circles, on the 2-sphere S2 they are small circles and on the hyperbolic plane H2(−1) the
trajectories are either closed when |q| ≥ 1, or open in rest. These results were extended to
the study of trajectories on proper Kähler manifolds of any dimension (when the magnetic
fields are defined as scalar multiples of the Kähler form) and it was proven [2] that they are
circles, i.e., Frenet curves of osculating order 2 with (positive) constant geodesic curvature.

Next, in the 3-dimensional case (M3, g), the magnetic fields F are defined by the
divergence free vector fields and it was shown that the magnetic background (M3, g, F)
may be regarded as an almost contact metric manifold with closed fundamental 2-form.
This problem was also generalized to arbitrary dimensions, in the study of trajectories
corresponding to magnetic fields generated by closed fundamental 2-forms in Sasakian and
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cosympletic manifolds. In this situation it was proven that they are helices of osculating
order 3.

Finally, since the Sasakian and cosymplectic manifolds are special classes of quasi-
Sasakian manifolds, it was proven [3] that the magnetic curves in the quasi-Sasakian
manifold R2(n+p)+1 are helices of osculating order 5. See also [4] for this result in R5.
Another example is the study of trajectories in the generalized Heisenberg group H(n, 1)
endowed with its quasi-Sasakian structure in [5], when it was proven that the trajectories
are again helices of maximum order 5.

Going back now to the 3-dimensional case, a question that arises, is what changes in
the study of trajectories in R7 using a higher-dimensional analogue of the cross product of
two vectors from R3.

In the present paper we start from the definition of such a cross product in R7 in-
troduced by Lounesto in [6] and we study the corresponding trajectories. The Section 2
consists of a collection of the necessary notions used in the following and the Section 3
describes in parallel the 3-dimensional and the 7-dimensional case. The Section 4 contains
the main results we obtained. The Theorems 1 and 2 deal with the classification of trajecto-
ries in a hyperplane H ⊂ R7 and the unit 6-sphere S6 ⊂ R7 respectively, meanwhile the
Theorem 3 consists of some examples of trajectories on the cylinder S5 ×R ⊂ R7. Finally,
we conclude with references.

2. Preliminaries

It is well known, see e.g., [6], that if we want to define a cross product with two factors
in Rn, and we ask for it to be orthogonal to both of the terms and to have the length equal to
the area of the parallelogram constructed on the two vectors, then n ∈ {3, 7}. See also [7].
Let us consider R7 endowed with the usual scalar product 〈 , 〉. According to [6], the cross
product of two vectors on (R7, 〈 〉 can be defined using an orthonormal basis {e1, . . . , e7}
by antisymmetry ei × ej = −ej × ei and ei × ei+1 = ei+3, where the indices i, j = 1, 7 are
cyclically permuted and translated mod 7. The table of operations is as follows:

Table 1. Multiplication rule for the cross product in R7.

× e1 e2 e3 e4 e5 e6 e7
e1 0 e4 e7 −e2 e6 −e5 −e3
e2 −e4 0 e5 e1 −e3 e7 −e6
e3 −e7 −e5 0 e6 e2 −e4 e1
e4 e2 −e1 −e6 0 e7 e3 −e5
e5 −e6 e3 −e2 −e7 0 e1 e4
e6 e5 −e7 e4 −e3 −e1 0 e2
e7 e3 e6 −e1 e5 −e4 −e2 0

Regarding the properties of the cross product,

• the orthogonality on the two factors: 〈u× v, u〉 = 0, 〈u× v, v〉 = 0,
• the Pythagorean theorem: ‖u× v‖2 = ‖u‖2‖v‖2 − 〈u, v〉2,

are both satisfied, while
• the Jacobi identity:

J(u, v, w) := (u× v)× w + (v× w)× u + (w× u)× v = 0,

unlike in the 3-dimensional case, it is not satisfied ∀u, v, w ∈ R7.
For this reason, the cross product does not give R7 the structure of a Lie algebra.
However, the vector triple product satisfies the following property:

u× (v× w) = 〈u, w〉v− 〈u, v〉w +
1
3

J(u, v, w).
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Obviously, the vector triple formula fromR3 is valid also inR7 if and only if J(u, v, w) =
0, i.e., the Jacobi identity is also satisfied.

Moreover, we point out that the cross product in R7 does satisfy a generalization of
the Jacobi identity, called the Malcev identity,

m(u, v, w) := (u× v)× (u× w) + u× [(u× v)× w]− u× [u× (v× w)]
+v× [u× (u× w)] = 0, ∀u, v, w ∈ R7,

which gives to R7 the structure of a Malcev algebra, see e.g., [8].
In fact, the multiplication rule given in Table 1 can be explained, briefly, in the following

way. In analogy with C = R⊕Ri (the set of complex numbers) and H = C⊕Cj (the set of
quaternions), it is still possible to define the set of octonions as O = H⊕Hl, where l is an
“imaginary unit” that does not belong to H. See e.g., [9] or [8]. The multiplication rule is
given in the Figure 1 (see also [10]).

1 i j k l m n o

i -1 k - j m -l -o n

j -k -1 i n o -l -m

k j -i -1 o -n m -l

l -m -n -o -1 i j k

m l -o n -i -1 -k j

n o l -m - j k -1 -i

o -n m l -k - j i -1

Complex

Quaternion

Octonion

m=il n= jl o=kl

Figure 1. The multiplication rule in the set of octonions.

As a vector space, O can be decomposed as O = R⊕R7, emphasizing the real part,
and, respectively, the imaginary part of an octonion. Hence, R7 ≡ ImO. If u, v ∈ R7 are
purely imaginary octonions, then one can define a multiplication in R7 by

u× v = Im(u · v).

Hence, the octonion multiplication may be rewritten in an analogue way as in the case
of quaternions, as

(a, u) · (b, v) = (ab− 〈u, v〉, av + bu + u× v),

where (a, u), (b, v) ∈ O = R⊕R7.
Now, we take an orthonormal basis {e1, e2, . . . , e7} in R7, and we make the identifica-

tion with {i, j, k, l, m, n, o} from the Figure 1.
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There are 480 possibilities of doing it. Let us make the following setting:

e1 = i, e2 = j, e3 = o, e4 = k, e5 = −m, e6 = l, e7 = n.

This leads us to the multiplication rule given in the Table 1. For more details on
octonions, see e.g., [9,11,12] and references therein.

3. Trajectories in R3 vs. R7

In this section we emphasize the major differences between the study of magnetic
curves in the 3-dimensional real space endowed with the usual cross product and the
analogous study in the case of the 7-dimensional real space endowed with the cross
product defined in the previous section.

As it was mentioned many times in some previous works on magnetic curves, the
3-dimensional case is very special.

In a generic 3-dimensional Riemannian manifold (M3, g) the 2-forms and the vector
fields may be identified via the Hodge star operator ? and the volume form dvg of M3.
Hence, the magnetic fields (corresponding to closed 2-forms) mean divergence free vector
fields. Recall that some important examples of divergence free vector fields are the Killing
vector fields and they define the so-called Killing magnetic fields. Classically, one can define
the cross product on M3 as g(X × Y, Z) = dvg(X, Y, Z), ∀X, Y ∈ X(M3). If we denote by
V a Killing vector field on M3, then FV = dvg(V, ·, ·) represents the corresponding Killing
magnetic field.

Let (x, y, z) be the global coordinates on E3 = (R3, 〈, 〉). A basis of Killing vector fields
is given by three translational vector fields and three rotational vector fields with respect to

the coordinate axes
{

∂

∂z
,

∂

∂y
,

∂

∂x
, x

∂

∂y
− y

∂

∂x
, y

∂

∂z
− z

∂

∂y
, z

∂

∂x
− x

∂

∂z

}
.

Let γ : I → E3 be a normal magnetic curve, namely a solution of the magnetic equation
(the Lorentz equation):

γ̈(s) = V(s)× γ̇(s), where V(s) = V(γ(s)). (1)

The Lorentz force has the expression:

φ : X(E3)→ X(E3), φX = V × X, ∀X ∈ X(E3). (2)

In order to solve the Lorentz Equation (1), the easiest case is to consider the constant

Killing vector field V0 = q
∂

∂z
(the other two translational Killing vector fields being treated

similarly). The corresponding trajectories, up to the choice of the initial condition γ(0), are
parametrized by

γ(t) =
(

sin θ

q
sin(qt),

sin θ

q
cos(qt), t cos θ

)
,

and they represent helices with the axis given by V0. More details can be found, for example,
in [13,14].

Remark 1. A more difficult situation occurs in the study of magnetic curves determined by the

rotational Killing vector field V = x
∂

∂y
− y

∂

∂x
. The complete classification of these magnetic

curves was done in [14] (see also [15]) and it consists in: planar curves situated in a vertical strip,
circular helices and a class of curves for which the explicit parametrizations were provided, involving
elliptic integrals.

At this point, let us consider V a constant vector field in R7 and we denote the
Lorentz force φ : X(R7) → X(R7), φ(X) = V × X and the 2-form F on R7 given by
F(X, Y) = 〈φX, Y〉. Now, we make the following observations:
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• φ2X = V × (V × X) = 〈V, X〉V − ‖V‖2X = ‖V‖2
(〈 V
‖V‖ , X

〉 V
‖V‖ − X

)
,

• The 2-form F is closed, that is dF = 0, and hence it defines an magnetic field on R7.

The equation that leads us to the magnetic trajectories is:

γ′′ = V × γ′, (3)

where γ : I → R7 is arclength parametrized.
In order to solve the Lorentz Equation (3), we decompose γ′ as:

γ′ = α(t)V + W(t),

where α ∈ C∞(I), W(t) ∈ R7 and W(t) ⊥ V, ∀t ∈ I.
Since ‖γ′‖ = 1, it yields ‖V‖2α(t)2 + ‖W(t)‖2 = 1, ∀t ∈ R.
The Lorentz Equation (3) becomes:

α′(t)V + W ′(t) = V ×W(t). (4)

Taking the scalar product with V and taking into account 〈W(t), V〉 = 0, ∀t ∈ I,
we find

α′(t)‖V‖2 = 0, ∀t ∈ I,

meaning that α is a constant function. Subsequently, (1) writes as:

W ′(t) = V ×W(t). (5)

Taking the derivative with respect to t, we successively get:

W ′′(t) = V ×W ′(t) = V × (V ×W(t)) = 〈V, W(t)〉V − ‖V‖2W(t) = −‖V‖2W(t).

It follows that
W(t) = cos(qt)v1 + sin(qt)v2,

where q = ‖V‖, and v1, v2 are constant vectors in R7. Because ‖W(t)‖2 = 1− α2‖V‖2,
∀t ∈ I, we must have ‖v1‖ = ‖v2‖ =

√
1− α2‖V‖2 and 〈v1, v2〉 = 0.

• Let α2 6= 1/‖V‖2.

The Equation (5) implies, moreover, the conditions

〈v1 × v2, V〉 = ‖V‖2(1− α2‖V‖2) and v2 =
V
‖V‖ × v1.

Hence,
γ′(t) = (cos(qt)v1 + sin(qt)v2) + αV.

We see that γ is a helix in the 3-space defined by {v1, v2, V} and having axis V.

• If α = 0, the curve γ degenerates to a circle of radius
1
‖V‖ in the 2-plane {v1, v2}.

• If α = ±1/‖V‖, then W(t) = 0, hence γ is an integral curve for ±V, namely it is a line.

Let us consider the following example:

Example 1. Let V = qe1, q 6= 0. The normal magnetic curves γ : I → R7 corresponding to V
with the property that γ(0) = p0 and γ′(0) = cos θe1 + sin θe2, θ ∈ (0, π) are given by:

γ(t) = p0 + t cos θe1 +
1
q

sin θ sin(qt)e2 +
1
q

sin θ(1− cos(qt))e4.

We conclude this section with some final remarks on the structure of R7, where
we define:
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(i) a vector field ξ =
V
‖V‖ ;

(ii) a 1-form η such that η(X) =
〈V, X〉
‖V‖ ;

(iii) ϕ : X(R7)→ X(R7), ϕX = ξ × X.

The following relations are satisfied:

η(ξ) = 1, η ◦ ϕ = 0, ϕ2 = −I + η ⊗ ξ, ϕξ = 0,

together with the compatibility condition:

〈ϕX, ϕY〉 = 〈ξ×X, ξ×Y〉 = −〈X, ξ× (ξ×Y)〉 = −〈X, 〈ξ, Y〉ξ−Y〉 = 〈X, Y〉− 〈X, ξ〉〈Y, ξ〉.

Thus, we have an almost contact metric structure. Even more, ϕ is parallel, thus the
structure is cosymplectic.

For this reason, having in mind [16], the above result is not surprising. In the same
spirit, also the fact that α is a constant function is a consequence of [16].

4. Main Results

Let us consider M6 an oriented hypersurface in R7 having the unit normal N.
We define J : X(M)→ X(M) by

X 7→ JX = N × X. (6)

Recall that N × X ⊥ X from the properties of the cross product, hence JX is tangent to
M for any X tangent to M. Moreover, we have J2X = N × (N × X) = −X, meaning that J
defines an almost complex structure on M. Finally, J is compatible with the metric on M
induced from the scalar product 〈 , 〉 of R7.

〈JX, JY〉 = 〈N × X, N ×Y〉 = 〈X, Y〉 − 〈X, N〉〈Y, N〉 = 〈X, Y〉,

for any X, Y tangent to M. This shows that (M, J, 〈 , 〉) inherits an almost Hermitian
structure.

Let us denote by A the shape operator corresponding to N.

Proposition 1. The covariant derivative of J can be expressed as

(∇X J)Y = −AX×Y− 〈AX, JY〉N,

for any X, Y tangent to M.

Proof. Let
o
∇ be the flat connection of R7. We have the Gauss and Weingarten formulas

o
∇XY = ∇XY + h(X, Y)N,
o
∇X N = −AX,

where h(X, Y) is the scalar second fundamental form of M in R7. The shape operator A
and h are related by: h(X, Y) = 〈AX, Y〉. We successively have

(∇X J)Y = ∇X(JY)− J∇XY =
o
∇X(JY)− h(X, JY)N − J∇XY

=
o
∇X(N ×Y)− h(X, JY)N − N ×∇XY

= −AX×Y + N ×
o
∇XY− h(X, JY)N − N ×∇XY

= −AX×Y + N × (h(X, Y)N)− h(X, JY)N
= −AX×Y− 〈AX, JY〉N.
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We plan to study the trajectories corresponding to φ = qJ, namely to find those curves
γ : I → M which satisfy the Lorentz equation:

∇γ′γ
′ = φγ′, (7)

where ∇ denotes the Levi-Civita connection on M and q ∈ R is the strength.
We consider the following three examples of hypersurfaces: a hyperplane, the unit

sphere sphere S6(1) and a cylinder S5 ×R.

4.1. Example 1. M6 = H

Thus, the hypersurface M is given by the hyperplane H endowed with the normal
V (a unitary constant vector). It is well known that M6 is totally geodesic in R7. From
the Proposition 1 we get that the almost complex structure J is parallel, hence M is a
Kähler manifold.

The normal magnetic trajectories are given by:

Theorem 1. Let M6 = H ⊂ (R7, 〈, 〉,×) be a hypersurface endowed with the normal V - a
unitary constant vector. Then, the normal magnetic curves in H ⊂ R7 are one of the following:

(i) straight lines,
(ii) circles parametrized as:

γ(t) = A0 +
1
q
(sin(qt)w− cos(qt)V × w), (8)

where w is a unitary constant vector, orthogonal to V.

Proof. The Lorentz Equation (7) becomes:

γ′′ = qV × γ′. (9)

Remark that as γ(t) ⊂ M, ∀t, it follows that

〈γ(t), V〉 = const.⇐⇒ 〈γ′(t), V〉 = 0. (10)

The solution is of the form

γ′(t) = cos(qt)w + sin(qt)V × w, (11)

where w is a (unitary) constant vector in R7, orthogonal to V. Obviously, if q = 0, then we
get the straight lines in the hyperplane M proving item (i) from the theorem. If q 6= 0, then
γ is given by (8), which represents the parametrization of a circle, concluding the proof.

4.2. Example 2. M6 = S6(1)

For any X, Y ∈ X(S6(1)),

∇XY =
o
∇XY + 〈X, Y〉p. (12)

One considers S6 with its outward-pointing normal N = p; hence the shape operator
is given by AX = −X. From the Proposition 1 we get

(∇X J)Y = X×Y + 〈X, p×Y〉p,

for any X, Y tangent to S6.

Proposition 2 (See also [17]). The almost Hermitian structure defined on the unit 6-sphere is
nearly Kähler.
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Proof. One can easily show that (∇X J)Y + (∇Y J)X = 0, for any X, Y tangent to S6.

Let us consider the trajectory γ : I → S6(1) parametrized by arclength. We have

∇γ′γ
′ = γ′′ + γ. (13)

Consequently, the Lorentz Equation (7) becomes:

γ′′ + γ = q(γ× γ′). (14)

The solutions of the Lorentz equation are described in the next result.

Theorem 2. Let M6 = S6(1) ⊂ (R7, 〈, 〉,×) be the unit 6-sphere. Then, the normal magnetic

curves in S6(1) ⊂ R7 are circles which lie also on the sphere of center
1√

q2 + 1
a0 and radius

1√
q2 + 1

and they are parametrized as:

γ(t) =
1√

q2 + 1

(
a0 + cos(

√
q2 + 1t)w1 + sin(

√
q2 + 1t)w2

)
, (15)

where a0 ∈ span{w1, w2} and w1, w2 are two unitary and orthogonal vectors in R7. As usual, q
denotes the strength.

Proof. First, let us notice that γ(t) and γ′(t) are orthogonal. Second, regarding the curva-
tures of the trajectory, we get that the curvature of γ in R7, κ0 = ‖γ′′‖ is constant:

κ2
0 = 〈γ′′, γ′′〉 = 〈q(γ× γ′)− γ, q(γ× γ′)− γ〉 = q2 + 1. (16)

Thinking γ as a curve in R7, we have

T = γ′, ν1 =
1√

q2 + 1
γ′′, (17)

where T denotes the tangent vector to γ and ν1 is the first unitary normal vector. We
compute now:

ν′1 + κ0T =
1√

q2 + 1
γ′′′ +

√
q2 + 1γ′. (18)

The relation (14) yields γ′′′ + γ′ = q(γ× γ′′) and using again this Formula (14), we
get

γ′′′ + γ′ = q(γ× (−γ + q(γ× γ′))) = q2γ× (γ× γ′) = −q2γ′. (19)

From (18) we deduce that
ν′1 + κ0T = 0, (20)

namely γ has the osculating order 2. As, its curvature is constant, it follows that γ is a
Riemannian circle.

From (20) and using the fact that T = γ′, it follows that there exists a constant vector
a0 ∈ R7 such that

ν1(t) + κ0γ(t) = a0, ∀t ∈ I. (21)

Even more, this relation yields∥∥∥∥γ(t)− 1
κ0

a0

∥∥∥∥ =
1
κ0

. (22)



Mathematics 2022, 10, 3480 9 of 17

As a matter of fact, γ lies also on the sphere of center
1
κ0

a0 and radius
1
κ0

, where

κ0 =
√

q2 + 1. Moreover, from the same Equation (21) it follows that a0 is orthogonal to
γ′(t) ∀t ∈ I. The relation (21) writes as:

γ′′(t) + (q2 + 1)γ(t) =
√

q2 + 1a0, ∀t ∈ I.

We get the general solution for the trajectories:

γ(t) =
1√

q2 + 1
a0 + cos(

√
q2 + 1t)w̃1 + sin(

√
q2 + 1t)w̃2, (23)

where w̃1, w̃2 ∈ R7.
From the condition ‖γ′(t)‖ = 1, ∀t ∈ I, we immediately deduce ‖w̃1‖ = ‖w̃2‖ =

1√
q2 + 1

and 〈w̃1, w̃2〉 = 0, see e.g., [18] for more details on this type of computations.

Denoting now w1 =
√

q2 + 1w̃1 and w2 =
√

q2 + 1w̃2 we obtain the parametrization (15)
for γ:

γ(t) =
1√

q2 + 1

(
a0 + cos(

√
q2 + 1t)w1 + sin(

√
q2 + 1t)w2

)
,

where w1, w2 are two unitary and orthogonal vectors in R7. Recalling now the fact that γ
lies on S6(1), i.e., ‖γ(t)‖2 = 1, ∀t ∈ I, it follows that

‖a0‖2 = q2, 〈a0, w1〉 = 0, 〈a0, w2〉 = 0. (24)

Thus, a0 is situated in a space orthogonal to the 2-plane Π = span{w1, w2}.
Hence, γ is an Euclidean circle situated in the 2-plane Π, with the center in the point

having the position vector
1√

q2 + 1
a0 and of radius

1√
q2 + 1

.

4.3. Example 3. M6 = S5 ×R
In this case the hypersurface M is a cylinder in R6 ×R. Let us denote an orthonormal

basis, such that R6 = span{e1, . . . , e6} and R = span{e7}. If (p, z) ∈ S5 × R, then the
unitary normal at (p, z) to M is given by N(p,z) = (p, 0).

Let us consider the trajectory γ : I → S5 ×R denoted by

γ(t) = (x(t), f (t)), (25)

where x : I → S5 and f : I → R are differential functions. Thus, ‖x(t)‖ = 1, ∀t ∈ I. The
arclength parametrization condition for γ writes as:

‖x′(t)‖2 + f ′(t)2 = 1, ∀t ∈ I.

We have
γ′′ = ∇γ′γ

′ + 〈Aγ′, γ′〉(x, 0). (26)

If X = (X1, . . . , X7) is tangent to M6 ⊂ R6 ×R, then AX = −X + X7e7.
Since ∇γ′γ

′ = qN × γ′, the Equation (26) can be rewritten as:

x′′ + f ′′e7 = q(x× x′ + f ′x× e7)− ‖x′‖2x. (27)

Obviously, since x× e7 is orthogonal to e7, it belongs to R6. Moreover, ‖x× e7‖2 = 1.
But x× x′ has components both in R6 and R = span{e7}.
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Dealing with all the seven components of γ being non-vanishing is a really challenging
task. For this reason, we plan to find some examples of trajectories on the cylinder S5 ×R,
leaving open the problem of the complete classification of these trajectories.

Theorem 3. Let M6 = S5 × R ⊂ (R7, 〈, 〉,×) be a cylinder in R6 × R, and we consider an
orthonormal basis such that R6 = span{e1, e2, . . . , e6} and R = span{e7}. The next curves

γ : I → S5 ×R γ(t) =
(

x1(t), x2(t), . . . , x6(t)︸ ︷︷ ︸
x(t)

, f (t)
)
,

are examples of magnetic trajectories, as follows:

(i) For x(t) = ei with a certain i = 1, 6, γ(t) = ei + te7 is a straight line parallel to e7, that is a
geodesic.

(ii) For q = 0, the trajectory γ is a helix on a cylinder S1 × R ⊂ M6 parametrized by:

γ(t) = w1 cos(at) + w2 sin(at) + (λt + µ)e7, (28)

where a, λ, µ ∈ R such that a2 + λ2 = 1 and {w1, w2} is an orthonormal basis in a 2-
dimensional vector space W in R6.

(iii) For x(t) = x1(t)e1 + xj(t)ej, with a certain j = 2, 6, we distinguish two cases:

j = 3 The trajectory γ is given by:

γ(t) =
(

cos θ(t), 0, sin θ(t), 0, 0, 0, f (t)
)
, where (29)

θ(t) = λ− 1
q

cos(qt + ψ0), λ, ψ0 ∈ R, (30)

f (t) = µ− 1
q

sin(qt + ψ0), µ ∈ R. (31)

j 6= 3 Depending on the function θ(t), we have:

* If θ(t) is constant, then γ is a vertical line on the cylinder.
* If θ(t) = εt + θ0, where ε = ±1 and θ0 ∈ R, then γ is a horizontal circle :

γ(t) = (cos(εt + θ0), 0, . . . , sin(εt + θ0), . . . , 0, z0). (32)

(iv) For x(t) = x1(t)e1 + x2(t)e2 + xi(t)ei, 2 < i ≤ 6, we study all the possible cases for i and
when i = 4 it follows that γ is an Euclidean circle on S2 ⊂ S5.

(v) For x(t) = x1(t)e1 + x2(t)e2 + x3(t)e3 + x6(t)e6, we define

γ(t) =
(
r1 cos U(t), r2 cos U(t), r1 sin U(t), 0, 0, r2 sin U(t), f (t)

)
,

where

U(t) = µ1 cos(qt) + µ2 sin(qt)− c0

q
, (33)

f (t) = µ1 sin(qt)− µ2 cos(qt), (34)

and µ1, µ2, r1, r2 ∈ R such that r2
1 + r2

2 = 1. Then γ is a magnetic curve on S5 ×R.

Proof. In the sequel, we study step by step the all above cases.

Case (i) x(t) = ei, for a certain i = 1, . . . , 6.

Hence, γ(t) = (0, . . . , 1, . . . , 0, f (t)), i.e., γ′ is parallel to e7. From the arclength
parametrization condition we have f ′(t) = ±1 and consequently γ′(t) = ±e7. The
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Equation (27) is not satisfied in general, unless if (and only if) q = 0. Anyway, we know
that the straight lines parallel to e7 and situated on M6 are geodesics.

Case (ii) q = 0.

Replacing q = 0 in the Equation (27), it yields: x′′ = −‖x′‖2x and f ′′ = 0. Thus,
f ′ = λ ∈ R, ‖x′‖ = a ∈ R such that a2 + λ2 = 1. Subsequently, f (t) = λt + µ, µ ∈ R,
and x(t) = w1 cos(at) + w2 sin(at), a ∈ [0, 1]. From the fact that ‖x‖ = 1, it follows that
{w1, w2} is an orthonormal basis in a 2-dimensional vector space W in R6. Hence, x(t) is a
unitary circle in W. In this manner, we proved that when the strength of the magnetic field
vanishes, the trajectory is parametrized by (28).

Case (iii) x(t) = xi(t)ei + xj(t)ej, for 1 ≤ i < j ≤ 6.

In this case γ(t) = (0, . . . , xi, . . . , xj, . . . , 0, f ). The relation x2
i + x2

j = 1 yields xi =

cos θ(t) and xj = sin θ(t), where θ ∈ C∞(I).
The arclength condition leads to θ′(t)2 + f ′(t)2 = 1.
Let us fix i = 1, j > 1, j 6= 7. The Equation (27) becomes:

x′′1 (t)e1 + x′′j (t)ej + f ′′(t)e7 = q
(

x1(t)x′j(t)− xj(t)x′1(t)
)

e1 × ej

+ q f ′(t)
(
−x1(t)e3 + xj(t)ej × e7

)
− θ′(t)2(x1(t)e1 + xj(t)ej

)
.

(35)

Computing now the scalar product with ej we get:

x′′j (t) = −qx1(t) f ′(t)〈e3, ej〉 − θ′(t)2xj(t). (36)

Subsequently, we distinguish two situations for j, as j = 3 and j 6= 3.
j = 3 The Equation (35) writes as:

x′′1 (t)e1 + x′′3 (t)e3 + f ′′(t)e7 = q
(
x1(t)x′3(t)− x3(t)x′1(t)

)
e7 + q f ′(t)(−x1(t)e3 + x3(t)e1)

− θ′(t)2(x1(t)e1 + x3(t)e3).

Since the vectors {e1, e3, e7} are linearly independent, we have:
x′′1 (t) = q f ′(t)x3(t)− θ′(t)2x1(t),
x′′3 (t) = q f ′(t)x1(t)− θ′(t)2x3(t),
f ′′(t) = q

(
x1(t)x′3(t)− x3(t)x′1(t)

)
.

(37)

We wish to express everything in terms of θ.
Using x1(t) = cos θ(t) and x3(t) = sin θ(t), we obtain:

(θ′′(t) + q f ′(t)) sin θ(t) = 0, (θ′′(t) + q f ′(t)) cos θ(t) = 0, f ′′(t)− qθ′(t) = 0. (38)

Let q 6= 0. The first two equations of (38) immediately yield θ′′(t) + q f ′(t) = 0 and
combining it with the third equation of (38) we get:

θ′(t) = c1 cos(qt) + c2 sin(qt), f ′(t) = c1 sin(qt)− c2 cos(qt), c1, c2 ∈ R.

But θ′(t)2 + f ′(t)2 = 1, ∀t ∈ I, which implies c2
1 + c2

2 = 1. Thus, let us consider
c1 = sin ψ0 and c2 = cos ψ0, ψ0 ∈ R. Now, the previous relation writes as

θ′(t) = sin(qt + ψ0), f ′(t) = − cos(qt + ψ0).
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At this point, the expressions of θ and f are given by (30) and respectively (31), and
the trajectory γ is parametrized by (29). We plot some examples of such trajectories in the
Figure 2, where λ = µ = ψ0 = 0 and the charge q is specified each time.

q =
1
7

q =
1
3

q = 1 q = 3

Figure 2. Trajectories in S5 ×R.

Remark 2. Notice that when the strength q→ 0, the trajectory tends to a straight line, and when
q→ ∞ the trajectory tends to a circle. Obviously, these two cases for γ are geodesics.

Remark 3. If we look at the parametrization of the trajectory γ given by (28) in the case (ii) when
q = 0 and we ask for the 2-dimensional vector space W to be spanned by e1 and e3, it follows that

γ(t) = cos(at + b)e1 + sin(at + b)e3 + (λt + µ)e7,

and it represents a circular helix in the space spanned by {e1, e3, e7}.

j 6= 3 The Equation (36) becomes cos θ(t)θ′′(t) = 0.
We assume that θ(t) is a non-constant function, otherwise the trajectory γ is a vertical

line on the cylinder M6, hence a geodesic, which implies further that the strength vanishes,
q = 0. Summarizing, θ′′(t) = 0, namely θ(t) is an afine function.

Let us see what we obtain computing different scalar products in (35):

→ 〈 · , e1〉 does not furnish new information, since 〈ej × e7, e1〉 = 0 for j 6= 3.
→ 〈 · , e3〉 yields q f ′(t)x1(t) = 0, since 〈e1 × ej, e3〉 = 0, 〈ej, e3〉 = 0.
→ 〈 · , e7〉 yields f ′′(t) = 0, since 〈e1 × ej, e7〉 = 0 for j 6= 3.
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We conclude that f (t) is a constant function, let us denote it z0. Thus, the trajectory γ
is a horizontal circle, parametrized by (32).

Case (iv) x(t) = x1(t)e1 + x2(t)e2 + xi(t)ei, for 2 < i ≤ 6.

Now γ(t) = (x1(t), x2(t), 0, . . . , xi(t), . . . , 0, f (t)), as x2
1(t) + x2

2(t) + x2
i (t) = 1 and

x′1(t)
2 + x′2(t)

2 + x′i(t)
2 + f ′(t)2 = 1. Back in Equation (27):

x′′1 (t)e1+x′′2 (t)e2 + x′′i (t)ei + f ′′(t)e7

= q(x1(t)e1 + x2(t)e2 + xi(t)ei)×
(
x′1(t)e1 + x′2(t)e2 + x′i(t)ei

)
+ q f ′(t)(x1(t)e1 + x2(t)e2 + xi(t)ei)× e7

− ‖x′(t)‖2(x1(t)e1 + x2(t)e2 + xi(t)ei).

(39)

We compute

x× x′ = (x1x′2 − x2x′1)e4 + (x1x′i − xix′1)e1 × ei + (x2x′i − xix′2)e2 × ei,
x× e7 = −x1e3 − x2e6 + xiei × e7.

(40)

We study in the sequel all the four possible values for i.
i = 3 The relations (40) become:

x× x′ = (x1x′2 − x2x′1)e4 + (x1x′3 − x3x′1)e7 + (x2x′3 − x3x′2)e5,
x× e7 = −x1e3 − x2e6 + x3e1.

Replacing now in (39) and identifying the coefficients, we find

e1: x′′1 = q f ′x3 − ‖x′‖2x1, e5: 0 = q(x2x′3 − x3x′2),
e2: x′′2 = −‖x′‖2x2, e6: 0 = −q f ′x2,
e3: x′′3 = −q f ′x1 − ‖x′‖2x3, e7: f ′′ = q(x1x′3 − x3x′1),
e4: 0 = q(x1x′2 − x2x′1).

From the relation given by the coefficient of e6, it follows that q f ′(t) = 0, and since
q 6= 0 it follows that f (t) = z0 is a constant function, thus the trajectory γ is a curve on S5,
but, basically, it lies on a sphere S2 ⊂ S5. Some consequences:

‖x′‖ = 1, x′′1 (t) + x1 = 0, x′′2 (t) + x2 = 0, x′′3 (t) + x3 = 0,

which yield:

x1(t) = a1 cos t + a2 sin t, x2(t) = b1 cos t + b2 sin t, x3(t) = c1 cos t + c2 sin t, (41)

where a1, a2, b1, b2, c1, c2 ∈ R.
Moreover, for q 6= 0, we have also:

x1x′2 = x2x′1, x2x′3 = x3x′2, x1x′3 = x3x′1,

and using now (41) we obtain

x1x′2 = (a1 cos t + a2 sin t)(b2 cos t− b1 sin t)
= a1b2 cos2 t− a2b1 sin2 t + (a2b2 − a1b1) sin t cos t,

x2x′1 = a2b1 cos2 t− a1b2 sin2 t + (a2b2 − a1b1) sin t cos t.

Subtracting these two relations, we have a1b2 = a2b1. Analogously, we obtain b2c1 = b1c2
and a1c2 = a2c1. If a2 = 0, then a1 6= 0, that implies b2 = 0 and c2 = 0. If a2 6= 0, then
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b2 6= 0 and c2 6= 0. As
a1

a2
=

b1

b2
=

c1

c2
, it follows that there exists a real constant µ such that

a2 = µa1, b2 = µa2, c2 = µa3 and now, the expressions (41) become:

(x1, x2, x3) = (cos t + µ sin t)(a1, b1, c1).

This relation is valid also for a2 = 0, case when µ = 0.
Checking now the condition

1 = ‖x′‖2 = (µ cos t− sin t)2‖(a1, b1, c1)‖2, ∀t ∈ I,

it is false, thus q = 0. This situation was described in the case (ii) of the proof.
i = 4 The relations (40) become:

x× x′ = (x1x′2 − x2x′1)e4 − (x1x′4 − x4x′1)e2 + (x2x′4 − x4x′1)e1,
x× e7 = −x1e3 − x2e6 − x4e5.

Replacing now in (39) and identifying the coefficients, we have
e1: x′′1 = q(x2x′4 − x4x′1)− ‖x′‖2x1, e5: 0 = −q f ′x4,
e2: x′′2 = −q(x1x′4 − x4x′1)− ‖x′‖2x2, e6: 0 = −q f ′x2,
e3: 0 = −q f ′x1, e7: f ′′ = 0,
e4: x′′4 = q(x1x′2 − x2x′1)− ‖x′‖2x4.

We deduce that q f ′(t) = 0, namely the trajectory γ(t) ∈ S2 × {z0} ⊂ S5 × {z0}. We
set q 6= 0. In other words, γ lies in S2 ×R ⊂ S5 ×R. Thus, ‖x′‖2 = 1 and it yields:

x′′1 + x1 = q(x2x′4 − x4x′1), x′′2 + x2 = q(x4x′1 − x1x′4), x′′4 + x4 = q(x1x′2 − x2x′1). (42)

If we consider x = (x1, x2, x4) ∈ R3, then the above system of equations can be
rewritten as x′′ + x = qx× x′, where in this case × denotes the cross product in R3. The
curve x in R3 has constant curvature

√
q2 + 1 and we deduce that it is an Euclidean circle

(we know that x ⊂ S2 ⊂ R3).
i = 5 The relations (40) become:

x× x′ = (x1x′2 − x2x′1)e4 + (x1x′5 − x5x′1)e6 − (x2x′5 − x5x′2)e3,
x× e7 = −x1e3 − x2e6 + x5e4.

Replacing now in (39) and identifying the coefficients,

e1: x′′1 = −‖x′‖2x1 e5: x′′5 = −‖x′‖2x5
e2: x′′2 = −‖x′‖2x2 e6: 0 = q(x1x′5 − x5x′1)− q f ′x2
e3: 0 = −q(x2x′5 − x5x′2)− q f ′x1 e7: f ′′ = 0.
e4: 0 = q(x1x′2 − x2x′1) + q f ′x5

We immediately notice that f ′ is constant, let us denote it by σ ∈ [0, 1] and it yields
‖x′‖ =

√
1− σ2. Replacing these information in the above relations, we obtain:

x′′1 + (1− σ2)x1 = 0, x′′2 + (1− σ2)x2 = 0, x′′5 + (1− σ2)x5 = 0,

qσx1 + q(x2x′5 − x5x′2) = 0, qσx2 + q(x5x′1 − x1x′5) = 0, qσx5 + q(x1x′2 − x2x′1) = 0.

In the same manner as in the previous case, we consider x = (x1, x2, x5) in S2 ⊂ R3.
The system of equations from the right hand side above writes as qσx + qx× x′ = 0. Taking
the scalar product with x, we have qσ = 0. Hence, q = 0 - case discussed in the beginning of
the proof - or f ′ = 0, and thereby x′′ + x = 0 and x× x′ = 0. This leads to a contradiction.
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i = 6 Also now, as it can be easily anticipated by the reader, we are proceeding as in
the previous cases. So, the relations (40) become:

x× x′ = (x1x′2 − x2x′1)e4 − (x1x′6 − x6x′1)e5 + (x2x′6 − x6x′2)e7,
x× e7 = −x1e3 − x2e6 + x6e2.

The Equation (39) yields:

e1: x′′1 = −‖x′‖2x1, e5: 0 = −q(x1x′6 − x6x′1),
e2: x′′2 = q f ′x6 − ‖x′‖2x2, e6: x′′6 = −q f ′x2 − ‖x′‖2x6,
e3: 0 = −q f ′x1, e7: f ′′ = q(x2x′6 − x6x′2),
e4: 0 = q(x1x′2 − x2x′1).

Again, it can be shown that we must have q = 0.

Case (v) x(t) = x1(t)e1 + x2(t)e2 + x3(t)e3 + x6(t)e6.

The curve γ is parametrized as: γ(t) = (x1, x2, x3, 0, 0, x6, f ). The relations (40) become:

x× x′ = (x1x′2 − x2x′1)e4 + (x1x′3 − x3x′1)e7 − (x1x′6 − x6x′1)e5

+ (x2x′3 − x3x′2)e5 + (x2x′6 − x6x′2)e7 − (x3x′6 − x6x′3)e4,

x× e7 = −x1e3 − x2e6 + x3e1 + x6e2.

The Equation (39) yields:

e1: x′′1 + ‖x′‖2x1 = q f ′x3, e4: 0 = q
(
(x1x′2 − x2x′1)− (x3x′6 − x6x′3)

)
,

e2: x′′2 + ‖x′‖2x2 = q f ′x6, e5: 0 = q
(
(x2x′3 − x3x′2)− (x1x′6 − x6x′1)

)
,

e3: x′′3 + ‖x′‖2x3 = −q f ′x1, e6: x′′6 + ‖x′‖2x6 = −q f ′x2,
e7: f ′′ = q

(
(x1x′3 − x3x′1) + (x2x′6 − x6x′2)

)
.

We look for x in a special form, namely let us denote

x1 = r1 cos U(t), x′1 = −r1U′ sin U,
x3 = r1 sin U(t), x′3 = r1U′ cos U,
x2 = r2 cos V(t), x′2 = −r2V′ sin V,
x6 = r2 sin V(t), x′6 = r2V′ cos V,

where r1, r2 ∈ R such that r2
1 + r2

2 = 1. Moreover, ‖x′‖2 = r2
1U′(t)2 + r2

2V′(t)2. Computing

x1x′3 − x3x′1 = r2
1U′(t) cos2 U(t) + r2

1U′(t) sin2 U(t) = r2
1U′(t),

x2x′6 − x6x′2 = r2
2V′(t),

and replacing these expressions in the relation resulting from the coefficient of e7, we obtain
that f ′′ = q(r2

1U′ + r2
2V′) and it follows that f ′ − q(r2

1U + r2
2V) = const. Computing

x1x′2 − x2x′1 = −r1r2V′ sin V cos U + r1r2U′ cos V sin U,
x3x′6 − x6x′3 = r1r2V′ sin U cos V − r1r2U′ sin V cos U,

dividing by r1r2 and assuming q 6= 0, from the coefficient of e4 we have that−V′ sin V cos U +
U′ cos V sin U = V′ sin U cos V − U′ sin V cos U, which can be rewritten as U′ sin(U +
V) = V′ sin(U + V). Hence, or U + V = kπ, k ∈ Z, or V = U + const.

Let us assume in the sequel V = U and the non-vanishing coordinates of x satisfy:

x1 = r1 cos U(t), x′1 = −r1U′ sin U,
x3 = r1 sin U(t), x′3 = r1U′ cos U,
x2 = r2 cos U(t), x′2 = −r2U′ sin U,
x6 = r2 sin U(t), x′6 = r2U′ cos U,
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The function f satisfies the equation f ′′(t) = qU′(t), which yields

f ′(t) = qU(t) + c0, c0 ∈ R. (43)

Next, replacing this expression of f ′ together with the expressions if x′′1 and ‖x′‖2x1 in
the coefficient of e1, we get the equation: U′′(t) + q2U(t) + qc0 = 0, which has the solution
(33). Now, the Equation (43) can be solved, obtaining f (t) = µ1 sin(qt) − µ2 cos(qt) +
f0, and up to translations along R = [e7] − axis, f0 can be taken zero and f (t) has the
expression (34).

The geometry of the cylinders S5 ×R seems to be very interesting and needs a special
attention. Apart from our results obtained in this paper, we recall the two almost contact
metric structures defined on S5 via octonions. See e.g., Blair’s book [17].

5. Conclusions

In this last section we briefly summarize our achievements in the study of magnetic
curves in R7. First, we point out the major differences which arise, in comparison to the
analogous study in the 3-dimensional case R3. Second, the main results are as follows. In
the Theorem 1 we classify the normal magnetic curves on a hypersurface H ⊂ R7 endowed
with the normal V—a unitary constant vector, and we obtain straight lines and circles
parametrized by (8). In the Theorem 2 we prove that the normal magnetic curves in the unit
6-sphere S6 ⊂ R7 are circles which lie on the 2-sphere and they are parametrized in (15).
The theorem 3 consists in examples of trajectories on the cylinder S5 ×R ⊂ R7.

We end this section with a proposal of a new problem for the readers, namely the
analogous study in the Minkowski space. We think that a Lorentzian analogue of the
Riemannian cross product should be described, in an analogue way as in dimension 3
see [19]. One can expect that the set of the magnetic curves on M6 to be richer than in the
Riemannian case. Finally, we would like to point out that also the curves found in [20] may
be related to the issue studied in the present article.
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