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Abstract: The exponential synchronization of complex dynamical networks (CDNs) under improved
nonfragile sampled-data event-triggered control (INFSDETC) is investigated in this study. A mean-
ingful yet challenging issue is solved, namely, it can adjust the triggering mode and the triggering
frequency to adapt to more situations in the event-triggered scheme in which it is able to adjust the
triggering condition exponentially and linearly, and dynamically adjust the triggering according to the
time and state. By using control theory and Lyapunov analysis theory, an improved event-triggered
controller was constructed for more intelligent control and to ensure exponential synchronization for
CDNs. Lastly, significant numerical simulation examples are developed to show the usefulness and
the performance of the proposed methods.

Keywords: event-triggered scheme; event-triggered control; complex dynamical networks;
exponential synchronization

MSC: 93-10; 93-08; 93-06

1. Introduction

CDNs are network structures composed of complex network nodes whose synchro-
nization performance drives network nodes to move or achieve the goal of coordination [1].
Complex network systems are widely used in biology, unmanned aerial vehicles, and
power grids, and have received extensive attention [1–4]. The authors in [3,5] conducted
pioneering studies on the synchronization of complex networks. There are many studies
on the performance analysis of dynamical systems [4,6–10]. One of the important tasks in
complex networks is to design a reasonable controller to allow for the system to achieve
excellent performance. The event-triggered scheme was recently recognized to efficiently
enable saving computing resources and handling control problems [11–13]. However, there
are still many triggering and control problems to be solved in the event-triggered control of
CDNs.

In order to explore the complex relationships of society and biology, researchers
proposed the physical characteristics of higher-order interactions in complex networks
in [2]. Exponential synchronization is an important performance index of complex net-
works to explore dynamical theory and dynamical features. The almost surely exponential
synchronization for CDNs under noise signals was studied in [14]. The mean-square
exponential synchronization for N linearly coupled complex networks, including Marko-
vian switching and time delays, was investigated in [15]. In [16], exponential synchro-
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nization for a complex dynamical network containing coupling time delay and impul-
sive signals was studied. We explore the new exponential synchronization criteria of
CDNs under a more general event-triggered controller. In several studies on the per-
formance of CDNs, sampling technology was increasingly applied to the exponential
synchronization problem of complex network systems. Sampled-data controllers are de-
signed to achieve exponential synchronization for CDNs. Exponential synchronization
for CDNs under sampled-data feedback control was studied in [17]. Nonfragile-memory
sampled-data control was used for the exponential synchronization of delayed CDNs in [10].
In [18], the researchers gave new synchronization conditions with sampled-data control
and a new integral inequality. Although there are extensive studies on the exponential
synchronization of CDNs, there are few on the exponential synchronization of CDNs under
INFSDETC, which needs to be further studied.

The event-triggered scheme (ETS) as an effective control method has attracted the
interest of researchers due to its excellent monitoring control performance and resource-
saving advantages. The working mechanism of the event-triggered scheme is to activate the
triggering program to further control the system whenever the error between the current
state of the concerned system and the previous one reaches a certain threshold [19,20]. A
centralized and then distributed ETS was proposed in [21]: when the controller is updated,
only the information of its neighbor nodes is needed. An ETC that is based on sampled-
data signals was proposed in [22] and was further developed later. This does not require
additional hardware to monitor the immediate status of the system in the sampled-data-
based ETS. Due to the factors of communication and sensors, the controller in dynamical
systems allows for the system to have infinite switching in a finite time. This phenomenon
is called Zeno behavior or the Zeno phenomenon [23]. In event-triggered control, Zeno
behavior is mainly represented by the case in which the trigger is activated infinitely in
a finite time. Thus, Zeno behavior in this paper denotes infinite triggering behavior in
finite time. The Zeno phenomenon was difficult to avoid for many systems with small
perturbations in [24]. Therefore, the event-triggered scheme with sampled-data signals has
become a common method. A recent overview of sampled-data event-triggered control
was developed in [20]. To sum up the above, there are many studies on classical event-
triggered protocols and common event-triggered schemes in various forms. However,
setting the triggering threshold and error parameter needs to be further enriched to achieve
more flexible triggering and match the environment of the system. The adjustment of the
triggering mechanism needs to be further improved, such as via linear, exponential, and
dynamic adjustments.

In this study, the event-triggered mechanism is improved to become a more general
form and more adaptable to various system environments. New exponential convergence
criteria for complex networks were obtained. The several contributions of this paper are
listed below:

• Triggering Condition (4) is a generalized form covering situations in many other
studies [25–27]. The trigger in the improved sampled-data event-triggered scheme
was extended to be accelerated or decelerated linearly and exponentially, which
increases the flexibility of the triggering scheme.

• The piecewise function was applied to the triggering condition in Remark 1, which can
realize the flexibility of time according to the actual demand of different time periods.
For the randomness of different triggering scenarios, Markov switching is applied
to allow for the triggering condition to better adapt to possible scenarios, which is
described in detail in Remark 1. The dynamic adjustment of the triggering is also
realized in the event-triggered scheme described in Remark 3. Their results are given
in the examples.

• The triggering time instants of different nodes were sequenced into the control time
series. This rearrangement was well-handled and facilitated performance analysis
of the system. Under the designed event-triggered control scheme, the nonfragile
exponential synchronization criteria of complex networks are obtained.
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Notations: Throughout the text, Rn and Rn×n stand for n-dimensional Euclidean space
and n × n real matrices, respectively. Sn is the set of all real n × n symmetric matrices.
sym{X} denotes X + XT . For two symmetric matrices P and Q, inequality P ≥ Q (P > Q)
denotes that matrix P− Q is non-negative definite (positive definite). diag. . . means the
block diagonal matrix. ∗ represents blocks of elements below the diagonal of a symmetric
matrix.

⊗
stands for the Kronecker product operation of the matrices, and 0 represents

zero or a zero matrix with appropriate dimension. n× N is denoted by N. Prob. . . and E
denote the probability of random variables and the operation of mathematical expectations,
respectively. I_n = diag1, 1, · · · , 1︸ ︷︷ ︸ _n.

2. Preliminaries

Given CDNs containing a set of N nodes:

ϕ̇i(t) = g(ϕi(t)) + γ
N

∑
j=1

hij Aϕj(t− τ(t)) + ui(t), (1)

where ϕi(t) ∈ Rn, i = 1, 2, . . . , N, denotes the i-th node’s state vector and ϕi(t) = [ϕi1(t),
ϕi2(t ), . . . , ϕin(t)]T . Matrix H = (hij)NN and the scalar γ stand for the out-coupled config-
uration matrix and the coupling strength, respectively. A = diag{a1, a2, . . . , an} is a known
non-negative diagonal matrix. Here, hii is denoted by hii = −∑N

j=1,j 6=i hij, i = 1, 2, . . . , N.
hij > 0 means that node i is linked to node j(i 6= j); if not, then hij = 0. τ(t), satisfying
0 ≤ τ(t) ≤ τ and τ̇(t) ≤ µ means time-varying delays where µ and τ are known scalars.
ui(t) represents the control input. Let variable v(t) ∈ Rn be the state vector of the unforced
node and let it satisfy v̇(t) = g(v(t)). g(·) : Rn 7→ Rn is the continuous and bounded
nonlinear activation function that satisfies the inequality as follows:

[g(φi)− g(φj)−k1(φi − φj)]
T [g(φi)− g(φj)−k2(φi − φj)] ≤ 0, ∀φi, φj ∈ Rn, (2)

where k1, k2 ∈ Rn×n are known matrices.
Let φi(t) = ϕi(t)− v(t); the following dynamic system from CDNs (1) and v̇(t) =

g(v(t)) can be deduced:

φ̇i(t) = f (φi(t)) + γ
N

∑
j=1

hij Aφj(t− τ(t)) + ui(t), (3)

where f (φi(t)) = g(ϕi(t))− g(v(t)), i = 1, 2, . . . , N.
The minimal sampling time interval in controller was set to be h. The control time

instant of the controller ui(t) is defined as ti
s, which was determined with the following

conditions of the improved sampled-data event-triggered scheme in order to achieve the
more flexible and intelligent error detection of the system (3).

ti
s+1 = ti

s + in f {κh : t > ti
s, Ψi(t) ≥ 0}, s = 1, 2, · · · , ∞, κ = 1, 2, · · · , ∞, (4)

where

Ψi(t) =
(
ε0(t)‖ϑi(t)‖2eε1(t)(t−ti

s) − ε2(t)
∥∥∥φi

(
ti
s

)∥∥∥2
− χi(t)

)(
1− t− ti

s
ε3

)
,

ε0(t) ∈ [ε0, ε0], ε1(t) ∈ [ε1, ε1], ε2(t) ∈ [ε2, ε2],

χ̇i(t) = ε4χi(t) + ε5
(
ε0(t)‖ϑi(t)‖2eε1(t)(t−ti

s) − ε2(t)
∥∥∥φi

(
ti
s

)∥∥∥2)
,

ϑi(t) = φi(t)− φi(ti
s),

with 0 ≤ ε0 ≤ ε0, 0 ≤ ε1 ≤ ε1, 0 ≤ ε2 ≤ ε2, ε3 > 0, ε4 ≥ 0, ε5 ≥ 0, ti
0 = 0, χi(ti

0) ≥ 0.
Obviously, no Zeno behavior occurred under the event-triggered scheme, since h was
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the minimal triggering time instant interval. From the condition, it can be deduced that

h̄ , sup{ti
s+1 − ti

s} =
(

1 +
[ ε3

h
])

h. The explanations of the desired event-triggered scheme
are shown in Figure 1 and the following remarks.

Figure 1. The classical and provide sharper image if available event-triggered scheme is extended to
an improved event-triggered scheme. The corresponding advantages are illustrated in Remarks 1–4
and 8–11.

Remark 1. ε0(t),ε1(t) and ε2(t) are bounded functions where the numerical change of the function
can be reflected on the triggering frequency and triggering state. The corresponding needed function
can be set according to the timing to increase or decrease the triggering frequency exponentially or
linearly. In particular, taking ε0(t),ε1(t) and ε2(t) as piecewise functions or switching functions,
the triggering mechanism has the following advantages shown in Cases 1 and 2.

Case 1: As ε0(t),ε1(t) and ε2(t) were set to be piecewise functions, different triggering
conditions could be used in different time periods, reflecting the different trigger characteristics in
multiple time periods and adapting to the environment in multiple time periods.

Case 2: As ε0(t), ε1(t), ε2(t) become ε
$(t)
0 (t), ε

$(t)
1 (t), ε

$(t)
2 (t), respectively, where $(t) is the

Markov switching function described as [28,29], the triggering condition changed into the switching
mode form. That is, ε0(t), ε1(t), ε2(t) were able to be in the different mode based on $(t) shown
in Figure 2, causing the switching condition to be in different working modes. At this point, if
the system also contains switching modes, and triggering conditions can be well-matched with the
system’s modes.

Remark 2. φi(t) is dependent on
N
∑

j=1
hij Aφj(t− τ(t)); there is a coupling term

N
∑

j=1
hij Aφj(t−

τ(t)). Therefore, there are coupling terms implicitly for event-triggering parameters that include
the communicating characteristics of network nodes with each other. The parameters in the event-
triggered scheme are related to the coupling node related to j, and are implicitly in a coupling form
that could instantly reflect the data errors between nodes, which in turn facilitates more timely
control.

Remark 3. Dynamic variable χi(t) dynamically expands the triggering threshold to increase the
flexibility of the triggered scheme. When the system gradually stabilizes, the triggered mechanism
is activated only when the dynamically expanded threshold is reached, which reduces the waste of
communication resources to a certain extent. If it is not necessary to activate dynamic variable χi(t),
setting ε4 = ε5 = 0 would be satisfied.

Remark 4. To increase the flexibility of the event-triggered mechanism, parameters ε0(t), ε1(t),
ε2(t), ε3, ε4, ε5 were set to adjust the trigger from a different direction in combination with
exponential and linear functions. When the triggering frequency needs to be linearly changed,
ε0(t) and ε2(t) can be used as adjusting functions; then, the trend of the triggering function Ψi(t)
generally changes linearly. ε2(t) plays an important role as an exponential adjusting parameter
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in the process of acceleration or deceleration of triggering times when an exponential change in

triggering frequency is required. 1− t−ti
s

ε3
is used as an upper bound function for the triggering

scheme, aiming to avoid no triggering time within a long time or to set artificially triggering upper

bound. In this case, one can easily calculate an upper bound of triggering:
(

1 +
[ ε3

h
])

h. If there is
no need for the upper bound, ε3 could be set to a very large number to meet the demands.

0 2 4 6 8 10 12
0.5

1

1.5

2

2.5

3

3.5

4

4.5

current mode

Figure 2. The triggering scheme can be in different working modes. The mode and its duration are
determined with the given Markov switching variables.

The control time instants were set to be {ti
s}+∞

s=1. Further, time instants {tk}+∞
k=1 were

introduced to rewrite System (3) as System (7) in compact form. The control input ui(t) of
node i is shown below:

ui(t) = (K1i + δ(t)∆K1i(t))φi(ti
s) + (K2i + δ(t)∆K2i(t))φi(ti

s − ı)

= (K1i + δ(t)∆K1i(t))θi(tk)φi(tk) + (K2i + δ(t)∆K2i(t))θi(tk)φi(tk − ı), tk ≤ t < tk+1,
(5)

with

θi(tk) =

{
1 , if tk = ti

s;
0 , otherwise,

(6)

[∆K1i(t), ∆K2i(t)] = HiPi(t)[E1i, E2i],

PT
i (t)Pi(t) ≤ I,

Prob{δ(t) = 1} = δ, Prob{δ(t) = 0} = 1− δ,

E {δ(t)− δ} = 0, E {(δ(t)− δ)2} = δ(1 − δ),

where matrices K1i and K2i are the controller gains that need to be determined. Matrices
∆K1i(t) and ∆K2i(t) stand for the interference signal of controller gain (ISCG). δ(t), obeying
Bernoulli distribution, denotes the stochastic variable that is used to simulate the random
occurrence of interference signals. If ISCG occurs, δ(t) = 1; otherwise, δ(t) = 0. Constant ı
represents time delays occurring in the transmission of signals. The triggering time instants
are reordered into the time instants of the controller, which can improve the degree of
freedom of triggering conditions and the performance analysis of dynamical systems due
to the weakening of triggering time instants (See Figure 3).

System (3) can be further rewritten as the following compact form using the Kronecker
product:

φ̇(t) = F(φ(t))+γ(H⊗ A)φ(t− τ(t))+K1(Θ(tk)⊗ In)φ(tk)+K2(Θ(tk)⊗ In)φ(tk− ı)+ δHp(t)− (δ− δ(t))Hp(t), (7)
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where

F(φ(t)) = [ f T(φ1(t)), f T(φ2(t)), . . . , f T(φN(t))]T ,

φ(·) = [φT
1 (·), φT

2 (·), . . . , φT
N(·)]T ,

K1 = diag{K11, K12, . . . , K1N},
K2 = diag{K21, K22, . . . , K2N},
Θ(tk) = diag{θ1(tk), θ2(tk), . . . , θN(tk)},
H = diag{H1,H2, · · · ,HN},
P(t) = diag{P1(t),P2(t), · · · ,PN(t)},
E1 = diag{E11, E12, · · · , E1N},
E2 = diag{E21, E22, · · · , E2N},
p(t) = P(t)(E1φ(tk) + E2φ(tk − ı)).

Figure 3. Triggering time instants are reordered into the time instants of the controller, which
can improve the degree of freedom of triggering conditions and the performance analysis of a
dynamical system.

Remark 5. An interference signal is inevitable in the signal communication domain and its
applications. The influence of interference signals on a dynamic system should be considered when
a control input is designed. Since ISCG occurs randomly, variable δ(t) was designed to simulate
this random process. Moreover, as the time delays in signal and information transmission happens
occasionally, term ı was designed to describe more details in the controller. Control input ui(t)
involves the information of two time instants: the sampling instant and its delayed instant, in which
more information is integrated to render the running of the controller more precise.

Definition 1 ([30]). If Error Dynamics (7) is exponentially stable, CDNs (1) are exponentially
synchronized, i.e., there exist two scalars α, ι > 0, such that

‖φ(t)‖ ≤ ιe−αt sup
−ν≤θ≤0

{‖φ(θ)‖, ‖φ̇(θ)‖}, (8)

where ν = max{τ, h̄}, α denotes the decay rate, and ι denotes the decay coefficient.

Lemma 1 ([31]). Given matrix M > 0, in any continuously differentiable function z(t) :
[a, b] 7−→ RN, the following inequality holds:

∫ b

a

.
zT
(α)M

.
z(α)dα ≥ 1

b− a
ζT

1 Mζ1 +
3

b− a
ζT

2 Mζ2,

where ζ1 = z(b)− z(a), ζ2 = z(b) + z(a)− 2
b−a

∫ b
a z(α)dα.

Lemma 2 ([32]). Let z(t) : [a, b) → RN and z(a) = 0, such that the concerned integrations are
well-defined. Then, for any positive matrix M ∈ RN×N, the following inequality holds:

∫ b

a
zT(α)Mz(α)dα ≤ 4(b− a)2

π2

∫ b

a
żT(α)Mż(α)dα. (9)
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Lemma 3 ([33]). For any matrix
[

M1 S
∗ M2

]
≥ 0, scalars τ > 0, τ(t) satisfying 0 ≤ τ(t) ≤ τ,

and vector function ϕ̇(t) : [−τ, 0]→ RN, such that the concerned integrations are well-defined,

− τ
∫ t

t−τ(t)
ϕ̇(α)TM1 ϕ̇(α)dα− τ

∫ t−τ(t)

t−τ
ϕ̇(α)TM2 ϕ̇(α)dα ≤ ℵ(t)TΩℵ(t), (10)

where
ℵ(t) = [ϕ(t)T, ϕ(t− τ(t))T, ϕ(t− τ)T]T,

Ω =

 −M1 M1 − S S
∗ −M1 −M2 + sym{S} −S + M2
∗ ∗ −M2

.

3. Main Results

In this section, under INFSDETC, the exponential synchronization criteria of System (7)
are obtained.

Theorem 1. Given scalars θ ≥ 0, ε1 ≥ 0, ε2 ≥ 0, h > 0, 0 ≤ ε0 ≤ ε0, 0 ≤ ε1 ≤ ε1, 0 ≤
ε2 ≤ ε2, ε3 > 0, ε4 ≥ 0, ε5 ≥ 0, h ≥ 0, µ ≥ 0, τ ≥ 0, ı > 0, κ1, κ2, κ3, κ4, and matrices
H = diag{H1,H2, · · · ,HN}, E1 = diag{E11, E12, · · · , E1N}, E2 = diag{E21, E22, · · · , E2N},
Error System (7) achieves globally exponential stability with INFSDETC (5) if there exist symmetric
positive definite matrices P ∈ R3N×3N, Q1, Q2, M1, M2, M3 ∈ RN×N, N1=[N111 N112∗ N122]

∈ RN×N, N2=
[

N211 N212
∗ N222

]
∈ RN×N, U ∈ RN×N, Z1=

Z111 Z112 Z113
∗ Z122 Z123
∗ ∗ Z133

∈ R3N×3N, Z2 ∈

RN×N, X3, X4∈ RN×N, S = diag{S1, S2, . . . , SN}, W1 = diag{W11, W12, . . . , W1N}, W2 =
diag{W21, W22, . . . , W2N}∈ RN×N, any matrices X1, X2∈ RN×10N, Y∈ RN×N, such that the
following linear matrix inequalities hold:

Λ1 + h̄Λ2
h̄
2 Z̄1

√
h̄XT

1 3
√

h̄XT
2

∗ −X3 0 0
∗ ∗ −e2θh̄N222 0
∗ ∗ ∗ −3e2θh̄N222

 < 0, (11)

 Λ1 + h̄Λ3
h̄
2 Z̄1 �T

1 Z2
∗ −X3 0
∗ ∗ −X4

 < 0, (12)

[
e−2θτ M1 + (1− µ)e−2θε M2 Y

∗ e−2θτ M1

]
≥ 0, (13)

where the relevant mathematical symbols and equations are listed in Appendix A.
Moreover, the control gain matrices are determined with

K1i = S−1
i W1i, K2i = S−1

i W2i, i = 1, 2, · · · , N. (14)

Proof of Theorem 1. The Lyapunov functional is defined as follows:

V(t, tk) =
7

∑
l=1

Vl(t, tk), t ∈ [tk, tk+1), (15)

where
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V1(t, tk) = (t− tk)e2θtηT(t)Pη(t)

V2(t, tk) = e2θτ
∫ t

t−τ(t)
e2θsφT(s)Q1φ(s)ds + e2θτ

∫ t

t−τ
e2θsφT(s)Q2φ(s)ds,

V3(t, tk) = τ
∫ t

t−τ

∫ t

v
e2θsφ̇T(s)M1φ̇(s)dsdv + τ

∫ t

t−τ(t)

∫ t

v
e2θsφ̇T(s)M2φ̇(s)dsdv,

V4(t, tk) = ı
∫ t

t−ı

∫ t

v
e2θsφ̇T(s)M3φ̇(s)dsdv,

V5(t, tk) = (tk+1 − t)
∫ t

tk

e2θsςT
1 (s)N1ς1(s)ds + (tk+1 − t)

∫ t

tk

e2θsςT
2 (s)N2ς2(s)ds,

V6(t, tk) = h̄2
∫ t

tk−ı
e2θsηT

2 (s)Uη2(s)ds− π2

4

∫ t−ı

tk−ı
e2θs(φ(s)− φ(tk − ı))TU(φ(s)− φ(tk − ı))ds,

V7(t, tk) = (t− tk)(tk+1 − t)e2θtςT
3 (t)Z1ς3(t) + (t− tk)(tk+1 − t)e2θtςT

4 (t)Z2ς4(t),

with the relevant mathematical symbols and equations listed in Appendix A. Except at
sampling point tk, V(t, tk) was continuous on interval [0, ∞). It is obvious that V1(tk, tk) ≡ 0
and V5(tk, tk) ≡ 0. As t → t−k , V1(t, tk) ≥ V1(tk, tk), V5(t, tk) ≥ V5(tk, tk) hold. Thus,
limt→t−k

V(t, tk) ≥ V(tk, tk).
Defining infinitesimal operator L as follows:

LV(t, tk) = lim
∆→0+

1
∆
{E {V(t + ∆, tk)|t} −V(t, tk)}, (16)

Taking the derivative of V(t, tk) leads to

E {LV1(t, tk)} = 2(t− tk)e2θtηT(t)Pη1(t) + e2θtηT(t)Pη(t) + 2θ(t− tk)e2θtηT(t)Pη(t)

≤ 2e2θtηT(t)P(η12 + (t− tk)η13(t)) + e2θtηT(t)Pη(t)

+ 2θ(t− tk)e2θtηT(t)Pη(t)

= e2θtξT(t)(Υ11 + (t− tk)Υ12)ξ(t).

(17)

E {LV2(t, tk)} ≤ e2θ(t+τ)φT(t)Q1φ(t)− (1− µ)e2θtφT(t− τ(t))Q1φ(t− τ(t))

+ e2θ(t+τ)φT(t)Q2φ(t)− e2θtφT(t− τ)Q2φ(t− τ)

= e2θtξT(t)Υ2ξ(t).

(18)

E {LV3(t, tk)} ≤ e2θtτ2φ̇T(t)(M1 + M2)φ̇(t)− τe2θt
∫ t

t−τ
e−2θτ φ̇T(s)M1φ̇(s)ds− τ

∫ t

t−τ(t)
e2θsφ̇T(s)M2φ̇(s)ds

+ ττ̇(t)
∫ t

t−τ(t)
e2θsφ̇T(s)M2φ̇(s)ds

≤ e2θtτ2φ̇T(t)(M1 + M2)φ̇(t)− τe2θt
∫ t

t−τ
e−2θτ φ̇T(s)M1φ̇(s)ds

− τ(1− µ)e2θt
∫ t

t−τ(t)
e−2θεφ̇T(s)M2φ̇(s)ds.

(19)

Through Lemma 3, one can deduce that
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− τ
∫ t

t−τ
e−2θτ φ̇T(s)M1φ̇(s)ds− τ(1− µ)

∫ t

t−τ(t)
e−2θεφ̇T(s)M2φ̇(s)ds

= −τ
∫ t

t−τ(t)
φ̇T(s)ψφ̇(s)ds− τ

∫ t−τ(t)

t−τ
e−2θτ φ̇T(s)M1φ̇(s)ds

≤

 φ(t)
φ(t− τ(t))

φ(t− τ)

T −ψ ψ−Y Y
∗ −ψ− e−2θτ M1 + Y + YT e−2θτ M1 −Y
∗ ∗ −e−2θτ M1

 φ(t)
φ(t− τ(t))

φ(t− τ)

.

(20)

Thus, E {LV3(t, tk)} ≤ e2θtξT(t)Υ3ξ(t).
On the basis of Jensen’s inequality, one obtains

E {LV4(t, tk)} ≤ e2θt(ı2φ̇T(t)M3φ̇(t)− e−2θı[φ(t)− φ(t− ı)]T M3[φ(t)− φ(t− ı)]
)

= e2θtξT(t)Υ4ξ(t).
(21)

E {LV5(t, tk)} = e2θt(tk+1 − t)ςT
1 (t)N1ς1(t)−

∫ t

tk

e2θsςT
1 (s)N1ς1(s)ds

+ e2θt(tk+1 − t)ςT
2 (t)N2ς2(t)−

∫ t

tk

e2θsςT
2 (s)N2ς2(s)ds

≤ (tk+1 − t)e2θtςT
1 (t)N1ς1(t)− e2θ(t−h̄)(t− tk)φ

T(tk)N111φ(tk)

− 2e2θ(t−h̄)φT(tk)N112

∫ t

tk

φ(s)ds− 1
t− tk

e2θ(t−h̄)
∫ t

tk

φT(s)dsN122

∫ t

tk

φ(s)ds

+ (tk+1 − t)e2θtςT
2 (t)N2ς2(t)− e2θ(t−h̄)(t− tk)φ

T(tk)N211φ(tk)

− 2e2θ(t−h̄)φT(tk)N212(φ(t)− φ(tk))− e2θ(t−h̄)
∫ t

tk

φ̇T(s)N222φ̇(s)ds.

(22)

Using Lemma 1, one can easily obtain

−
∫ t

tk

φ̇T(s)N222φ̇(s)ds ≤ − 1
t− tk

[φ(t)− φ(tk)]
T N222[φ(t)− φ(tk)]

− 3
t− tk

[
φ(t) + φ(tk)−

2
t− tk

∫ t

tk

φ(s)ds
]T

N222

[
φ(t) + φ(tk)−

2
t− tk

∫ t

tk

φ(s)ds
]

= − 1
t− tk

ξT(t)[ΞT
1 N222Ξ1 + 3ΞT

2 N222Ξ2]ξ(t).

(23)

For any suitable dimensional matrices X1,X2, after simple calculations, we have

− 1
t− tk

(N222Ξ1 − (t− tk)X1)
T N−1

222(N222Ξ1 − (t− tk)X1) ≤ 0,

− 1
t− tk

(N222Ξ2 − (t− tk)X2)
T N−1

222(N222Ξ2 − (t− tk)X2) ≤ 0,

− 1
t− tk

ΞT
1 N222Ξ1 ≤ −XT

1 Ξ1 − ΞT
1 X1 + (t− tk)XT

1 N−1
222X1,

− 1
t− tk

ΞT
2 N222Ξ2 ≤ −XT

2 Ξ2 − ΞT
2 X2 + (t− tk)XT

2 N−1
222X2,

Then, this leads to
E {LV5(t, tk)} ≤ e2θtξT(t)Υ5ξ(t), (24)
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E {LV6(t, tk)} = e2θt(h̄2ηT
2 (t)Uη2(t)−

π2

4
e−2θı[φ(t− ı)− φ(tk − ı)]TU[φ(t− ı)− φ(tk − ı)]

)
= e2θtξT(t)Υ6ξ(t).

(25)

E {LV7(t, tk)} ≤e2θt
[
θh̄2ςT

3 (t)Z1ς3(t) + (tk+1 − t)ςT
3 (t)Z1ς3(t)− (t− tk)ς

T
3 (t)Z1ς3(t) + 2(t− tk)

× (tk+1 − t)ξT(t)Z̄1φ̇(t)
]
+ e2θt

[
(tk+1 − t)ςT

4 (t)Z2ς4(t)− (t− tk)ς
T
4 (t)Z2ς4(t)

+ 2(tk+1 − t)φT(t)Z2ς4(t)− 2(tk+1 − t)ςT
4 (t)Z2ς4(t)

]
+ 2θe2θt(t− tk)(tk+1 − t)ςT

4 (t)Z2ς4(t).

(26)

For arbitrary matrices X3 > 0 and X4 > 0, this leads to

2(t− tk)(tk+1 − t)ξT(t)Z̄1φ̇(t) ≤ h̄2

4
(
φ̇T(t)X3φ̇(t) + ξT(t)Z̄1X−1

3 Z̄T
1 ξ(t)

)
, (27)

and

2 φT(t)Z2ς4(t) ≤ φT(t)Z2X−1
4 ZT

2 φ(t)

+
1

t− tk

∫ t

tk

φT(s)dsX4
1

t− tk

∫ t

tk

φ(s)ds.
(28)

It results in E {LV7(t, tk)} ≤ e2θtξT(t)Υ7ξ(t).
For any constants ε1, ε2 > 0, one can deduce that

E

{
ε1e2θt

[(
E1φ(tk) + E2φ(tk − ı)

)T(E1φ(tk) + E2φ(tk − ı)
)
− pT(t)p(t)

]}
= e2θtξT(t)Φ1ξ(t) ≥ 0, (29)

E
{
− ε2e2θt[ f (φi(t))−k1φi(t)]T [ f (φi(t))−k2φi(t)]

}
≥ 0. (30)

On the basis of (30), one can obtain that

− ε2e2θt
[

φ(t)
F(φ(t))

]T[ k̄1 k̄2
∗ I

][
φ(t)

F(φ(t))

]
= e2θtξT(t)Φ2ξ(t) ≥ 0. (31)

From (7), for any constants κ1, κ2, κ3, κ4, it can be obtained that

E
{

2e2θt[κ1φT(t) + κ2φ̇T(t) + κ3φT(tk) + κ4φT(tk − ı)]S[−φ̇(t) + F(φ(t)) + c(H ⊗ A)φ(t− τ(t))+

K1(Θ(tk)⊗ In)φ(tk) + K2(Θ(tk)⊗ In)φ(tk − ı) + δHp(t)− (δ− δ(t))Hp(t)]
}
= e2θtξT(t)Φ3ξ(t) = 0.

(32)

On the basis of (17)–(32),

E {LV(t, tk)} ≤ e2ktξT(t)Λξ(t).

Carrying out the Schur complement and convex combination technique results in (11)
and (12). Then, t as t ∈ [tk, tk+1), t can be obtained that

E {LV(t, tk)} ≤ 0. (33)

Similar to the proof in [34], one can easily deduce that System (7) was exponentially
synchronized.

Remark 6. Provided that ISCG never occurs, δ = 0 holds. At this point, there is Theorem 2 to be
deduced.
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If ISCG never occurs, Dynamics (7) and corresponding Controller (5) can be expressed
as follows:

φ̇(t) = F(φ(t)) + γ(H ⊗ A)φ((t− τ(t))) + K1(Θ(tk)⊗ In)φ(tk) + K2(Θ(tk)⊗ In)φ(tk − ı), (34)

ui(t) = K1iθi(tk)φi(tk) + K2iθi(tk)φi(tk − ı), tk ≤ t < tk+1. (35)

Then, one can obtain Theorem 2; some relevant mathematical symbols and equations
are listed in Appendix A.

Theorem 2. Given scalars θ ≥ 0, h > 0, ε1 ≥ 0, ε2 ≥ 0, 0 ≤ ε0 ≤ ε0, 0 ≤ ε1 ≤ ε1, 0 ≤
ε2 ≤ ε2, ε3 > 0, ε4 ≥ 0, ε5 ≥ 0, h ≥ 0, µ ≥ 0, τ ≥ 0, ı > 0, κ1, κ2, κ3, κ4, and matrices
H = diag{H1,H2, · · · ,HN}, E1 = diag{E11, E12, · · · , E1N}, E2 = diag{E21, E22, · · · , E2N},
Error System (34) achieved globally exponential stability with the improved sampled-data event-
triggered control (35) if there exist symmetric positive definite matrices P ∈ R3N×3N, Q1, Q2, M1,

M2, M3 ∈ RN×N, N1 =

[
N111 N112
∗ N122

]
∈ RN×N, N2 =

[
N211 N212
∗ N222

]
∈ RN×N, U ∈ RN×N,

Z1 =

Z111 Z112 Z113
∗ Z122 Z123
∗ ∗ Z133

∈ R3N×3N, Z2 ∈ RN×N, X3, X4 ∈ RN×N, S = diag{S1, S2, . . . , SN},

W1 = diag{W11, W12, . . . , W1N}, W2 = diag{W21, W22, . . . , W2N} ∈ RN×N, any matrices X1,
X2 ∈ RN×10N, Y∈ RN×N, such that the following linear matrix inequalities hold:

Λ̃1 + h̄Λ̃2
h̄
2 Z̃1

√
h̄XT

1 3
√

h̄XT
2

∗ −X3 0 0
∗ ∗ −e2θh̄N222 0
∗ ∗ ∗ −3e2θh̄N222

 < 0, (36)

 Λ̃1 + h̄Λ̃3
h̄
2 Z̃1 �T

1 Z2
∗ −X3 0
∗ ∗ −X4

 < 0, (37)

[
e−2θτ M1 + (1− µ)e−2θε M2 Y

∗ e−2θτ M1

]
≥ 0, (38)

The convergence rate was θ. Moreover, the control gain matrices are determined with

K1i = S−1
i W1i, K2i = S−1

i W2i, i = 1, 2, · · · , N. (39)

Proof of Theorem 2. One can easily finish the proof similarly to Theorem 1.

Remark 7. If K2i = 0 from i = 1 to N, the control variable would be ui(t) = K1iθi(tk)ri(tk).
Simultaneously, Theorem 3 could be deduced, and some relevant mathematical symbols and equations
are listed in Appendix A. In this case, System (34) could be transformed into the following dynamic
system without the time-delay signal of the controller.

φ̇(t) = F(φ(t)) + γ(H ⊗ A)φ((t− τ(t))) + K1(Θ(tk)⊗ In)φ(tk), (40)

Theorem 3. Given scalars θ ≥ 0, ε1 ≥ 0, ε2 ≥ 0, h > 0, 0 ≤ ε0 ≤ ε0, 0 ≤ ε1 ≤ ε1, 0 ≤
ε2 ≤ ε2, ε3 > 0, ε4 ≥ 0, ε5 ≥ 0, h ≥ 0, µ ≥ 0, τ ≥ 0, κ1, κ2, κ3, κ4, and matrices H =
diag{H1,H2, · · · ,HN}, E1 = diag{E11, E12, · · · , E1N}, E2 = diag{E21, E22, · · · , E2N}, Error
System (40) achieves globally exponential stability with the improved sampled-data event-triggered
control ui(t) = K1iθi(tk)ri(tk) if there exist symmetric positive definite matrices P ∈ R3N×3N, Q1,

Q2, M1, M2 ∈ RN×N, N1 =

[
N111 N112
∗ N122

]
∈ RN×N, N2 =

[
N211 N212
∗ N222

]
∈ RN×N, Z2 ∈ RN×N,

X4∈ RN×N, S = diag{S1, S2, . . . , SN}, W1 = diag{W11, W12, . . . , W1N}, W2 = diag{W21,
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W22, . . . , W2N}∈ RN×N, any matrices X1, X2∈ RN×10N, Y∈ RN×N, such that the following linear
matrix inequalities hold: Λ̂1 + h̄Λ̂2

√
h̄XT

1 3
√

h̄XT
2

∗ −e2θh̄N222 0
∗ ∗ −3e2θh̄N222

 < 0, (41)

[
Λ̂1 + h̄Λ̂3 �T

1 Z2
∗ −X4

]
< 0, (42)

[
e−2θτ M1 + (1− µ)e−2θε M2 Y

∗ e−2θτ M1

]
≥ 0, (43)

and the exponential convergence rate is θ. Moreover, the control gain matrices are determined with

K1i = S−1
i W1i, i = 1, 2, · · · , N. (44)

Proof of Theorem 3. The Lyapunov functional is defined as follows:

V(t, tk) =
3

∑
l=1

Vl(t, tk) + V5(t, tk) + V8(t, tk), t ∈ [tk, tk+1), (45)

where
V8(t, tk) = (t− tk)(tk+1 − t)e2θtςT

4 (t)Z2ς4(t). (46)

It is not difficult to deduce the proof similarly to Theorem 1.

4. Simulation Examples

In this section, the simulation examples are illustrated to show the effectiveness of the
proposed theorems.

Example 1. Consider CDNs (7) containing 3 nodes with the following parameters. k1 =[
−0.5 0.2

0 0.95

]
, k2 =

[
−0.3 0.2

0 0.3

]
, H =

 −2 1 1
2 −3 1
1 1 −2

, Hi =

[
1 0
0 1

]
, E1i =[

0.2 0
0 0.2

]
, E2i =

[
0.5 0
0 0.5

]
, A =

[
0.8 0
0 0.7

]
.

Here, the state of each node belongs to R2, ε0(t) = 1, ε1(t) = 1, ε2(t) = 1, ε3 = 0.01, ε4 =
0.04, ε5 = 0. Taking γ = 0.9, τ = 0.9, µ = 0.5, κ1=κ2=κ3=κ4=1 and δ = 1. g(ϕi(t)) =[
−0.5ϕi1 + tanh(0.2ϕi1) + 0.2ϕi2

0.95ϕi2 − tanh(0.75ϕi2)

]
, τ(t) = 0.125 + 0.125sin(4t). Utilizing the LMI toolbox

in MATLAB, the corresponding control gain matrix was obtained as K1 shown in Equation (47).

K1 =



−0.9524 −0.189 0 0 0 0
−0.439 −1.7036 0 0 0 0

0 0 −0.9524 −0.189 0 0
0 0 −0.439 −1.7036 0 0
0 0 0 0 −0.9524 −0.189
0 0 0 0 −0.439 −1.7036

. (47)

Simulation was carried out with the above parameters. Figure 4 shows the trajectory
of the system state without control input. Under the improved event-triggered controller
shown in Figure 5, the state of the error system tended to be stable, as shown in Figure 6.
Figure 7 shows taking ε0(t) as a piecewise parameter.
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Figure 4. The trajectory of the system state without control input in Example 1. The trajectory of the
system was unstable without any control.
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Figure 5. The state trajectory manuscript of the improved event-triggering control input in Ex-
ample 1. Under the improved event-triggered control, the state trajectory of the control input
variables was obtained.

Remark 8. Figure 8 shows that the triggering frequency was high from 5 to 10 s, then decreased
from 10 to 15 s, further increased at 15–20 s, and increased again at 20–25 s. This shows that
piecewise function ε0(t) plays an important role in adjusting the triggering frequency. In different
time periods, different triggering parameters were used for triggering conditions, as shown in
Figure 7. The controller showed different trigger adjustment effects in multiple time periods.
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ε0(t) =


1 0 ≤ t < 5,

0.3 5 ≤ t < 10,
0.1 10 ≤ t < 15,
0.8 15 ≤ t < 20,

1 t ≥ 20,

(48)
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31
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Figure 6. The state trajectory of the error system under the improved event-triggered control in Exam-
ple 1. Under the designed improved event-triggered controller, the system achieved synchronization
performance.
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0.6

0.8

1

Figure 7. Parameter ε0(t) was set as a piecewise function in the improved event-triggered scheme in
Example 1. In multiple time periods, triggering parameter ε0(t) took different values.
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Figure 8. Triggering time instants and their duration in the improved event-triggered scheme in
Example 1. In combination with Figure 7, triggering frequencies were different in multiple time
periods [0, 5), [5, 10], [10, 15), [15, 20) and [20, 25).

Remark 9. The triggering parameter has the function of adjusting the trigger condition exponen-
tially and linearly. As ε0(t) = 1, ε1(t) = 0.05, ε3, ε4, ε5 were the same as in Example 1, the
triggering frequency decelerated from ε2(t) = 0.5 (Figure 9) to ε2(t) = 2 (Figure 10). Similarly,
as ε0(t) = 0.5, ε2(t) = 0.5, ε3, ε4, ε5 were the same as in Example 1, setting ε1(t) = 0.05 and
ε1(t) = 0.2, respectively. The triggering frequency was accelerated using the exponential parameter
(Figures 11 and 12), reflecting the effect of the triggering flexible adjustment.
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Figure 9. Triggering time instants and their duration in the improved event-triggered scheme for
ε2(t) = 0.5 in Example 1. Compared with Figure 10, it can be seen that the triggering parameter ε2(t)
played a role in adjusting the triggering frequency.
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Figure 10. Triggering time instants and their duration in the improved event-triggered scheme for
ε2(t) = 2 in Example 1. Compared with Figure 9, triggering parameter ε2(t) played a role in adjusting
the triggering frequency.
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Figure 11. Triggering time instants and their duration in the improved event-triggered scheme for
ε1(t) = 0.05 in Example 1. Compared with Figure 12, triggering parameter ε1(t) played a role in
adjusting the triggering frequency.

Remark 10. When setting ε0(t) = 0 and ε2(t) = 0, the trigger reached the triggering upper
bound, and the trigger could be regarded to be an almost fixed interval (linearlike) triggering at this
point (Figure 13) in which there were only two event-triggering intervals: the value closest to the

upper bound and the upper bound
(

1 +
[ ε3

h
])

h = 1, which shows that the improved triggering
scheme could achieve the effect of fixed sampled-data triggering.
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Figure 12. Triggering time instants and their duration in the improved event-triggered scheme for
ε1(t) = 0.2 in Example 1. Compared with Figure 11, triggering parameter ε1(t) played a role in
adjusting the triggering frequency.
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Figure 13. Triggering time instants and their duration in the improved event-triggered scheme for
ε0(t) = 0, ε2(t) = 0, ε3 = 0.8 in Example 1. The triggering became linearlike.

Example 2. Consider CDNs (7) containing three nodes with the following parameters.

A =

[
0.6 0
0 0.7

]
. Π =


−9 2 6 1
2 −4 1 1
3 1 −6 2
2 1 4 −7

. H =

 −2 1 1
2 −3 1
1 1 −2

,


ε1

0(t) = 1, ε1
1(t) = 1, ε1

2(t) = 1;
ε2

0(t) = 0.5, ε2
1(t) = 1.2, ε2

2(t) = 0.8;
ε3

0(t) = 1, ε3
1(t) = 0.8, ε3

2(t) = 1.1;
ε4

0(t) = 1, ε4
1(t) = 1, ε4

2(t) = 0.4.

(49)
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Other parameters were the same as in Example 1. On the basis of Theorem 1, the
control gains were K1, K2 shown in Equations (50) and (51), and the simulation results are
shown in Figures 14–17. Different triggering switching modes based on the probability
that was decided by Markov transfer matrix Π were provided to simulate different trigger
scenarios. Triggering conditions are switched into different modes (the switching state is
shown in Figure 14). Figure 14 shows the modes of event-triggered schemes at different
time instants, and the triggering time and triggering duration are shown in Figure 15.
Figure 16 shows the state trajectory of the error system under control. Figure 17 shows the
state of the control input. Under the improved event-triggered controller, the state of the
error system tended to be stable.
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Figure 14. Triggering time instants and their duration of the event-triggered scheme in Example 2.
When the triggering parameters could be switched, the triggering time instants and their duration
are displayed.
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Figure 15. Different modes of the event-triggered scheme in Example 2, showing the modes and their
durations of the triggering parameters at different times.
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Figure 16. The state trajectory of the error system under the improved event-triggering control
input in Example 2. Under the designed improved event-triggered controller, the system achieved
synchronization performance.
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Figure 17. The state trajectory of improved event-triggering control input in Example 2. Under the
improved event-triggered control, the state trajectory of the control input variables was obtained.
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Remark 11. On the basis of the Markov transfer matrix, the triggering parameters were set to
take four states, letting them satisfy the Markov process. According to the above simulation results,
when the system was faced with different triggering modes, it could still run normally. The designed
triggering scheme became a more generalized form. The numerical experiment shows that the
synchronization of the error system could be achieved under the improved event-triggered scheme
with switching modes.

K1 =



−0.8095 −0.3431 0 0 0 0
−0.1398 −1.2564 0 0 0 0

0 0 −0.8095 −0.3431 0 0
0 0 −0.1398 −1.2564 0 0
0 0 0 0 −0.8095 −0.3431
0 0 0 0 −0.1398 −1.2564

. (50)

K2 =



−0.1302 −0.6279 0 0 0 0
−0.2534 −0.2632 0 0 0 0

0 0 −0.1302 −0.6279 0 0
0 0 −0.2534 −0.2632 0 0
0 0 0 0 −0.1302 −0.6279
0 0 0 0 −0.2534 −0.2632

. (51)

5. Conclusions

In this paper, the classical event-triggered scheme was extended into an improved
nonfragile sampled-data event-triggered scheme in which linear, exponential, and dynamic
adjustments of triggering conditions could be realized. Specifically, it could provide a more
flexible triggering mechanism for dynamical systems. In addition, event-triggered time
instants were transformed into control time instants, which was beneficial to the degree
of freedom of triggering conditions and the analysis of the system’s performance. Lastly,
under the improved event-triggered control, new exponential synchronization criteria for
CDNs with perturbations were also obtained.
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Appendix A

The appendix gives some mathematical notations and mathematical equations in
the theorems.

ξ(t) =
[
φT(t), φT(t− τ(t)), φT(t− τ), φ̇T(t), FT(φ(t)),

1
t− tk

∫ t

tk

φT(s)ds, pT(t), φT(t− ı), φT(tk),

φT(tk − ı)
]T

,

η(t) =
[
φT(t), φT(tk),

1
t− tk

∫ t

tk

φT(s)ds
]T

,

η1(t) =
[
φ̇T(t), 0,

1
t− tk

φT(t)− 1
(t− tk)2

∫ t

tk

φT(s)ds
]T

,

η12(t) =
[
0, 0, φT(t)− 1

t− tk

∫ t

tk

φT(s)ds
]T

,

η13(t) = [φ̇T(t), 0, 0]T ,

ς1(t) = [φT(tk), φT(t)]T ,

ς2(t) = [φT(tk), φ̇T(t)]T ,

η2(t) = θ(φ(t)− φ(tk − ı)) + φ̇(t),

ς3(t) = [φT(t), φT(tk), φT(tk − ı)]T ,

ς4(t) =
1

t− tk

∫ t

tk

φ(s)ds.

�i= [0n,(i−1)n, In, 0n,(10−i)n], i = 1, 2, · · · , 10,

Λ1 = Υ11 + Υ2 + Υ3 + Υ4 + Υ6 + Φ1 + Φ2 + Φ3 − e−2θh̄sym{�T
9 N212(�1 − �9)}+ e−2θh̄sym{−XT

1 Ξ1

− 3XT
2 Ξ2}+ θh̄2[�T

1 , �T
9 , �T

10]Z1[�T
1 , �T

9 , �T
10]

T + θh̄2 �T
6 Z2 �6 +

h̄2

4
�T

4 X3 �4,

Λ2 = Υ12 − e−2θh̄ �T
9 N111 �9 −sym{e−2θh̄ �T

9 N112 �6} − e−2θh̄ �T
6 N122 �6 −e−2θh̄ �T

9 N211 �9

−[�T
1 , �T

9 , �T
10]Z1[�T

1 , �T
9 , �T

10]
T − �T

6 Z2 �6,

Λ3 = [�T
9 , �T

1 ]N1[�T
9 , �T

1 ]
T + [�T

9 , �T
4 ]N2[�T

9 , �T
4 ]

T + [�T
1 , �T

9 , �T
10]Z1[�T

1 , �T
9 , �T

10]
T − �T

6 Z2 �6 + �T
6 X4 �6,

Λ = Λ̄1 + (t− tk)Λ̄2 + (tk+1 − t)Λ̄3, Λ̄1 = Λ1 +
h̄2

4
Z̄1X−1

3 Z̄T
1 ,

Λ̄2 = Λ2 + e−2θh̄XT
1 N−1

222X1 + 3e−2θh̄XT
2 N−1

222X2,

Λ̄3 = Λ3+ �T
1 Z2X−1

4 ZT
2 �1,

Υ11 = [�T
1 , �T

9 , �T
6 ]P[�T

1 , �T
9 , �T

6 ]
T + sym{[�T

1 , �T
9 , �T

6 ]P[0, 0, �T
1 − �T

6 ]
T},

Υ12 = sym{[�T
1 , �T

9 , �T
6 ]P[�T

4 , 0, 0]T}+ 2θ[�T
1 , �T

9 , �T
6 ]P[�T

1 , �T
9 , �T

6 ]
T ,

Υ2 = e2θτ �T
1 (Q1 + Q2) �1 −(1− µ) �T

2 Q1 �2 − �T
3 Q2 �3,

Υ3 = τ2 �T
4 (M1 + M2) �4 −[�T

1 , �T
2 , �T

3 ]

 −ψ ψ−Y Y
∗ −ψ− e−2θτ M1 + Y + YT e−2θτ M1 −Y
∗ ∗ −e−2θτ M1

[�T
1 , �T

2 , �T
3 ]

T ,

ψ = e−2θτ M1 + (1− µ)e−2θε M2,

ε =

{
τ , i f µ < 0
0 , i f µ ≥ 0

,

Υ4 = ı2 �T
4 M3 �4 −e−2θı[�1 − �8]

T M3[�1 − �8],

h̄ =
(

1 +
[ ε3

h
])

h,
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Υ5 = (tk+1 − t)[�T
9 , �T

1 ]N1[�T
9 , �T

1 ]
T − e−2θh̄(t− tk) �T

9 N111 �9 −(t− tk)e−2θh̄sym{�T
9 N112 �6} − e−2θh̄(t

− tk) �T
6 N122 �6 +(tk+1 − t)[�T

9 , �T
4 ]N2[�T

9 , �T
4 ]

T − e−2θh̄(t− tk) �T
9 N211 �9 −e−2θh̄sym{�T

9 N212(�1

− �9)}+ e−2θh̄sym{−XT
1 Ξ1 − 3XT

2 Ξ2}+ e−2θh̄(t− tk)XT
1 N−1

222X1 + 3e−2θh̄(t− tk)XT
2 N−1

222X2,

Ξ1 =�1 − �9,

Ξ2 =�1 + �9 −2 �6,

Υ6 = h̄2(θ(�1 − �10)+ �4)
TU(θ(�1 − �10)+ �4)−

π2

4
e−2θı[�8 − �10]

TU[�8 − �10],

Υ7 = θh̄2[�T
1 , �T

9 , �T
10]Z1[�T

1 , �T
9 , �T

10]
T − (t− tk)[�T

1 , �T
9 , �T

10]Z1[�T
1 , �T

9 , �T
10]

T

+ (tk+1 − t)[�T
1 , �T

9 , �T
10]Z1[�T

1 , �T
9 , �T

10]
T +

h̄2

4
Z̄1X−1

3 Z̄T
1 +

h̄2

4
�T

4 X3 �4

+ θh̄2 �T
6 Z2 �6 −(t− tk) �T

6 Z2 �6 −(tk+1 − t) �T
6 Z2 �6 +(tk+1 − t) �T

1 Z2X−1
4 ZT

2 �1

+ (tk+1 − t) �T
6 X4 �6,

Z̄1 = [Z111, Z112, 0, 0, 0, 0, 0, 0, 0, Z113]
T ,

Φ1 = ε1[(E1 �9 +E2 �10)
T(E1 �9 +E2 �10)− �T

7 �7],

Φ2 = −ε2[�T
1 , �T

5 ]

[
k̄1 k̄2
∗ I

]
[�T

1 , �T
5 ]

T ,

k̄1 =
(I ⊗k1)

T(I ⊗k2) + (I ⊗k2)
T(I ⊗k1)

2
,

k̄2 =
−(I ⊗k1)

T − (I ⊗k2)
T

2
,

Φ3 = sym{[κ1 �T
1 +κ2 �T

4 +κ3 �T
9 +κ4 �T

10]S[− �4 + �5 +γ(H ⊗ A) �2 +δH �7]}+ sym{[κ1 �T
1 +κ2 �T

4

+ κ3 �T
9 +κ4 �T

10][W1 �9 +W2 �10]}.

ξ̃(t) =
[
φT(t), φT(t− τ(t)), φT(t− τ), φ̇T(t), f T(φ(t)),

1
t− tk

∫ t

tk

φT(s)ds, φT(t− ı), φT(tk), φT(tk − ı)
]T

,

Λ̃1 = Υ11 + Υ2 + Υ3 + Υ4 + Υ6 + Φ2 + Φ3 − e−2θh̄sym{�T
8 N212(�1 − �8)}

+ e−2θh̄sym{−XT
1 Ξ1 − 3XT

2 Ξ2}+ θh̄2[�T
1 , �T

8 , �T
9 ]Z1[�T

1 , �T
8 , �T

9 ]
T + θh̄2 �T

6 Z2 �6

+
h̄2

4
�T

4 X3 �4},

Λ̃2 = Υ12 − e−2θh̄ �T
8 N111 �8 −sym{e−2θh̄ �T

8 N112 �6} − e−2θh̄ �T
6 N122 �6 −e−2θh̄ �T

8 N211 �8

−[�T
1 , �T

8 , �T
9 ]Z1[�T

1 , �T
8 , �T

9 ]
T − �T

6 Z2 �6,

Λ̃3 = [�T
8 , �T

1 ]N1[�T
8 , �T

1 ]
T + [�T

8 , �T
4 ]N2[�T

8 , �T
4 ]

T + [�T
1 , �T

8 , �T
9 ]Z1[�T

1 , �T
8 , �T

9 ]
T − �T

6 Z2 �6 + �T
6 X4 �6,

Φ̃3 = sym{[κ1 �T
1 +κ2 �T

4 +κ3 �T
8 +κ4 �T

9 ]S[− �4 + �5 +γ(H ⊗ A) �2]}
+ sym{[κ1 �T

1 +κ2 �T
4 +κ3 �T

8 +κ4 �T
9 ][W1 �8 +W2 �9]},

Υ̃4 = ı2 �T
4 M3 �4 −e−2θı[�1 − �7]

T M3[�1 − �7],

Υ̃6 = h̄2(θ(�1 − �9)+ �4)
TU(θ(�1 − �9)+ �4)−

π2

4
e−2θı[�7 − �9]

TU[�7 − �9],

Υ̃7 = θh̄2[�T
1 , �T

8 , �T
9 ]Z1[�T

1 , �T
8 , �T

9 ]
T − (t− tk)[�T

1 , �T
8 , �T

9 ]Z1[�T
1 , �T

8 , �T
9 ]

T

+ (tk+1 − t)[�T
1 , �T

8 , �T
9 ]Z1[�T

1 , �T
8 , �T

9 ]
T +

h̄2

4
Z̃1X−1

3 Z̃1
T
+

h̄2

4
�T

4 X3 �4

+ θh̄2 �T
6 Z2 �6 −(t− tk) �T

6 Z2 �6 −(tk+1 − t) �T
6 Z2 �6 +(tk+1 − t) �T

1 Z2X−1
4 ZT

2 �1

+ (tk+1 − t) �T
6 X4 �6,

Z̃1 = [Z111, Z112, 0, 0, 0, 0, 0, 0, Z113]
T .



Mathematics 2022, 10, 3504 23 of 24

ξ̂(t) = [φT(t), φT(t− τ(t)), φT(t− τ), φ̇T(t), f T(φ(t)),
1

t− tk

∫ t

tk

φT(s)ds, φT(tk)]
T ,

Λ̂1 = Υ11 + Υ2 + Υ3 + Φ2 + Φ3 − e−2θhsym{�T
7 N212(�1 − �7)}+ e−2θh̄sym{−XT

1 Ξ1

− 3XT
2 Ξ2}+ θh2 �T

6 Z2 �6,

Λ̂2 = Υ12 − e−2θh̄ �T
7 N111 �7 −sym{e−2θh̄ �T

7 N112 �6} − e−2θh̄ �T
6 N122 �6 −e−2θh̄ �T

7 N211 �7

− �T
6 Z2 �6,

Λ̂3 = [�T
7 , �T

1 ]N1[�T
7 , �T

1 ]
T + [�T

7 , �T
4 ]N2[�T

7 , �T
4 ]

T − �T
6 Z2 �6 + �T

6 X4 �6,

Φ̂3 = sym{[κ1 �T
1 +κ2 �T

4 +κ3 �T
7 ]S[− �4 + �5 +γ(H ⊗ A) �2]}+ sym{[κ1 �T

1 +κ2 �T
4 +κ3 �T

7 ][W1 �7]}.

References
1. Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.U. Complex networks: Structure and dynamics. Phys. Rep. 2006, 424,

175–308. [CrossRef]
2. Battiston, F.; Amico, E.; Barrat, A.; Bianconi, G.; Arruda, G.F.D.; Franceschiello, B.; Iacopini, I.; Kéfi, S.; Latora, V.; Moreno, Y.; et al.

The physics of higher-order interactions in complex systems. Nat. Phys. 2021, 17, 1093–1098. [CrossRef]
3. Pecora, L.; Carroll, T. Synchronization in chaotic systems. Phys. Rev. Lett. 1990, 64, 821. [CrossRef] [PubMed]
4. Sakthivel, R.; Kwon, O.M.; Park, M.J.; Choi, S.G.; Sakthivel, R. Robust asynchronous filtering for discrete-time T¨CS fuzzy

complex dynamical networks against deception attacks. IEEE Trans. Fuzzy Syst. 2021, 30, 3257–3269. [CrossRef]
5. Fujisaka, H.; Xamada, T. Stability theory of synchronized motion in coupled-oscillator systems. Prog. Theor. Phys. 1983, 69, 32–47.

[CrossRef]
6. Zamart, C.; Botmart, T.; Weera, W.; Charoensin, S. New delay-dependent conditions for finite-time extended dissipativity based

non-fragile feedback control for neural networks with mixed interval time-varying delays. Math. Comput. Simul. 2022, 201,
684–713. [CrossRef]

7. Liu, B.; Sun, Z.; Luo, Y.; Zhong, Y. Uniform synchronization for chaotic dynamical systems via event-triggered impulsive control.
Phys. A Stat. Mech. Appl. 2019, 531, 121725. [CrossRef]

8. Tan, X.; Cao, J.; Rutkowski, L. Distributed dynamic self-triggered control for uncertain complex networks with Markov switching
topologies and random time-varying delay. IEEE Trans. Netw. Sci. Eng. 2019, 7, 1111–1120. [CrossRef]

9. Nan, L.; Zhang, Y.; Hu, J.; Nie, Z. Synchronization for general complex dynamical networks with sampled-data. Neurocomputing
2011, 74, 805–811.

10. Liu, Y.; Guo, B.Z.; Ju, H.P.; Lee, S.M. Nonfragile exponential synchronization of delayed complex dynamical networks with
memory sampled-data control. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 118–128. [CrossRef]

11. Wu, Z.G.; Xu, Y.; Pan, Y.J.; Shi, P.; Wang, Q. Event-triggered pinning control for consensus of multiagent systems with quantized
information. IEEE Trans. Syst. Man Cybernet. Syst. 2018, 48, 1929–1938. [CrossRef]

12. Ding, L.; Han, Q.-L.; Ge, X.; Zhang, X.-M. An overview of recent advances in event-triggered consensus of multiagent systems.
IEEE Trans. Cybernet. 2017, 48, 1110–1123. [CrossRef] [PubMed]

13. Ding, S.; Wang, Z. Event-triggered synchronization of discrete-time neural networks: A switching approach. Neural Netw. 2020,
125, 31–40. [CrossRef] [PubMed]

14. Wu, Y.; Li, Y.; Li, W. Almost surely exponential synchronization of complex dynamical networks under aperiodically intermittent
discrete observations noise. IEEE Trans. Cybernet. 2022, 52, 2663–2674. [CrossRef] [PubMed]

15. Wang, J.; Chen, X.; Feng, J.; Man, K.K.; Austin, F. Mean-square exponential synchronization of Markovian switching stochastic
complex networks with time-varying delays by pinning control. Abst. Appl. Anal. 2012, 6, 298095. [CrossRef]

16. Yang, Y.; Cao, J. Exponential synchronization of the complex dynamical networks with a coupling delay and impulsive effects.
Nonlinear Anal. Real World Appl. 2010, 11, 1650–1659. [CrossRef]

17. Wu, Z.; Shi, P.; Su, H.; Chu, J. Sampled-data exponential synchronization of complex dynamical networks with time-varying
coupling delay. IEEE Trans. Neural Netw. Learn. Syst. 2013, 24, 1177–1187.

18. Hongsri, A.; Botmart, T.; Weera, W.; Junsawang, P. New delay-dependent synchronization criteria of complex dynamical networks
With time-varying coupling delay based on sampled-data control via new integral inequality. IEEE Access 2021, 9, 64958–64971.
[CrossRef]

19. Wang, X.; Lemmon, M.D. Event-triggered broadcasting across distributed networked control systems. In Proceedings of the
American Control Conference, Seattle, WA, USA, 11–13 June 2008; pp. 3139–3144.

20. Zhang, X.M.; Han, Q.L.; Zhang, B.L. An overview and deep investigation on sampled-data-based event-triggered control and
filtering for networked systems. IEEE Trans. Indust. Informat. 2017, 13, 4–16. [CrossRef]

21. Dimarogonas, D.V.; Frazzoli, E.; Johansson, K.H. Distributed event-triggered control for multi-agent systems. IEEE Trans. Automat.
Control 2011, 57, 1291–1297. [CrossRef]

http://doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1038/s41567-021-01371-4
http://dx.doi.org/10.1103/PhysRevLett.64.821
http://www.ncbi.nlm.nih.gov/pubmed/10042089
http://dx.doi.org/10.1109/TFUZZ.2021.3111453
http://dx.doi.org/10.1143/PTP.69.32
http://dx.doi.org/10.1016/j.matcom.2021.07.007
http://dx.doi.org/10.1016/j.physa.2019.121725
http://dx.doi.org/10.1109/TNSE.2019.2905758
http://dx.doi.org/10.1109/TNNLS.2016.2614709
http://dx.doi.org/10.1109/TSMC.2017.2773634
http://dx.doi.org/10.1109/TCYB.2017.2771560
http://www.ncbi.nlm.nih.gov/pubmed/29533897
http://dx.doi.org/10.1016/j.neunet.2020.01.024
http://www.ncbi.nlm.nih.gov/pubmed/32070854
http://dx.doi.org/10.1109/TCYB.2020.3022296
http://www.ncbi.nlm.nih.gov/pubmed/33001825
http://dx.doi.org/10.1155/2012/298095
http://dx.doi.org/10.1016/j.nonrwa.2009.03.020
http://dx.doi.org/10.1109/ACCESS.2021.3076361
http://dx.doi.org/10.1109/TII.2016.2607150
http://dx.doi.org/10.1109/TAC.2011.2174666


Mathematics 2022, 10, 3504 24 of 24

22. Dong, Y.; Tian, E.; Han, Q.L. A delay system method to design of event-triggered control of networked control systems.
In Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA, 12–15
December 2011; pp. 1668–1673.

23. Michael, H.; Feng, L.; George, M.; Stefan, R. Analysis of Zeno behaviors in hybrid systems. In Proceedings of the 41st IEEE
Conference on Decision and Control, Las Vegas, NV, USA, 10–13 December 2002; pp. 2379–2384.

24. Borgers, D.P.; Heemels, W. Event-separation properties of event-triggered control systems. IEEE Trans. Automat. Control 2014, 59,
2644–2656. [CrossRef]

25. Liu, X.; Su, X.; Shi, P.; Shen, C.; Peng, Y. Event-triggered sliding mode control of nonlinear dynamic systems. Automatica 2020,
112, 108738. [CrossRef]

26. Zhu, Q. Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control.
IEEE Trans. Automat. Control 2019, 64, 3764–3771. [CrossRef]

27. Deng, C.; Che, W.-W.; Wu, Z.-G. dynamic periodic event-triggered approach to consensus of heterogeneous linear multiagent
systems with time-varying communication delays. IEEE Trans. Cybernet. 2020, 51, 1812–1821. [CrossRef] [PubMed]

28. Cheng, J.; Park, J.H.; Zhao, X.; Karimi, H.R.; Cao, J. Quantized nonstationary filtering of networked Markov switching rsnss:
A multiple hierarchical structure strategy. IEEE Trans. Automat. Control 2019, 65, 4816–4823. [CrossRef]

29. Cheng, J.; Park, J.H.; Cao, J.; Qi, W. Hidden Markov model-based nonfragile state estimation of switched neural network with
probabilistic quantized outputs. IEEE Trans. Cybernet. 2019, 50, 1900–1909. [CrossRef]

30. Wu, Z.; Park, J.; Su, H.; Song, B.; Chu, J. Exponential synchronization for complex dynamical networks with sampled-data.
J. Frankl. Inst. 2012, 349, 2735–2749. [CrossRef]

31. Kwon, O.M.; Park, M.J.; Park, J.H.; Lee, S.M.; Cha, E.J. Improved results on stability of linear systems with time-varying delays
via wirtinger-based integral inequality. J. Frankl. Inst. 2014, 351, 5386–5398. [CrossRef]

32. Liu, K.; Fridman, E. Wirtinger¡¯s inequality and Lyapunov-based sampled-data stabilization. Automatica 2012, 48, 102–108.
[CrossRef]

33. Park, P.; Ko, J.W.; Jeong, C. Reciprocally convex approach to stability of systems with time-varying delays. Automatica 2011, 47,
235–238. [CrossRef]

34. Makkiyappan, M.; Sakthivel, N.; Cao, J. Stochastic sampled-data control for synchronization of complex dynamical networks
with control packet loss and additive time-varying delays. Neural Netw. 2015, 66, 46–63. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/TAC.2014.2325272
http://dx.doi.org/10.1016/j.automatica.2019.108738
http://dx.doi.org/10.1109/TAC.2018.2882067
http://dx.doi.org/10.1109/TCYB.2020.3015746
http://www.ncbi.nlm.nih.gov/pubmed/32991298
http://dx.doi.org/10.1109/TAC.2019.2958824
http://dx.doi.org/10.1109/TCYB.2019.2909748
http://dx.doi.org/10.1016/j.jfranklin.2012.09.002
http://dx.doi.org/10.1016/j.jfranklin.2014.09.021
http://dx.doi.org/10.1016/j.automatica.2011.09.029
http://dx.doi.org/10.1016/j.automatica.2010.10.014
http://dx.doi.org/10.1016/j.neunet.2015.02.011
http://www.ncbi.nlm.nih.gov/pubmed/25797504

	Introduction
	Preliminaries
	Main Results
	Simulation Examples
	Conclusions
	 
	References

