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Abstract: This paper presents a ε-uniform and reliable numerical scheme to solve second-order sin-
gularly perturbed Volterra–Fredholm integro-differential equations. Some properties of the analytical
solution are given, and the finite difference scheme is established on a non-uniform mesh by using
interpolating quadrature rules and the linear basis functions. An error analysis is successfully carried
out on the Boglaev–Bakhvalov-type mesh. Some numerical experiments are included to authenticate
the theoretical findings. In this regard, the main advantage of the suggested method is to yield stable
results on layer-adapted meshes.
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1. Introduction

Volterra–Fredholm integro-differential equations (VFIDEs) have led to many scientific
computings. They play important roles in different branches of science involving aero-
dynamics, the economy, electricity and electronics, industrial networks, hydrodynamics,
oceanography and chemistry [1–3] (see the references detailed within). Particularly, VFIDEs
have been used widely for population growth, medicine processes and pandemic research.
For example, the dissipation of tumor cells and the response of immune system were
modeled in [4]. The effect of the COVID-19 pandemic was investigated in Italy, Germany
and France with the help of modeling by some integro-differential equations [5,6].

Some existence and uniqueness results for VFIDEs have been presented by Hamoud
and his co-authors in [7,8]. Due to their importance in computational science, numerous
methods have been introduced for solving VFIDEs. Various semi-analytical techniques
including Adomian decomposition method, variational iteration method, homotopy per-
turbation method, modified differential transform method and Laplace decomposition
method have been proposed in [2,9,10]. Furthermore, many scholars have developed
different numerical approaches. These include the exponential spline method [11], the
collocation method [1], the Nyström method [12], reproducing the kernel method [13],
the Haar wavelet [14,15], the Chebyshev–Galerkin method [16], the operational matrix
method of Bernstein polynomials [17], the finite difference method [18,19], the Galerkin
method [20,21], the bezier curve method [22], etc. [3,23–26]. The mentioned studies have
only dealt with regular cases (i.e., absent the singularity).

This article concerns with boundary-value problem of second-order Volterra–Fredholm
integro-differential equation in the form

Lu + Tu + Su = f (x), x ∈ Ī, (1)

Mathematics 2022, 10, 3560. https://doi.org/10.3390/math10193560 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10193560
https://doi.org/10.3390/math10193560
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1979-570X
https://orcid.org/0000-0002-3265-8881
https://doi.org/10.3390/math10193560
https://www.mdpi.com/journal/mathematics
http://www.mdpi.com/2227-7390/10/19/3560?type=check_update&version=3


Mathematics 2022, 10, 3560 2 of 19

subject to boundary conditions

u(0) = A, u(l) = B, (2)

in which the differential operator Lu, the Volterra integral operator T and the Fredholm
integral operator S are given as follow, respectively:

Lu = −ε2u′′ + a(x)u, Tu = λ

x∫
0

K1(x, t)u(t)dt

and

Su = λ

l∫
0

K2(x, t)u(t)dt.

Additionally, ε ∈ (0, 1] is a small parameter, Ī = [0, l], λ is a real parameter, the func-
tions a(x) ≥ α > 0, f (x) (x ∈ Ī), u(x) (x ∈ Ī), K1(x, t) and K2(x, t) ((x, t) ∈ Ī × Ī) are
sufficiently smooth. Under these conditions, the problem (1) and (2) has unique solution u.
As ε tends toward zero, the boundary layers appear in neighborhood of x = 0 and x = l.

In recent times, a lot of papers have been published about singularly perturbed
integro-differential equations and various numerical schemes have been suggested. Iragi
and Munyakazi have considered fitted operator finite difference method by using right-side
rectangle rule and trapezoidal integration on Shishkin mesh for Volterra integro-differential
equations with singularity [27,28]. In [29–31], Volterra delay integro-differential equations
with initial layer have been investigated on uniform mesh. Mbroh et. al. have proposed
non-standard finite difference scheme by using composite Simpson’s rule. Additionally,
they have improved the order of convergence by applying Richardson extrapolation [32].
In [33], second-order discretization have been presented on piecewise uniform mesh. Tao
and Zhang have introduced the coupled method involving local discontinuous Galerkin
technique and continuous finite element method in [34]. In [35], using composite trape-
zoidal rule, fitted mesh finite difference schemes have been established on Shishkin type
mesh. Moreover, almost second-order accuracies for the presented method have been
obtained. Exponentially fitted difference schemes have been suggested for singularly
perturbed Fredholm integro-differential equations in [36–38]. In [39], Durmaz and Ami-
raliyev have constructed fitted second-order homogeneous difference scheme on Shishkin
mesh for Fredholm integro differential equations with layer behavior. Authors in [40,41]
have presented a new discrete scheme for singularly perturbed Volterra-Fredholm integro-
differential equations.

To the best of our knowledge, the problems in (1) and (2) have not been investigated
using the finite difference schemes. Therefore, this study aims to fill this gap. This paper
introduces the new difference scheme for the boundary value problems of second-order
singularly perturbed Volterra–Fredholm integro-differential equations as the major nov-
elty of this work. The second contribution is the convergence analysis of the presented
scheme on Boglaev–Bakhvalov-type mesh. Last but not least, the proposed algorithm is
easy to construct, and it provides stable results in a short time in terms of computation.
From these objectives, the theory and applications of the presented method have been
extensively studied.

The remainder of this article is organized is as follows. In Section 2, first, some
preliminary results are given. Then, using composite numerical quadrature rules and
implicit difference rules, the finite difference scheme is constructed on Boglaev–Bakhvalov-
type mesh in Section 3. Section 4 is devoted to error approximations and stability analysis.
In Section 5, three numerical examples are solved by the proposed method. Furthermore,
the corresponding algorithm and the computational results are presented. Finally, the paper
ends with “Concluding Remarks”.
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2. Asymptotic Properties

This section is devoted to some a priori bounds. For this aim, the following lemma
is expressed.

Lemma 1. We assume that a, f ∈ C1[0, l], ∂sK1
∂xs ∈ C[0, l]2, ∂sK2

∂xs ∈ C[0, l]2, (s = 0, 1), K̄1 =
max
Ī× Ī
|K1(x, t)|, K̄2 = max

Ī× Ī
|K2(x, t)| and

|λ| < α

max
0≤x≤l

x∫
0
|K1(x, t)|dt + max

0≤x≤l

l∫
0
|K2(x, t)|dt

. (3)

Then, the solution u(x) of the problems in (1) and (2) holds

‖u‖∞ ≤ C0 (4)

and ∣∣u′(x)
∣∣ ≤ C

{
1 +

1
ε

(
e
−
√

αx
ε + e

−
√

α(l−x)
ε

)}
, 0 < x < l, (5)

where
C0 = (1− γ)−1

(
|A|+ |B|+ α−1‖ f ‖∞

)
and

γ = α−1|λ|max
0≤x≤l

x∫
0

|K1(x, t)|dt + α−1|λ|max
0≤x≤l

l∫
0

|K2(x, t)|dt < 1.

Proof. By considering the maximum principle for the problems in (1)–(2), we obtain

|u(x)| ≤ |A|+ |B|+ α−1 max
0≤x≤l

| f (x)|+ α−1|λ|max
0≤x≤l

x∫
0

|K1(x, t)||u(t)| dt

+α−1|λ|max
0≤x≤l

l∫
0

|K2(x, t)||u(t)|dt.

Then, it follows that

‖u‖∞ ≤ |A|+ |B|+ α−1‖ f ‖∞ + α−1|λ|max
0≤x≤l

x∫
0

|K1(x, t)|dt‖u‖∞

+α−1|λ|max
0≤x≤l

l∫
0

|K2(x, t)|dt‖u‖∞.

Finally, we have

‖u‖∞ ≤ (1− γ)−1
(
|A|+ |B|+ α−1‖ f ‖∞

)
.

By taking into consideration (3), we reach the proof of the (4). Now, we prove the
relation (5). Since |K1| ≤ K̄1, |K2| ≤ K̄2 and |u(x)| ≤ C, we can write for the second
derivative of u(x) ∣∣u′′(x)

∣∣ ≤ 1
ε2 [| f (x)|+ |a(x)||u(x)|
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+|λ|
x∫

0

|K1(x, t)||u(t)|dt + |λ|
l∫

0

|K2(x, t)||u(t)|dt

 ≤ C
ε2 , 0 ≤ x ≤ l.

For any function g ∈ C2[0, l], the following formula is used to estimate |u′(0)| and
|u′(l)| :

g′(x) = g[α0, α1]−
α1∫

α0

K0(ξ, x)g′′(ξ)dξ, α0 < α1, (6)

where

g[α0, α1] =
g(α1)− g(α0)

α1 − α0
,

K0(ξ, x) = T0(ξ − x)− (α1 − α0)
−1(ξ − α0)

and

T0(λ) =

{
1, λ ≥ 0,
0, λ < 0.

In (6), by taking g(x) = u(x), x = 0, α0 = 0 and α1 = ε, we find the estimation of
|u′(0)| : ∣∣u′(0)∣∣ ≤ u(ε)− u(0)

ε
−

ε∫
0

K0(ξ, 0)u′′(ξ)dξ ≤ C
ε

.

In the same way, rewriting g(x) = u(x), x = l, α0 = l − ε and α1 = l in (6), we obtain

∣∣u′(l)∣∣ ≤ u(l)− u(ε)
ε

−
l∫

l−ε

K0(ξ, l)u′′(ξ)dξ ≤ C
ε

.

Differentiating (1), we have

− ε2v′′ + a(x)v = F(x), (7)

v(0) = O(
1
ε
), v(l) = O(

1
ε
). (8)

From (4), it is clear that
|F(x)| ≤ C. (9)

We investigate the solution of the problems in (7) and (8) in the following form:

v(x) = v1(x) + v2(x),

Here, the functions v1(x) and v2(x) are the solutions of the following problems,
respectively:

− ε2v′′1 + a(x)v1 = F(x), (10)

v1(0) = v1(l) = 0 (11)

and
− ε2v′′2 + a(x)v2 = 0, (12)

v2(0) = O
(

1
ε

)
, v2(l) = O

(
1
ε

)
. (13)

By using the maximum principle, we obtain

|v1(x)| ≤ α−1‖F‖∞ ≤ C, 0 ≤ x ≤ l, (14)
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and
|v2(x)| ≤ w(x). (15)

Here, the function w(x) is the solution of the following problem:

− ε2w′′(x) + aw = 0, (16)

w(0) = |v2(0)|, w(l) = |v2(l)|. (17)

For the solution of the problems in (16) and (17), it is obvious that

w(x) =
1

sinh
(√

αl
ε

){w(0) sinh
(√

α(l − x)
ε

)
+ w(l) sinh

(√
αl
ε

)}
.

From here, we can write

w(x) ≤ C
ε

{
e
−
√

αx
ε + e

−
√

α(l−x)
ε

}
. (18)

Thus, we obtain ∣∣u′(x)
∣∣ ≤ |v1(x)|+ |v2(x)|,

which hints at the proof of the relation (5) [42]. Therefore, the proof of the lemma is
completed.

3. Discrete Scheme

In this section, the finite difference discretization is presented for the problem (1)
and (2). First, we give the definition of the mesh. Let ωN be a non-uniform mesh on [0, l]:

ωN = {0 < x1 < x2 < ... < xN−1, hi = xi − xi−1}

and
ωN = ωN ∪ {x0 = 0, xN = l}.

Here, we use the non-uniform mesh called Boglaev–Bakhvalov-type mesh in [43].
The transition point is taken as

σ1 = min{ l
4

, α−1ε|ln ε|}.

For an even number N, we divide each of the subintervals [0, σ1], [σ1, σ2] and [σ2, l].
Here, σ2 = l − σ1. xi node points are specified as

xi =



−α−1ε ln
(

1− (1− ε) 4i
N

)
, i = 0, 1, ..., N

4 , xi ∈ [0, σ1], σ1 < l
4 ;

−α−1ε ln
(

1− (1− e−
αl
4ε ) 4i

N

)
, i = 0, 1, ..., N

4 , xi ∈ [0, σ1], σ1 = l
4 ;

σ1 + (i− N
4 )h

(1), i = N
4 + 1, ..., 3N

4 , xi ∈ [σ1, σ2], h(1) = 2(σ2−σ1)
N ;

σ2 − α−1ε ln
(

1− (1− ε)
4(i− 3N

4 )
N

)
, i = 3N

4 + 1, ..., N, xi ∈ [σ2, l], σ2 < 3l
4 ;

σ2 − α−1ε ln
(

1− (1− e−
αl
4ε )

4(i− 3N
4 )

N

)
, i = 3N

4 + 1, ..., N, xi ∈ [σ2, l], σ2 = 3l
4 .

Before constructing the difference scheme, we define some notation for the mesh
functions. For any mesh function v(x) defined on ω̄N , we use the following implicit
difference rules:

vi = v(xi), vx̄,i =
vi − vi−1

hi
,

vx,i =
vi+1 − vi

hi+1
, vx̄x̂,i =

1
h̄i
(vx,i − vx̄,i).
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Here, h̄i is defined as

h̄i =
1
2
(hi + hi+1)

and the discrete maximum norm is denoted by

‖v‖∞ = ‖v‖∞,ω̄N
= max

0≤i≤N
|vi|.

To establish the difference scheme for the problems in (1) and (2), we use the following
integral identity:

}−1
i

xi+1∫
xi−1

[Lu + Tu + Su]ϕi(x)dx = }−1
i

xi+1∫
xi−1

f (x)ϕi(x)dx, i = 1, 2, ..., N − 1, (19)

where the basis function is defined as follows:

ϕi(x) =


ϕ
(1)
i (x) = x−xi−1

hi
, x ∈ (xi−1, xi)

ϕ
(2)
i (x) = xi+1−x

hi+1
, x ∈ (xi, xi+1)

0, x /∈ (xi−1, xi+1).

Moreover, it can be easily seen that

}−1
i

xi+1∫
xi−1

ϕi(x)dx = }−1
i

(
hi
2
+

hi+1

2

)
= 1.

For the differential operator Lu in (19), after using interpolating quadrature rules
in [44] and some manipulations, we find

}−1
i

xi+1∫
xi−1

Luϕi(x)dx = }−1
i ε2

xi∫
xi−1

u′ϕ(1)
′

i (x)dx + }−1
i ε2

xi+1∫
xi

u′ϕ(2)
′

i (x)dx

+ai}−1
i

xi∫
xi−1

u(x)ϕ
(1)
i (x)dx + ai}−1

i

xi+1∫
xi

u(x)ϕ
(2)
i (x)dx

= Lhui + R(1)
i + R(2)

i , (20)

where
Lhui = −ε2uxx̂,i + aiui,

R(1)
i = −}−1

i

xi+1∫
xi−1

[a(x)− a(xi)]u(x)ϕi(x)dx (21)

and

R(2)
i = }−1

i

xi+1∫
xi−1

dxϕi(x)

xi+1∫
xi−1

du(ξ)
dξ

T0(x− ξ)dξ.

Here, for s = 0, T0 is computed as

Ts(λ) =

{
λs

s! , λ ≥ 0;
0, λ < 0.
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Moreover, for the right-side of the relation (19), we obtain

}−1
i

xi+1∫
xi−1

f (x)ϕi(x)dx = fi + R(3)
i (22)

with the remainder term given by

R(3)
i = }−1

i

xi+1∫
xi−1

[ f (x)− f (xi)]ϕi(x)dx. (23)

For the Volterra operator in the relation (19), using interpolating quadrature rules
in [44], we obtain

}−1
i

xi+1∫
xi−1

Tuϕi(x)dx = λ}−1
i

xi+1∫
xi−1

dxϕi(x)
x∫
0

K1(x, t)u(t)dt

= λ

x∫
0

K1(xi, t)u(t)dt + R(4)
i

where

R(4)
i = −}−1

i λ

xi+1∫
xi−1

dxϕi(x)

xi+1∫
xi−1

 x∫
0

∂

∂x
K1(x, t)u(t)dt

dx. (24)

After applying the composite right side rectangle rule, we have

λ

x∫
0

K1(xi, t)u(t)dt + R(4)
i = λ

i

∑
j=1

}jK1,ijuj + R(4)
i + R(5)

i ,

where

R(5)
i = −λ

i

∑
j=1

xj∫
xj−1

(
ξ − xj−1

) x∫
0

∂

∂ξ
K1(ξ, t)u(t)dt

dξ. (25)

Then, we can write that

}−1
i

xi+1∫
xi−1

Tuϕi(x)dx = Thui + R(4)
i + R(5)

i . (26)

Here,

Thi
ui = λ

i

∑
j=1

hjK1,ijuj.

Similarly, for the Fredholm operator in the relation (19), applying the interpolating
quadrature rules in [44] and the composite right side rectangle rule, it is found that

}−1
i

xi+1∫
xi−1

Suϕi(x)dx = Shui + R(6)
i + R(7)

i , (27)

where

Shui = λ
N

∑
j=1

}jK2,ijuj,
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R(6)
i = −}−1

i λ

xi+1∫
xi−1

dxϕi(x)

xi+1∫
xi−1

 l∫
0

∂

∂x
K2(x, t)u(t)dt

dx

and

R(7)
i = −λ

N

∑
j=1

xj∫
xj−1

(
ξ − xj−1

) l∫
0

∂

∂ξ
K2(ξ, t)u(t)dt

dξ.

Combining (20), (22), (26) and (27), the following difference scheme is written for the
problems in (1) and (2):

Lhui + Thui + Shui + Ri = fi, 1 ≤ i ≤ N − 1, (28)

where

Ri =
7

∑
k=1

R(k)
i . (29)

By omitting the error term Ri in (28), we present the following difference problem for
the approximate solution:

Lhyi + Thyi + Shyi = fi, 1 ≤ i ≤ N − 1, (30)

y0 = A, yN = B, (31)

where

Lhyi = −ε2yxx̂,i + aiyi, Thyi = λ
i

∑
j=1

}jK1,ijyj

and

Shyi = λ
N

∑
j=1

}jK2,ijyj.

4. The Stability and Convergence

Let the error function zi = yi − ui, i = 0, 1, 2, ..., N be the solution of the following
problem:

Lhzi + Thzi + Shzi = Ri, 1 ≤ i ≤ N − 1 (32)

z0 = 0, zN = 0. (33)

Here,

Lhzi = −ε2zxx̂,i + aizi, Thzi = λ
i

∑
j=1

}jK1,ijzj,

Shzi = λ
N

∑
j=1

}jK2,ijzj,

and the remainder term Ri is denoted by (29).

Lemma 2. If
|λ| < α

max
1≤i≤N

∑i
j=1 }j

∣∣K1,ij
∣∣+ max

1≤i≤N
∑N

j=1 }j
∣∣K2,ij

∣∣ ,
the solution of the problem (32) and (33) satisfies that

‖z‖∞,ωN
≤ c0‖R‖∞,ωN

,
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where

c0 =
α−1

1− α−1|λ|
(

max
1 ≤ i ≤ N ∑i

j=1 }j
∣∣K1,ij

∣∣+ max
1 ≤ i ≤ N ∑N

j=1 }j
∣∣K2,ij

∣∣) .

Proof. Applying the discrete maximum principle to the discrete problem (32) and (33),
we get

|zi| ≤ α−1 max
1 ≤ i ≤ N|Ri|+ α−1|λ| max

1 ≤ i ≤ N

i

∑
j=1

}j
∣∣K1,ij

∣∣∣∣zj
∣∣+ α−1|λ| max

1 ≤ i ≤ N

N

∑
j=1

}j
∣∣K2,ij

∣∣∣∣zj
∣∣.

From here, we can write

‖z‖∞ ≤ α−1‖R‖∞ + α−1|λ| max
1 ≤ i ≤ N

i

∑
j=1

}j
∣∣K1,ij

∣∣‖z‖∞ + α−1|λ| max
1 ≤ i ≤ N

N

∑
j=1

}j
∣∣K2,ij

∣∣‖z‖∞.

Then, we find
‖z‖∞(1− γ̄) ≤ α−1‖R‖∞, (34)

where

γ̄ = α−1|λ| max
1≤i≤N

i

∑
j=1

}j
∣∣K1,ij

∣∣+ α−1|λ| max
1≤i≤N

N

∑
j=1

}j
∣∣K2,ij

∣∣ < 1.

Therefore, we arrive at the proof of the lemma.

Lemma 3. For the remainder term Ri, the following estimate is satisfied:

‖R‖∞,ωN
≤ CN−1.

Proof. By applying the mean value theorem to function a(x) in R(1)
i , we obtain

|a(x)− a(xi)| ≤
∣∣a′(ξi)

∣∣|x− xi| ≤ Chi, xi ≤ ξi ≤ x. (35)

Thus, taking into account a ∈ C1[0, l] and (35), it is found that

∣∣∣R(1)
i

∣∣∣ ≤ }−1
i

xi+1∫
xi−1

|a(x)− a(xi)||u(x)||ϕi(x)|dx

≤ Chi}−1
i

xi+1∫
xi−1

ϕi(x)dx = Chi. (36)

Similarly, we can write ∣∣∣R(3)
i

∣∣∣ ≤ Chi. (37)

Additionally, because of the boundedness of T0 and |ϕi(x)| ≤ 1, it is obvious that

∣∣∣R(2)
i

∣∣∣ ≤ }−1
i

xi+1∫
xi−1

dx|ϕi(x)|
xi+1∫

xi−1

∣∣∣∣du(ξ)
dξ

∣∣∣∣|T0(x− ξ)|dξ ≤ Chi. (38)
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For the remainder term R(4)
i , using the Leibnitz rule for the integral term in (24),

we have

R(4)
i = −}−1

i λ

xi+1∫
xi−1

dxϕi(x)

xi+1∫
xi−1

K1(x, x)u(x) +
x∫
0

∂

∂x
K1(x, t)u(t)dt

dx.

Since
∣∣∣ ∂K1

∂x

∣∣∣ ≤ C and |u(x)| ≤ C, we can find

∣∣∣R(4)
i

∣∣∣ ≤ |λ|xi+1∫
xi−1

|K1(x, x)||u(x)|+
x∫
0

∣∣∣∣ ∂

∂x
K1(x, t)

∣∣∣∣|u(t)|dt

dx.

Thus, it is seen that ∣∣∣R(4)
i

∣∣∣ ≤ Chi. (39)

In a similar way, we can show ∣∣∣R(6)
i

∣∣∣ ≤ Chi. (40)

For the remainder term R(5)
i , applying the Leibnitz rule to the integral term in (25),

we obtain

∣∣∣R(5)
i

∣∣∣ ≤ |λ| i

∑
j=1

xi∫
xi−1

(
ξ − xj−1

)|K1(ξ, x)||u(x)|+
x∫
0

∣∣∣∣ ∂

∂ξ
K1(ξ, t)

∣∣∣∣|u(t)|dt

dξ

≤ |λ|
l∫
0

(
ξ − xj−1

)|K1(ξ, x)||u(x)|+
x∫
0

∣∣∣∣ ∂

∂ξ
K1(ξ, t)

∣∣∣∣|u(t)|dt

dξ

≤ C

hi +

xi∫
xi−1

∣∣u′(x)
∣∣dx

. (41)

Analogously, we have

∣∣∣R(7)
i

∣∣∣ ≤ C

hi +

xi∫
xi−1

∣∣u′(x)
∣∣dx

. (42)

By substituting (36), (37), (38), (39), (40), (41) and (42) into (29), we estimate that

‖R‖∞ ≤ Chi.

Now, we consider the node points of adaptive mesh. The mesh stepsizes hold

hi = xi − xi−1 ≤ CN−1, hi+1 = xi+1 − xi ≤ CN−1

and

h̄i =
(hi + hi+1)

2
≤ CN−1.

Then, we estimate the remainder terms for each sub-intervals separately. For the
interval [0, σ1], if σ1 < l

4 , it is found that

hi = xi − xi−1 = α−1ε

[
ln
(

1− (1− e−
αl
4ε )

4i
N

)
+ ln

(
1− (1− e−

αl
4ε )

4(i− 1)
N

)]
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≤ 4α−1(1− ε)N−1.

Thus, we obtain

e
−
√

αxi−1
ε − e

−
√

αxi
ε ≤ 4α−1(1− ε)N−1

and

e
−
√

α(l−xi−1)
ε − e

−
√

α(l−xi)
ε ≤ 4α−1(1− ε)N−1.

If σ1 = l
4 , it can be written that

hi = xi − xi−1 = α−1ε

[
ln
(

1− (1− e−
αl
4ε )

4i
N

)
+ ln

(
1− (1− e−

αl
4ε )

4(i− 1)
N

)]
≤ α−1(1− ε)N−1 = lN−1.

Now, we consider the interval [σ1, σ2]. We have

hi = xi − xi−1 =
2(σ2 − σ1)

N
=

2(l − 2σ1)

N
= 2(l − 2σ1)N−1.

For σ1 < l
4 , we obtain hi ≤ lN−1, and for σ1 = l

4 , we obtain hi = lN−1. Performing
similar operations on the interval [σ2, l], we find

|Ri| ≤ CN−1,

which concludes the proof of the lemma.

Theorem 1. Let u be the solution of the problems in (1) and (2), and let y be the solution of the
discrete problems in (30) and (31). Then, the following estimate is satisfied that

‖y− u‖
∞ ,ωN

≤ CN−1.

Proof. The proof of the theorem can be derived from the previous two lemmas.

5. Results and Discussion

In this section, we test the numerical method on several examples. For this, the elimi-
nation method is used to obtain maximum pointwise errors and convergence rates. Then,
the discretization (30) and (31) can be written as the following form:

Aiyi−1 − Ciyi + Biyi+1 = −Fi, i = 1, ..., N − 1,

y0 = A, yN = B.

where

Ai = −ε2h̄−1
i h−1

i , Bi = −ε2h̄−1
i h−1

i+1,

Ci = −
(

ε2h̄−1
i h−1

i + ε2h̄−1
i h−1

i+1 + ai

)
,

Fi = − fi + λ
i

∑
j=1

h̄jK1,ijyj + λ
N

∑
j=1

h̄jK2,ijyj.

Here, the coefficients of the elimination method are as follow [45]:

αi+1 =
Bi

Ci − αi Ai
, α1 = 0, i = 1, ..., N − 1,

βi+1 =
Fi + Aiβi
Ci − αi Ai

, β1 = 1, i = 1, ..., N − 1
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and
yi = αi+1yi+1 + βi+1, i = N − 1, ..., 1.

The corresponding Algorithm 1 is given by

Algorithm 1: To compute the numerical solution yi.

Input: ε, N, x(0) = x0, x(l) = xN, a(x), f (x), K1(x, t), K2(x, t) and α
Output: The numerical solution yi
Step 1: σ1 = sigma1 = min((xN − x0)/4, abs((ε ∗ reallog(ε))/α));

σ2 = sigma2 = xN − sigma1
h(1) = h1 = (sigma2− sigma1)/(N/2)

Step 2: for i = 2 : N + 1
hi = h(i) = x(i)− x(i− 1)
h̄i = h2(i) = (h(i + 1) + h(i))/2

end
Step 3: for i = 2 : N + 1

if ((i <= N/4 + 1)&&(sigma1 < (xN − x0)/4))
x(i) = −ε ∗ reallog(1− (1− ε) ∗ 4 ∗ (i− 1)/N)/α
end

if (i <= N/4 + 1)&&(sigma1 == (xN − x0)/4)
x(i) = −ε ∗ reallog(1− (1− exp(−α ∗ xN/(2 ∗ ε))) ∗ 4 ∗ (i− 1)/N)/α
end

if ((i > N/4 + 1)&&(i <= 3 ∗ N/4 + 1))
x(i) = sigma1 + h1 ∗ (i− 1− N/4)
end

if ((i > 3 ∗ N/4 + 1)&&(i <= N))
x(i) = xN − x(N + 2− i)
end

end
Step 4: for i = 2 : N
(Ai = A(i), Bi = B(i), Ci = C(i), Fi = F(i), αi = al f a(i), βi = beta(i))
al f a(i + 1) = B(i)./(C(i)− al f a(i). ∗ A(i));
beta(i + 1) = (E(i) + beta(i). ∗ A(i))./(C(i)− al f a(i). ∗ A(i))
y(i) = y(i + 1). ∗ al f a(i + 1) + beta(i + 1)
end

All numerical computations and figures have been carried out by Matlab R2013a.
In the numerical experiments, the transition point is chosen as σ1 ≈ 0.25.

Example 1. Consider a particular problem

−ε2u′′ + u +

x∫
0

u(t)dt +
1∫

0

u(t)dt = −ε
(

e
−x
ε + e

−1
ε − 2

)
, x ∈ (0, 1)

u(0) = 1, u(1) = e
−1
ε ,

in which the exact solution is u(x) = e
−x
ε . The nodal maximum errors are specified as

eN = max
0≤i≤N

|yi − ui|,

where ui is the exact solution and yi is approximate solution. Furthermore, the convergence rates
are computed as follows

pN =
ln(eN/e2N)

ln 2
.
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The computed results are presented in Table 1.

Table 1. Maximum pointwise errors eN and order of convergence pN on ωN .

ε N = 64 N = 128 N = 256 N = 512 N = 1024

10−2 1.81764×10−2 9.3384× 10−3 4.73852× 10−3 2.38932× 10−3 1.200183− 03
0.96 0.97 0.98 0.99

10−4 2.214777× 10−2 1.137744× 10−2 5.76341× 10−3 2.89803× 10−3 1.45366× 10−3

0.97 0.98 0.98 0.99
10−6 2.221578× 10−2 1.141305× 10−2 5.78281× 10−3 2.91048× 10−3 1.46022× 10−3

0.97 0.98 0.99 0.99
10−8 2.432828× 10−2 1.141356× 10−2 5.78307× 10−3 2.91785× 10−3 1.46448× 10−3

0.97 0.98 0.99 0.99
10−10 2.211679× 10−2 1.141357× 10−2 5.78891× 10−3 2.91269× 10−3 1.46123× 10−3

0.97 0.98 0.98 0.99
10−12 2.204231× 10−2 1.14026× 10−2 5.7821× 10−3 2.91061× 10−3 1.46007× 10−3

0.97 0.98 0.99 0.99
eN 2.432828× 10−2 1.141357× 10−2 5.78891× 10−3 2.91785× 10−3 1.46448× 10−3

pN 0.96 0.97 0.98 0.99

The behavior of the numerical solution is demonstrated in Figures 1 and 2.
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Figure 1. Behavior of the numerical solution for ε = 10−4 and N = 128.
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Figure 2. Numerical approximation for ε = 10−12 and N = 64.

From Figures 1 and 2, it can be seen that the maximal errors are concentrated within
the boundary layers.
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Example 2. We take into account another problem

−ε2u′′ + (x + 1)u +
1
2

x∫
0

(1− ext)u(t)dt +
1
2

1∫
0

tu(t)dt =
1

1 + x
, x ∈ (0, 1),

u(0) = 0, u(1) = 1.

The exact solution of this equation is unknown. Since the exact solution is unknown, we use
the double-mesh technique. The error approximations are indicated by

eN = max
0≤i≤N

∣∣∣yN
i − y2N

i

∣∣∣
and the order of convergence is defined as follows

pN =
ln(eN/e2N)

ln 2
.

Error approximations are shown in Table 2.

Table 2. Maximum pointwise errors eN and order of convergence pN on ωN .

ε N = 64 N = 128 N = 256 N = 512 N = 1024

10−2 2.772958×10−2 1.392083× 10−2 6.9501× 10−3 3.4764× 10−3 1.74087× 10−3

0.99 1.00 1.00 1.00
10−4 3.289871× 10−2 1.64391× 10−2 8.21645× 10−3 4.10664× 10−3 2.05148× 10−3

1.01 1.00 1.00 1.00
10−6 3.299511× 10−2 1.648756× 10−2 8.24116× 10−3 4.11991× 10−3 2.05978× 10−3

1.01 1.00 1.00 1.01
10−8 3.299655× 10−2 1.648829× 10−2 8.24152× 10−3 4.12113× 10−3 2.05604× 10−3

1.00 1.00 1.00 1.00
10−10 3.299657× 10−2 1.648829× 10−2 8.24153× 10−3 4.12871× 10−3 2.05987× 10−3

0.99 0.99 1.00 1.00
10−12 3.298523× 10−2 1.64883× 10−2 8.24044× 10−3 4.12009× 10−3 2.05139× 10−3

1.01 1.00 1.01 1.02
eN 3.299657× 10−2 1.648830× 10−2 8.24153× 10−3 4.12871× 10−3 2.05987× 10−3

pN 0.99 0.99 1.00 1.00

The computational results are reflected in the Figures 3 and 4.
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Figure 3. Numerical solution for ε = 10−2 and N = 32.
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Figure 4. Behavior of the approximate solution for ε = 10−12 and N = 64.

In Figures 3 and 4, from ε = 10−2 to ε = 10−12, it is seen that numerical solution
behaves stable.

Example 3. Examine the last problem

−ε2u′′ + (1 + ex)u +

x∫
0

sinh(t)u(t)dt +
1∫

0

cosh(t)u(t)dt = sin x− cos x, x ∈ (0, 1),

u(0) = 0, u(1) = e
−1
ε + 1

The exact solution of this problem is unknown. Thus, we apply the double-mesh
principle again. The obtained results are summarized in Table 3.

Table 3. Maximum pointwise errors eN and order of convergence pN on ωN .

ε N = 64 N = 128 N = 256 N = 512 N = 1024

10−2 1.233841×10−2 6.29078× 10−3 3.16786× 10−3 1.59413× 10−3 8.0295× 10−4

0.97 0.99 0.99 0.99
10−4 1.511043× 10−2 7.66589× 10−3 3.8615× 10−3 1.93738× 10−3 9.6936× 10−4

0.98 0.99 0.99 1.00
10−6 1.516372× 10−2 7.69353× 10−3 3.87596× 10−3 1.90705× 10−3 9.3596× 10−4

0.97 0.99 1.02 1.02
10−8 1.516452× 10−2 7.69395× 10−3 4.03036× 10−3 1.92596× 10−3 9.1215× 10−4

0.97 0.93 1.06 1.07
10−10 1.516453× 10−2 7.69487× 10−3 4.03738× 10−3 1.94571× 10−3 9.0143× 10−4

0.98 0.93 1.05 1.11
10−12 1.516204× 10−2 7.69318× 10−3 3.83764× 10−3 1.9232× 10−3 9.0138× 10−4

0.98 1.00 1.00 1.09
eN 1.516453× 10−2 7.69487× 10−3 4.03764× 10−3 1.93571× 10−3 9.6936× 10−4

pN 0.97 0.93 0.99 0.99

The improvement in the numerical solution within the boundary layers is illustrated
in Figures 5 and 6.
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Figure 5. Numerical approximation for ε = 10−2 and N = 64.
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Figure 6. Numerical behavior for ε = 10−10 and N = 128.

Figures 5 and 6 show that the numerical solution is treated as ε decreases.

In summary, from Tables 1–3, as N increases, maximum pointwise errors decrease and
the order of uniform convergence of the presented difference scheme is almost 1. It can
be concluded that the presented difference scheme yields stable and uniform numerical
results. Moreover, from Figures 1–6, it is seen that the numerical solution curves converge
to the coordinate axes for smaller values of ε. Thus, the proposed method seems to be
effective for solving such problems.

6. Concluding Remarks

In this paper, we suggested a new and stable difference scheme for solving bound-
ary value problems of singularly perturbed second-order Volterra–Fredholm integro-
differential equations. The stability and convergence of the method were examined in
the discrete maximum norm. The effectiveness and reliability of the presented scheme
are demonstrated by three numerical examples. The computed results reveal that the
order of convergence was found as O

(
N−1). Namely, the scheme is first-order accurate.

Although the proposed method is reliable, the order of convergence of the numerical
scheme may need to be improved. In order to expand numerical research, experiments in
which improvements in the order and different boundary conditions (i.e., nonlocal, integral,
Robin, and mixed) can be considered.
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Abbreviations
The abbreviations in this paper are given below:

ε Perturbation parameter
C Generic positive constant
λ Real parameter
hi Mesh step size
xi Mesh node point
ωN Non-uniform mesh
σ1 and σ2 Mesh transition points
eN Maximum error
pN Order of convergence
L Differential operator
T Volterra integral operator
S Fredholm integral operator
ui Exact solution of the presented problem
yi Approximate solution of the difference problem
Ri Remainder term
zi Error function
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