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Abstract: The dynamics and rheology of a vesicle confined in a channel under shear flow are studied
at finite temperature. The effect of finite temperature on vesicle motion and system viscosity is
investigated. A two-dimensional numerical model, which includes thermal fluctuations and is based
on a combination of molecular dynamics and mesoscopic hydrodynamics, is used to perform a
detailed analysis in a wide range of the Peclet numbers (the ratio of the shear rate to the rotational
diffusion coefficient). The suspension viscosity is found to be a monotonous increasing function of
the viscosity contrast (the ratio of the viscosity of the encapsulated fluid to that of the surrounding
fluid) both in the tank-treading and the tumbling regime due to the interplay of different temperature-
depending mechanisms. Thermal effects induce shape and inclination fluctuations of the vesicle
which also experiences Brownian diffusion across the channel increasing the viscosity. These effects
reduce when increasing the Peclet number.
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1. Introduction

Suspensions of soft particles such as droplets, vesicles, and capsules are ubiquitous in
relevant applications in biology, medicine, and engineering. Studying their dynamics in
flow is challenging, since shapes are not fixed, as in the case of rigid objects, but depend
dynamically on the interplay between fluid stresses and interfacial forces. The interfacial
forces are directly related to the nature of the considered particles: The surface tension for
droplets, the membrane bending rigidity for vesicles, and additionally the membrane shear
elasticity for capsules. This calls for separate investigations of the various systems.

Vesicles are small volumes of fluid embedded in a lipid bi-layer membrane, in solution
with either the same or different fluid. The dynamical and rheological properties of
their suspensions in flow have attracted a lot of theoretical and experimental interest,
as comprehensively reviewed in Refs. [1–4]. A consensus has been reached concerning the
dynamical regimes in shear flow. In dilute solution, vesicles can show tank-treading (TT),
tumbling (TU), and vacillating-breathing (VB) (also called trembling or swinging) motion,
depending on the shear rate and the viscosity contrast λ = ηout/ηin, where ηin and ηout
are the viscosities of the inner and outer fluids, respectively. TT and TU occur at low and
high λ, respectively, while VB appears for strong flows when vesicle deformation affects its
dynamics [5–15].

On the other hand, the rheology of single vesicle suspensions is still a matter of
debate. Indeed, different behaviors of the intrinsic viscosity ηI = (η − ηout)/(ηoutφ),
where η is the effective system viscosity and φ the vesicle concentration, as a function
of the viscosity contrast have been observed in experimental, theoretical, and numerical
studies. In the case of very dilute suspensions of quasi-spherical vesicles, it was shown
analytically [16,17] that the intrinsic viscosity decreases with the viscosity contrast λ in the
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TT regime, reaching a minimum at the TT-to-TU transition, and then grows with λ in the TU
regime. Experimental investigations do not provide conclusive results. A good agreement
with the theoretical prediction was found in Ref. [18], while an increase in ηI with λ for
λ < 1 was observed in Ref. [19]. These discrepancies might be due to the difficulty in
preparing monodisperse suspensions as well as to the fact that viscosity measurements
require volume fractions φ ∼ 5–10%, thus making the extrapolation to the dilute limit
difficult [19]. Numerical models differ mainly in the lack or presence of thermal noise. In
the former case, it was found in two-dimensional models that the intrinsic viscosity follows
the theoretical prediction both in the very dilute [20–22] and in the dilute case [21,23,24].
A similar dependence on the viscosity contrast was found also in a three-dimensional
model [25]. The only available numerical model with thermal fluctuations [26] shows that
ηI is an increasing function of λ, in agreement with the experiments of Ref. [19].

The numerical model of Ref. [26], which comprises both thermal membrane undu-
lations and thermal noise [26], is adopted here to perform a detailed study of a confined
vesicle in shear flow at a finite temperature. The results of this model yielded very good
agreement with the experimental results in describing the collision process of two vesi-
cles [19] and the flow field of a single vesicle in shear flow [27]. The system is studied in
two dimensions at a fixed shear rate in a wide range of the Peclet number Pe— the ratio
of the shear rate to the rotational diffusion coefficient— differently from other theoretical
and numerical studies where Pe = ∞. We aim at elucidating the role played by thermal
fluctuations in influencing both the vesicle dynamics and, consequently, the system viscos-
ity in the TT and TU regimes. The reason for considering a very dilute solution is twofold.
On one hand, this is in line with the hypothesis of an extremely dilute suspension used in
the theoretical model [16,17], and, on the other hand, hydrodynamic and steric interactions
between vesicles can be ruled out.

The paper is organized as follows. Section 2 presents the numerical model. Results are
illustrated in Section 3. A detailed discussion of our findings about the effects of thermal
noise is presented in Section 4, including a comparison with previous studies. Finally,
conclusions are presented in Section 5.

2. The Model

A two-dimensional fluid made of Ns point-like particles of mass m is considered.
The particle positions ri(t) and velocities vi(t), i = 1, 2, . . . , Ns, at time t are continuous
variables. We employ the multi-particle collisions (MPC) dynamics approach, in which time
evolution occurs via iterative propagations and collisions [28–31]. In the first streaming
step, particles are ballistically streamed for a time interval ∆ts

ri(t + ∆ts) = ri(t) + vi(t)∆ts i = 1, . . . , Ns. (1)

In the subsequent collision step, the system is divided into square cells of mesh size a
where an instantaneous multi-particle collision occurs, which changes particle velocities as

vnew
i = vG

c + vran
i − ∑

j∈cell
vran

j /Nc + Π−1 ∑
j∈cell

m
[
rj,c × (vj − vran

j )
]
× ri,c i = 1, . . . , Ns (2)

where vG
c is the center-of-mass velocity of all particles in the cell, vran

i is a velocity taken
from a Maxwell–Boltzmann distribution, Nc is the number of particles in the cell, Π and
ri,c are the moment-of-inertia tensor and the position relative to the center of mass of the
particles in the cell, respectively. This dynamic conserves both local linear and angular
momentum [32,33] and keeps the temperature constant [34]. The viscosity of the fluid is
given by [35]

η =
m

∆ts

[( l
a

)2( n2

n− 1
− n

2

)
+

1
24

(
n− 7

5

)]
(3)

n being the average number of particles per cell, l = ∆ts
√

kBT/m the mean-free path, and
kBT the thermal energy. The system of size Lx × Ly is confined between two horizontal
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walls sliding along the x direction with velocities vwall and −vwall . Periodic boundary
conditions (BC) are used along the x direction. Bounce-back BC are enforced at walls [36]
obtaining a linear flow profile (ux, uy) = (γ̇y, 0) with shear rate γ̇ = 2vwall/Ly.

The vesicle membrane is modeled as a chain of Np beads of mass mp connected to
form a closed ring with an average bond length r0. Neighboring beads interact via a
harmonic potential

Ubond = κh

Np

∑
i=1

(|ri − ri−1| − r0)
2

2r2
0

(4)

where κh is the spring constant and ri is the position vector of the i-th bead. This ensures
the conservation of the membrane length. Shapes and fluctuations are controlled by the
bending potential

Ubend =
κ

r0

Np

∑
i=1

(1− cos βi), (5)

where κ is the bending rigidity and βi is the angle between two consecutive bonds. Finally,
the internal area S is kept close to the target area S0 of the vesicle by using a quadratic
constraint-potential with a compression modulus κS [26]

Uarea = κS
(S− S0)

2

2r4
0

. (6)

Newton’s equations of motions of beads are integrated by using the velocity-Verlet
algorithm with time step ∆tp [37].

In order to describe the coupling of solvent particles with the vesicle, each bead is
treated as a “rough" hard disk radius rv [26,38,39]. The value of rv is set so that disks
overlap and achieve full coverage of the membrane. Scattering takes place when a solvent
particle i and a disk j overlap while moving towards each other so that both the conditions
|rj − ri| < rv and (rj − ri) · (vj − vi) < 0 are fulfilled. A second disk k = j± 1, connected
to the j-th one and characterized by the smallest distance from the solvent particle i, is then
selected. The angular velocity

Ω = Π−1 ∑
l=i,j,k

mlrl,c × vl (7)

and the center of mass velocity vG of the i, j, k-particle system are computed, with rl,c being
the position relative to the center of mass. The updated values of the velocities are given by

vnew
l = 2(vG + Ω× rl,c)− vl l = i, j, k (8)

which guarantees linear and angular momenta conservation [14]. The collision step (2) is
then performed for those fluid particles which did not interact with the membrane in order
to avoid multiple collisions with the same membrane disk in the following iterations. Disks
interact with lateral walls also by implementing bounce-back scattering. The numerical
implementation of the algorithm is outlined in Appendix A.

Inertial effects, which are experimentally irrelevant due to the small flow velocities,
are made negligible in the simulations by making the Reynolds number Re = γ̇ρR2

0/ηout,
with mass density ρ, which is very small. Other relevant dimensionless quantities are the
reduced area S∗ = S0/πR2

0, where R0 = L0/2π is the vesicle radius with L0 the vesicle
contour length, and the reduced shear rate γ̇∗ = γ̇τc, where τc = ηoutR3

0/κ is the relaxation
time of the vesicle. The viscosity contrast can be approximated as λ ' min/mout within the
present model [32] (the subscripts out/in refer to quantities outside/inside the vesicle).
We use the following Lx = 18.95R0, Ly = 5.79R0 with R0 = 7.6a. Finally, we set min
so as to obtain 0.1 ≤ λ ≤ 15.0, mp = 3mout, ∆ts/∆tp = 64, Np = 480, rv = r0 = a/10,
κS = 4× 10−4kBT, κh = 3× 102kBT. The setting of parameters is implemented to obtain
Re < 0.15, the Mach number Ma = vwall/cs < 0.25, where cs =

√
2kBT/mout is the speed
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of sound, to reduce compressibility effects [40], and γ̇∗ = 1.0 in all the cases. The value
of the reduced shear rate γ̇∗ is comparable to those used in other studies [20,21,23,25] and
provides access to the TT and TU regimes by varying the viscosity contrast.

The importance of thermal fluctuations depends on the the rotational Peclet number
Pe = γ̇/Dr. The rotational diffusion coefficient Dr is given by Dr = kBT/ζ and by em-
ploying the rotational friction coefficient ζ of a circle, the Peclet number can be written as
Pe = 4πγ̇∗κ/(kBTR0). In the following, the Peclet number will be changed by considering
the values κ/(kBTR0) = 6.58, 65.8, 164.5, corresponding to Pe = 82, 821, 2041, respec-
tively, while keeping fixed the value of γ̇∗. The present study focuses on the dynamics
and rheology of a sheared vesicle at finite values of Pe. Indeed, in previous studies of
Refs. [20,21,23–25] it was assumed that Pe = ∞, thus neglecting the role of thermal fluctuations.

3. Results

We consider very dilute suspensions with a single vesicle for two values of the re-
duced area S∗ = 0.80, 0.95 corresponding effectively to volume fractions φ = 0.023, 0.028,
respectively.

In Figure 1, the instantaneous intrinsic viscosity ηI is shown as a function of time for
different values of viscosity contrast λ, bending rigidity κ, and reduced area S∗. The vis-
cosity η is computed as η = σxy/γ̇ where σxy is the xy component of the stress tensor at
walls [41]. In the MPC model, the stress σxy has a contribution in the streaming step, σs

xy,
proportional to the flux of the x-momentum crossing the walls, and a second contribution
in the collision step, σc

xy, due to the multi-particle collision with virtual wall particles (see
Appendix A). In two-dimensional simulations the streaming contribution is [42]

σs
xy =

m
Lx∆ts

Ns

∑
i=1

[v′x,i(tb)− vx,i(tb)], (9)

where tb (t ≤ tb ≤ t + ∆ts) is the time when particle i bounces back from the wall, v′x,i(tb)
and vx,i(tb) are the velocities just after and before the collision with the wall, respectively,
and Ns is the number of particles hitting one of the walls in the time interval [t, t + ∆ts].
The collision contribution is [42]

σc
xy =

m
Lx∆ts

Nc

∑
i=1

[v′x,i(t + ∆ts)− vx,i(t + ∆ts)], (10)

where Nc is the number of particles with multi-particle collision with virtual wall particles,
while v′x,i(t + ∆ts) and vx,i(t + ∆ts) are the velocities of particle i after and before the
collision step, respectively.

After a transient period, when the vesicle moves from the initial position towards the
center of the channel attaining its steady state, ηI fluctuates around average values up to
the longest simulated times, which are more than two orders of magnitude larger than the
vesicle relaxation time τc.
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Figure 1. Time behavior of the intrinsic viscosity ηI (values are averaged over time intervals of
duration ∼ 10τc to smooth out noise) at S∗ = 0.80 (upper row) and S∗ = 0.95 (lower row) for
κ/(kBTR0) = 6.58 (left), 65.8 (right) with λ = 1 (full green line), 7 (dashed blue line), 15 (dot-dashed
red line).

The values 〈ηI〉 of the intrinsic viscosity, time-averaged in the steady state, are reported
in Figure 2 as a function of λ. It appears that 〈ηI〉 is an increasing function of λ for the
used values of the reduced area, bending energy, and temperature, in agreement with
our previous results [26,39]. In the Keller–Skalak theory [5], where thermal fluctuations
are ignored, the sharp TT-to-TU transition occurs at λc ' 3.7 for S∗ = 0.80 and at λc ' 6.5
for S∗ = 0.95. However, finite temperature broadens the TT-to-TU transition [14]. In the
TU regime at higher values of λ, the growth of 〈ηI〉 is steeper. A decrease in the intrinsic
viscosity in the TT regime followed by its growth in the TU regime, as theoretically predicted
in Refs. [16,17] and observed in simulations without thermal fluctuations [20,21,23–25], is
not found in our model. The effect of increasing the bending energy is to reduce the value
of the intrinsic viscosity without changing the monotonic dependence on the viscosity
contrast. This effect seems to be triggered by the Peclet number as will be discussed later.
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Figure 2. Average values of the intrinsic viscosity 〈ηI〉 as a function of λ at S∗ = 0.80 (left) and
S∗ = 0.95 (right) for κ/(kBTR0) = 6.58 (•), 65.8 (N), 164.5 (?). Full lines are guides to the eye. The
tank-treading to tumbling transition occurs at λc ' 3.7 for S∗ = 0.80 and at λc ' 6.5 for S∗ = 0.95 in
the Keller–Skalak theory [5] and is marked by the dashed vertical lines. Error bars are given by the
root-mean-square fluctuation values of the intrinsic viscosity.

In order to clarify the observed behavior of 〈ηI〉, the vesicle dynamics were investi-
gated in more detail by monitoring the temporal evolution of several quantities. The in-
clination angle Θ, describing the angle between the x direction and the long main axis of
the vesicle, can be used to discriminate between the TT and the TU states. In the former
case, Θ reaches a steady value, while in the latter case, Θ varies periodically in time. In
Figure 3, the inclination angle is shown as a function of time. For low values of λ the vesicle
performs tank-treading motion and the inclination angle fluctuates around a steady value.
In contrast, without thermal fluctuations [21,23] the inclination angle is constant in the TT
regime after the initial transient. When increasing the viscosity contrast, some tumbling
events appear, which become predominant for the highest value of λ.

-0.4

-0.2

0

0.2

0.4

0 20 40 60 80 100

t/τ
c

Θ
/π

-0.4

-0.2

0

0.2

0.4

0 20 40 60 80 100

t/τ
c

Θ
/π

Figure 3. Time behavior of the inclination angle Θ at S∗ = 0.80 (left) and S∗ = 0.95 (right) for
κ/(kBTR0) = 6.58 with λ = 1 (full green line), 7 (dashed blue line), 15 (dot-dashed red line).

The time-averaged values 〈Θ〉 are depicted in Figure 4, together with the root-mean-
square (rms) fluctuation values σΘ =

√
〈(∆Θ)2〉. The transition from the TT to the TU

regime, which is characterized by going from values 〈Θ〉 > 0 to 〈Θ〉 ' 0, is broader for
the smallest values of the bending rigidity, and becomes sharper when increasing the
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ratio κ/(kBTR0). The fluctuations σΘ reduce with Pe in the TT regime, as theoretically
predicted [38], and show an opposite trend with increasing viscosity contrast.
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Figure 4. Average values of the inclination angle 〈Θ〉 (filled symbols) and its rms fluctuation values σΘ

(empty symbols) as a function of λ at S∗ = 0.80 (left) and S∗ = 0.95 (right) for κ/(kBTR0) = 6.58 (•),
65.8 (N), 164.5 (?). The tank-treading to tumbling transition in the Keller–Skalak theory [5] is marked
by the dashed vertical lines.

From the gyration tensor of the vesicle, the two eigenvalues ΛM and Λm with ΛM > Λm
are extracted and the asphericity A = [(ΛM −Λm)/(ΛM + Λm)]2 is computed.

The values of A as a function of time are shown in Figure 5 and the time-averages 〈A〉
as a function of the viscosity contrast in Figure 6.
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Figure 5. Time behavior of the asphericity A (values are sampled every 10τc) at S∗ = 0.80 (left)
and S∗ = 0.95 (right) for κ/(kBTR0) = 6.58 with λ = 1 (full green line), 7 (dashed blue line),
15 (dot-dashed red line).
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Figure 6. Average values of the asphericity 〈A〉 as a function of λ at S∗ = 0.80 (left) and S∗ = 0.95
(right) for κ/(kBTR0) = 6.58 (•), 65.8 (N), 164.5 (?). The tank-treading to tumbling transition in
the Keller–Skalak theory [5] is marked by the dashed vertical lines. Error bars are given by the
root-mean-square fluctuation values of the asphericity.

〈A〉 is constant in the TT regime and decreases when approaching the TU regime,
showing that the vesicle becomes more rounded when the inner fluid is more viscous.
Additionally, 〈A〉 is smaller for the lower value of bending rigidity and does not change
significantly going from TT to TU regime for the highest value of the bending rigidity. In
the case of the quasi-circular vesicle a non-monotonic behavior of 〈A〉 with the bending
rigidity can be observed in the TT regime. The average values 〈

√
ΛM〉 and 〈

√
Λm〉, which

provide an estimate of the vesicle semi-axes, are plotted in Figure 7 as a function of the
viscosity contrast to demonstrate how the vesicle becomes more rounded when increasing
λ for fixed γ̇∗.
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Figure 7. Average values of the gyration tensor eigenvalues 〈
√

ΛM〉 (filled symbols) and 〈
√

Λm〉
(empty symbols) as a function of λ at S∗ = 0.80 for κ/(kBTR0) = 6.58 (�), 65.8 (+), and at S∗ = 0.95
for κ/(kBTR0) = 6.58 (•), 65.8 (N), 164.5 (?). The tank-treading to tumbling transition in the Keller–
Skalak theory [5] is marked by the dashed (S∗ = 0.80) and full (S∗ = 0.95) vertical lines.
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It can be seen that 〈
√

ΛM〉 decreases and 〈
√

Λm〉 increases as functions of λ. The rel-
ative change of the average eigenvalues, from the TT to the TU regime, is larger at
κ/(kBTR0) = 65.8, while it is negligible for the highest value of the bending rigidity.

The rms fluctuation values σM =
√
〈(∆
√

ΛM)2〉 and σm =
√
〈(∆
√

Λm)2〉 are reported in
Figure 8 as functions of λ. In all the cases, the values of the rms fluctuations are constant in
the TT regime and increase when entering the TU regime. Moreover, σM and σm decrease
when increasing the Peclet number.
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Figure 8. Rms fluctuation values σM (filled symbols) and σm (empty symbols) of the the gyration
tensor eigenvalues of Figure 7 as a function of λ at S∗ = 0.80 (left) and S∗ = 0.95 (right) for
κ/(kBTR0) = 6.58 (•), 65.8 (N), 164.5 (?). The tank-treading to tumbling transition in the Keller–
Skalak theory [5] is marked by the dashed vertical lines.

The time behavior of the vertical position ycm of the vesicle center of mass displays
Brownian diffusion across the channel width up to the longest simulated time, as can be
seen in Figure 9.
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Figure 9. Time behavior of the vertical position ycm of the vesicle center of mass (values are sampled
every 10τc) at S∗ = 0.80 (left) and S∗ = 0.95 (right) for κ/(kBTR0) = 6.58 with λ = 1 (full green
line), 7 (dashed blue line), 15 (dot-dashed red line). The horizontal full line denotes the center of
the channel.

The vesicle does not span the whole channel cross-section due to the lift force which
pushes it far from the walls [14]. In previous studies [21,23], where thermal noise is
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absent, vesicles move along the center line of the channel without lateral displacement
and with a regular arrangement in the TT steady state, in two or three files at higher
concentrations [43,44]. It was later found that there is a critical viscosity contrast above
which the vesicle can be either placed along the center line or off-centered without lateral
wandering [45]. The rms fluctuation values σcm =

√
〈(∆ycm)2〉 are reported in Figure 10.

For the lowest values of the bending rigidity it is evident that σcm increases with the
viscosity ratio λ due to the more circular shape, while this trend is less pronounced for
further increases in κ/(kBTR0).
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Figure 10. Rms fluctuation values σcm of the vertical position of the vesicle center of mass of Figure 9
as a function of λ at S∗ = 0.80 (left) and S∗ = 0.95 (right) for κ/(kBTR0) = 6.58 (•), 65.8 (N), 164.5 (?).
The tank-treading to tumbling transition in the Keller–Skalak theory [5] is marked by the dashed
vertical lines.

Moreover, a reduction in the values of σcm can be observed when increasing the
bending rigidity with no significant dependence on the reduced area S∗. In the TT regime
it becomes σcm/R0 '

√
(kBTR0)/κ ∝

√
1/Pe for the explored range of bending rigidities.

The term
√
(kBTR0)/κ is the rms value of the vesicle deformation amplitude [38].

Finally, the average configurations of the vesicle are presented in Figure 11 for reduced
area S∗ = 0.80, 0.95, bending rigidity κ/(kBTR0) = 6.58, 65.8, and two values of the
viscosity contrast. The shapes are obtained by averaging in time and space, in the vesicle
eigenvector reference frame, the positions of membrane beads in circular sectors of width
π/45 radians. This visualizes how the vesicle becomes more rounded from the TT to the
TU regime in the case with κ/(kBTR0) = 65.8 at S∗ = 0.95. The reduction in the asphericity
is less appreciable in the other cases.
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Figure 11. Vesicle average configurations at S∗ = 0.80 (upper row) and S∗ = 0.95 (lower row) for
κ/(kBTR0) = 6.58 (left), 65.8 (right) with λ = 1(•), 11(�). The full line represents the unit circle as
a reference.

4. Discussion

We can now relate the observed behavior of the intrinsic viscosity 〈ηI〉 in Figure 2 to
the changes in vesicle shape and diffusion. We think that the monotonic growth of 〈ηI〉
is due to the interplay of several mechanisms. As previously observed in Ref. [19], shape
fluctuations favor energy dissipation that increases 〈ηI〉, while alignment with the flow
direction causes a decrease in 〈ηI〉 with increasing viscosity contrast. The vesicle becomes
more rounded with increasing λ as indicated by the average asphericity. As a consequence,
the vesicle experiences a larger resistance to the flow with the tilt angle approaching the
values π/4. This counteracts the reduction due to the decrease in the average inclination
angle when approaching the TT-to-TU transition. The most relevant effect due to thermal
noise of the fluid is that the vesicle is not located at the center of the channel, but wanders
across it due to fluctuation-induced Brownian diffusion (the possible influence of this
effect on the intrinsic viscosity was already mentioned in Ref. [23]). This implies that the
vesicle can never move along the centerline of the channel, which is the state of minimum
dissipation when thermal effects are neglected [23]. The amplitude of this lateral motion
is quantified by σcm, which grows with an increasing viscosity ratio for the lowest value
of the bending rigidity. Since the vesicle becomes closer to the walls, a larger resistance
of the vesicle to the flow might be induced, similarly to what happens for colloids whose
effective diffusion coefficient reduces close to a wall [46]. This effect would contribute
to the increase in the 〈ηI〉 even in the TT regime. We remark that since it results to be
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σcm ∝
√

1/Pe, as previously found, much higher values of the Peclet number are required
in order to access a regime where σcm ' 0 to ignore thermal fluctuations.

The outlined picture persists when increasing the bending rigidity κ, when the value
of 〈ηI〉 is reduced but its λ-dependence is not affected. Similar values of 〈ηI〉 are observed
for the highest bending rigidity where the TT-to-TU transition is sharper and the vesicle
becomes more rigid, as observed in the values of the average asphericity and of the rms
fluctuations σM and σm which hardly change with λ. In the TT regime, the effect of
increasing the bending rigidity is to reduce the average inclination angle 〈Θ〉, its variance
σΘ, and σcm with respect to the case with the lowest bending rigidity, while the vesicle
appears to be less circular. As a consequence the vesicle has less resistance to the flow,
which explains the reduction in 〈ηI〉 when compared to lower values of κ. In the TU
regime, the difference in the average asphericity for the three values of the bending rigidity
diminishes, causing a reduction in the difference of the average intrinsic viscosities.

To complete our discussion, we note that it was argued in Ref. [23] that the monotonic
behavior of 〈ηI〉 might be due to measurements performed in short transient regimes; how-
ever, as here shown, this is not the case. Moreover, our results do not depend on the choice
either of the channel length Lx/R0 = 19 or of the degree of confinement 2R0/Ly = 0.35,
as suggested in Refs. [21,23]. Indeed, these two values are intermediate between the ones
used in those studies [21,23] where the non-monotonic behavior of the intrinsic viscosity
was observed without thermal fluctuations.

5. Conclusions

We believe that the monotonic growth of 〈ηI〉 has to be related to the presence of
thermal fluctuations that are missing in other models. This effect persists up to the highest
Peclet number of about 2× 103. In a simplified stochastic three-dimensional model of
vesicles in shear flow [7], it was shown that thermal fluctuations cannot be neglected at
up to Pe = 1.2× 103. Much higher values of Pe are required, as previously discussed,
in order to ignore thermal fluctuations. Finally, we add that the relevance of thermal noise
in the vesicle dynamics was demonstrated also for the VB regime in numerical [11,14],
theoretical [47,48], and experimental studies [9,49].
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Appendix A

Here, the numerical implementation of the algorithm is described for a system
bounded by two moving solid walls. In the presence of walls, the system consists of
fluid particles and virtual particles. The fluid particles represent the solvent, while the
virtual particles are required to impose no-slip conditions at the walls. First, the posi-
tions and velocities, for both the solvent particles and the vesicle beads, are initialized .
The fluid particles are distributed uniformly inside the system with average number n of
particles per cell. An extra layer of collision cells is required next to the walls to enforce
boundary conditions. The virtual particles are also uniformly distributed with the same
number density. All the fluid real particles and beads are initialized with velocities sampled
from the Maxwell–Boltzmann distribution with variances kBT/m and kBT/mp, respec-
tively, and zero mean. The velocities of virtual particles are from the Maxwell-–Boltzmann
distribution with variances kBT/m and average ± 1

2 γ̇Ly. The initial linear and angular
momentum are removed from each cell and from all the beads, and the velocities are
rescaled to set the temperature to the value T.
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At each time step Newton’s equations of motion for beads are integrated by means of
the velocity-Verlet algorithm with time step ∆tp [37]. Every ∆ts/∆tp time steps the MPC
algorithm and the solvent-vesicle collisions are performed in the following way:

1. All the solvent particles are streamed according to Equation (1). Particles crossing
walls undergo bounce-back collisions changing their velocities as vi → 2vwall − vi
where vwall and −vwall are the wall velocities with vwall = (vwall , 0).

2. The solvent particles and the beads which overlap, are looked for and their velocities
are modified according to Equation (8).

3. Galilean invariance is violated when the mean-free path l is much smaller than the
cell size a. To restore the Galilean invariance [50], all the fluid particles are moved by
a random vector s as ri → ri + s. The components of this random vector are drawn
from a uniform distribution in the interval [−a/2, a/2].

4. All solvent particles are sorted in respective cells and cell-level quantities are calculated.
5. The velocities vi of fluid particles not scattering with the vesicle, are updated according

to Equation (2). The virtual particles are assigned a new random velocity.
6. All fluid particles are shifted back to their original position as ri → ri − s.

References
1. Vlahovska, P. M.; Podgorski, T.; Misbah, C. Vesicles and red blood cells: From individual dynamics to rheology. C. R. Phys. 2009,

10, 775. [CrossRef]
2. Abreu, D.; Levant, M.; Steinberg, V.; Seifert, U. Fluid vesicles in flow. Adv. Colloid Interface Sci. 2014, 208, 129. [CrossRef] [PubMed]
3. Winkler, R.G.; Fedosov, D.A.; Gompper, G. Dynamical and rheological properties of soft colloid suspensions. Curr. Opin. Colloid

Interface Sci. 2014, 19, 594.
4. Barthès-Biesel, D. Motion and deformation of elastic capsules and vesicles in flow. Annu. Rev. Fluid Mech. 2016, 48, 25. [CrossRef]
5. Keller, S.R.; Skalak, R. Motion of a tank-treading ellipsoidal particle in a shear flow. J. Fluid. Mech. 1982, 120, 27. [CrossRef]
6. Noguchi, H.; Gompper, G. Fluid vesicles with viscous membranes in shear flow. Phys. Rev. Lett. 2004, 93, 258102. [CrossRef]
7. Noguchi, H.; Gompper, G. Dynamics of fluid vesicles in shear flow: Effect of membrane viscosity and thermal fluctuations. Phys.

Rev. E 2005, 72, 011901. [CrossRef]
8. Kantsler, V.; Steinberg, V. Orientation and dynamics of a vesicle in tank-treading motion in shear flow. Phys. Rev. Lett. 2005,

95, 258101. [CrossRef]
9. Kantsler, V.; Steinberg, V. Transition to tumbling and two regimes of tumbling motion of a vesicle in shear flow. Phys. Rev. Lett.

2006, 96, 036001. [CrossRef]
10. Misbah, C. Vacillating breathing and tumbling of vesicles under shear flow. Phys. Rev. Lett. 2006, 96, 028104. [CrossRef]
11. Noguchi, H.; Gompper, G. Swinging and tumbling of fluid vesicles in shear flow. Phys. Rev. Lett. 2007, 98, 128103. [CrossRef]

[PubMed]
12. Lebedev, V.V.; Turitsyn, K.S.; Vergeles, S.S. Dynamics of nearly spherical vesicles in an external flow. Phys. Rev. Lett. 2007,

99, 218101. [CrossRef] [PubMed]
13. Vlahovska, P.M.; Gracia, R.S. Dynamics of a viscous vesicle in linear flows. Phys. Rev. E 2007, 75, 016313. [CrossRef] [PubMed]
14. Messlinger, S.; Schmidt, B.; Noguchi, H.; Gompper, G. Dynamical regimes and hydrodynamic lift of viscous vesicles under shear.

Phys. Rev. E 2009, 80, 011901. [CrossRef]
15. Zhao, H.; Shaqfeh, E.S.G. The dynamics of a vesicle in simple shear flow. J. Fluid Mech. 2011, 674, 578. [CrossRef]
16. Danker, G.; Misbah, C. Rheology of a dilute suspension of vesicles. Phys. Rev. Lett. 2007, 98, 088104. [CrossRef]
17. Danker, G.; Biben, T.; Podgorski, T.; Verdier, C.; Misbah, C. Dynamics and rheology of a dilute suspension of vesicles: Higher-order

theory. Phys. Rev. E 2007, 76, 041905. [CrossRef]
18. Vitkova, V.; Mader, M.A.; Polack, B.; Misbah, C.; Podgorski, T. Micro-macro link in rheology of erythrocyte and vesicle suspensions.

Biophys. J. 2008, 95, L33. [CrossRef]
19. Kantsler, V.; Segre, E.; Steinberg, V. Dynamics of interacting vesicles and rheology of vesicle suspension in shear flow. EPL 2008,

82, 58005. [CrossRef]
20. Ghigliotti, G.; Biben, T.; Misbah, C. Rheology of a dilute two-dimensional suspension of vesicles. J. Fluid Mech. 2010, 653, 489.

[CrossRef]
21. Kaoui, B.; Jonk, R.J.W.; Harting, J. Interplay between microdynamics and macrorheology in vesicle suspensions. Soft Matter 2014,

10, 4735. [CrossRef] [PubMed]
22. Nait-Ouhra, A.; Farutin, A.; Ez-Zahraouy, H.; Benyoussef, A.; Misbah, C. Rheology of a confined vesicle suspension. Phys. Rev.

Fluids 2019, 4, 103602. [CrossRef]
23. Thiébaud, M.; Misbah, C. Rheology of a vesicle suspension with finite concentration: A numerical study. Phys. Rev. E 2013,

88, 062707. [CrossRef] [PubMed]

http://doi.org/10.1016/j.crhy.2009.10.001
http://dx.doi.org/10.1016/j.cis.2014.02.004
http://www.ncbi.nlm.nih.gov/pubmed/24630339
http://dx.doi.org/10.1146/annurev-fluid-122414-034345
http://dx.doi.org/10.1017/S0022112082002651
http://dx.doi.org/10.1103/PhysRevLett.93.258102
http://dx.doi.org/10.1103/PhysRevE.72.011901
http://dx.doi.org/10.1103/PhysRevLett.95.258101
http://dx.doi.org/10.1103/PhysRevLett.96.036001
http://dx.doi.org/10.1103/PhysRevLett.96.028104
http://dx.doi.org/10.1103/PhysRevLett.98.128103
http://www.ncbi.nlm.nih.gov/pubmed/17501159
http://dx.doi.org/10.1103/PhysRevLett.99.218101
http://www.ncbi.nlm.nih.gov/pubmed/18233260
http://dx.doi.org/10.1103/PhysRevE.75.016313
http://www.ncbi.nlm.nih.gov/pubmed/17358259
http://dx.doi.org/10.1103/PhysRevE.80.011901
http://dx.doi.org/10.1017/S0022112011000115
http://dx.doi.org/10.1103/PhysRevLett.98.088104
http://dx.doi.org/10.1103/PhysRevE.76.041905
http://dx.doi.org/10.1529/biophysj.108.138826
http://dx.doi.org/10.1209/0295-5075/82/58005
http://dx.doi.org/10.1017/S0022112010000431
http://dx.doi.org/10.1039/C4SM00563E
http://www.ncbi.nlm.nih.gov/pubmed/24851823
http://dx.doi.org/10.1103/PhysRevFluids.4.103602
http://dx.doi.org/10.1103/PhysRevE.88.062707
http://www.ncbi.nlm.nih.gov/pubmed/24483486


Mathematics 2022, 10, 3570 14 of 14

24. Rahimian, A.; Veerapaneni, S.K.; Biros, G. Dynamic simulation of locally inextensible vesicles suspended in an arbitrary
two-dimensional domain, a boundary integral method. J. Comput. Phys. 2010, 229, 6466. [CrossRef]

25. Zhao, H.; Shaqfeh, E. The dynamics of a non-dilute vesicle suspension in a simple shear flow. J. Fluid Mech. 2013, 725, 709.
[CrossRef]

26. Lamura, A.; Gompper, G. Dynamics and rheology of vesicle suspensions in wall-bounded shear flow. EPL 2013, 102, 28004.
[CrossRef]

27. Afik, A.; Lamura, A.; Steinberg, V. Long-range hydrodynamic effect due to a single vesicle in linear flow. EPL 2016, 113, 38003.
[CrossRef]

28. Malevanets, A.; Kapral, R. Mesoscopic model for solvent dynamics. J. Chem. Phys. 1999, 110, 8605. [CrossRef]
29. Malevanets, A.; Kapral, R. Solute molecular dynamics in a mesoscale solvent. J. Chem. Phys. 2000, 112, 7260. [CrossRef]
30. Kapral, R. Multiparticle Collision Dynamics: Simulation of Complex Systems on Mesoscales. Adv. Chem. Phys. 2008, 140, 89.
31. Gompper, G.; Ihle, T.; Kroll, D.M.; Winkler, R.G. Multi-Particle Collision Dynamics: A Particle-Based Mesoscale Simulation

Approach to the Hydrodynamics of Complex Fluids. Adv. Polym. Sci. 2009, 221, 1.
32. Noguchi, H.; Kikuchi, N.; Gompper, G. Particle-based mesoscale hydrodynamic techniques. Europhys. Lett. 2007, 78, 10005.

[CrossRef]
33. Götze, I.O.; Noguchi, H.; Gompper, G. Relevance of angular momentum conservation in mesoscale hydrodynamics simulations.

Phys. Rev. E 2007, 76, 046705. [CrossRef] [PubMed]
34. Allahyarov, A.; Gompper, G. Mesoscopic solvent simulations: Multiparticle-collision dynamics of three-dimensional flows. Phys.

Rev. E 2002, 66, 036702. [CrossRef] [PubMed]
35. Noguchi, H.; Gompper, G. Transport coefficients of off-lattice mesoscale-hydrodynamics simulation techniques. Phys. Rev. E 2008,

78, 016706. [CrossRef]
36. Lamura, A.; Gompper, G.; Ihle, T.; Kroll, D.M. Multi-particle collision dynamics: Flow around a circular and a square cylinder.

Europhys. Lett. 2001, 56, 319. [CrossRef]
37. Allen, M.P.; Tildesley, D.J. Computer Simulation of Liquids; Clarendon Press: Oxford, UK, 1987.
38. Finken, R.; Lamura, A.; Seifert, U.; Gompper, G. Two-dimensional fluctuating vesicles in linear shear flow. Eur. Phys. J. E 2008,

25, 309. [CrossRef]
39. Lamura, A.; Gompper, G. Rheological properties of sheared vesicle and cell suspensions. Procedia IUTAM 2015, 16, 3. [CrossRef]
40. Lamura, A.; Gompper, G. Numerical study of the flow around a cylinder using multi-particle collision dynamics. Eur. Phys. J. E

2002, 9, 477. [CrossRef]
41. Mewis, J.; Wagner N.J. Colloidal Suspension Rheology; Cambridge University Press: Cambridge, UK, 2012.
42. Tao, Y.-G.; Götze, I.O.; Gompper, G. Multiparticle collision dynamics modeling of viscoelastic fluids. J. Chem. Phys. 2008,

128, 144902. [CrossRef]
43. Thiébaud, M.; Shen, Z.; Harting, J.; Misbah, C. Prediction of anomalous blood viscosity in confined shear flow. Phys. Rev. Lett.

2014, 112, 238304. [CrossRef] [PubMed]
44. Shen, Z.; Farutin, A.; Thiébaud, M.; Misbah, C. Interaction and rheology of vesicle suspensions in confined shear flow. Phys. Rev.

Fluids 2017, 2, 103101. [CrossRef]
45. Nait-Ouhra, A.; Guckenberger, A.; Farutin, A.; Ez-Zahraouy, H.; Benyoussef, A.; Gekle, S.; Misbah, C. Lateral vesicle migration in

a bounded shear flow: Viscosity contrast leads to off-centered solutions. Phys. Rev. Fluids 2018, 3, 123601. [CrossRef]
46. Brenner, H. The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Eng. Sci. 1961, 16, 242. [CrossRef]
47. Abreu, D.; Seifert, U. Effect of thermal noise on vesicles and capsules in shear flow. Phys. Rev. E 2012, 86, 010902. [CrossRef]

[PubMed]
48. Abreu, D.; Seifert, U. Noisy nonlinear dynamics of vesicles in flow. Phys. Rev. Lett. 2013, 110, 238103. [CrossRef] [PubMed]
49. Levant, M.; Steinberg, V. Amplification of thermal noise by vesicle dynamics. Phys. Rev. Lett. 2012, 109, 268103. [CrossRef]
50. Ihle, T.; Kroll, D.M. Stochastic rotation dynamics: A Galilean-invariant mesoscopic model for fluid flow. Phys. Rev. E 2001,

63, 020201(R). [CrossRef]

http://dx.doi.org/10.1016/j.jcp.2010.05.006
http://dx.doi.org/10.1017/jfm.2013.207
http://dx.doi.org/10.1209/0295-5075/102/28004
http://dx.doi.org/10.1209/0295-5075/113/38003
http://dx.doi.org/10.1063/1.478857
http://dx.doi.org/10.1063/1.481289
http://dx.doi.org/10.1209/0295-5075/78/10005
http://dx.doi.org/10.1103/PhysRevE.76.046705
http://www.ncbi.nlm.nih.gov/pubmed/17995137
http://dx.doi.org/10.1103/PhysRevE.66.036702
http://www.ncbi.nlm.nih.gov/pubmed/12366293
http://dx.doi.org/10.1103/PhysRevE.78.016706
http://dx.doi.org/10.1209/epl/i2001-00522-9
http://dx.doi.org/10.1140/epje/i2007-10299-7
http://dx.doi.org/10.1016/j.piutam.2015.03.002
http://dx.doi.org/10.1140/epje/i2002-10107-0
http://dx.doi.org/10.1063/1.2850082
http://dx.doi.org/10.1103/PhysRevLett.112.238304
http://www.ncbi.nlm.nih.gov/pubmed/24972235
http://dx.doi.org/10.1103/PhysRevFluids.2.103101
http://dx.doi.org/10.1103/PhysRevFluids.3.123601
http://dx.doi.org/10.1016/0009-2509(61)80035-3
http://dx.doi.org/10.1103/PhysRevE.86.010902
http://www.ncbi.nlm.nih.gov/pubmed/23005361
http://dx.doi.org/10.1103/PhysRevLett.110.238103
http://www.ncbi.nlm.nih.gov/pubmed/25167533
http://dx.doi.org/10.1103/PhysRevLett.109.268103
http://dx.doi.org/10.1103/PhysRevE.63.020201

	Introduction
	The Model
	Results
	Discussion
	Conclusions
	Appendix A
	References

