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Abstract: This article is concerned with the description of the entire solutions of several Fermat
type partial differential-difference equations (PDDEs) [µ f (z) + λ fz1 (z)]

2 + [α f (z + c)− β f (z)]2 = 1,
and [µ f (z) + λ1 fz1 (z) + λ2 fz2 (z)]

2 + [α f (z + c)− β f (z)]2 = 1, where fz1 (z) =
∂ f
∂z1

and fz2 (z) =
∂ f
∂z2

,
c = (c1, c2) ∈ C2, α, β, µ, λ, λ1, λ2, c1, c2 are constants in C. Our theorems in this paper give some
descriptions of the forms of transcendental entire solutions for the above equations, which are some
extensions and improvement of the previous theorems given by Xu, Cao, Liu, and Yang. In particular,
we exhibit a series of examples to explain that the existence conditions and the forms of transcendental
entire solutions with a finite order of such equations are precise.

Keywords: Nevanlinna theory; entire solution; partial differential-difference equation

MSC: 30D35; 35M30; 39A45

1. Introduction and Some Basic Results

As is well known, the classical result of the Fermat type functional equation

f 2 + g2 = 1 (1)

is that the entire solutions are f = cos ζ(z), g = sin ζ(z), where ζ(z) is an entire function,
which was given by Gross [1]. Actually, the study of this functional equation can be tracked
back to more than sixty years ago or even earlier (see [1–3]). Moreover, there are important
and famous results on the Fermat type equation (see [4,5]). In recent years, replying on the
rapid development of Nevanlinna theory in many fields including functional equations
and difference of meromorphic function with one and several variables ([6–12]), there were
lots of references focusing on the solutions of the Fermat type equation; when the function
f has a special relationship with g, readers can refer to [13–17].

Around 2012, for the case f ∈ C, Liu and his colleagues paid considerable attention to
the solutions of a series of Fermat type functional equations when g is replaced by f ′, f (z +
c), f (z + c)− f (z) in Equation (1) (see [18–20]), they proved that the form of the finite order
transcendental entire solution of f ′(z)2 + f (z + c)2 = 1 must be f (z) = sin(z± Bi), and
the form of the finite order transcendental entire solution of f ′(z)2 + [ f (z + c)− f (z)]2 = 1
must be f (z) = 12 sin(2z + Bi), where B is a constant. Later, Han and Lü [21]. Liu and
Gao [22] investigated the existence of solutions of several deformations of Equation (1)
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such as f (z)2 + f ′(z)2 = eαz+β, f ′′(z)2 + f (z + c)2 = Q(z), where α, β are constants and
Q(z) is a polynomial.

For the case f ∈ Cn, n ≥ 2, Khavinson [14] in 1995 pointed out that any entire solutions
of the partial differential equations ( fz1)

2 + ( fz2)
2 = 1 in C2 are necessarily linear. In 1999

and 2004, Saleeby [23,24] further studied the forms of the entire and meromorphic solutions
of some partial differential equations, and obtained

Theorem 1 (see [23] Theorem 1). If f is an entire solution of

fz1(z)
2 + fz2(z)

2 = 1, (2)

in C2, then f (z1, z2) = c1z1 + c2z2 + η, where η, c1, c2 ∈ C and c2
1 + c2

2 = 1.

In 2012, Chang and Li [25] investigated the entire solutions of

X1( f )2 + X2( f )2 = 1, (3)

where
X1 = p1

∂

∂z1
+ p2

∂

∂z2
. X1 = p3

∂

∂z1
+ p4

∂

∂z2
,

are linearly independent operators with pj being polynomials in C2 and obtained:

Theorem 2 (see [25] Corollary 2.2). Let f be an entire solution of the Equation (3). Then,
f satisfies

∂ f
∂z1

=
1
D
(p4 cos h− p2 sin h),

∂ f
∂z2

=
1
D
(p1 sin h− p3 cos h),

where D = p1 p4 − p2 p3, h is a constant or a nonconstant polynomial satisfying

∂h
∂z1

=
ap2 + bp4

D2 ,
∂h
∂z2

=
−ap1 + bp3

D2 ,

and
a = D

∂p2

∂z2
− p2

∂D
∂z1

+ D
∂p1

∂z1
− p1

∂D
∂z1

.

b = D
∂p3

∂z1
− p3

∂D
∂z1

+ D
∂p4

∂z2
− p4

∂D
∂z2

.

In fact, Li [16,26] also discussed a series of partial differential equations with more
general forms including ( fz1)

2 + ( fz2)
2 = eg, ( fz1)

2 + ( fz2)
2 = p, etc., where g, p are

polynomials in C2. Recently, by using the characteristic equations for quasi-linear PDEs,
and the Nevanlinna theory in Cn, n ≥ 2, Chen, Han, and Lü. Xu and his colleagues,
etc. [27–36] investigated the entire and meromorphic solutions of the nonlinear partial
differential equations; for example, Chen and Han [36] discussed the entire solutions
of equation ( f l fz1)

m( f l fz2)
n = p(z1)eg(z), where l ≥ 0, m, n ≥ 1 are integers, p(z1) is a

polynomial in C and g(z) is a polynomial in C2, Lü [28] studied the entire solution of
equation f 2

z1
+ 2B fz1 fz2 + f 2

z2
= eg, where B is a constant and g is a polynomial or an entire

function in C2, etc., and they generalized and improved the previous results given by
Li [15].

Based on the establishment of Nevanlinna difference theory in Cn, n ≥ 2 (can be found
in [6,37]), Xu and Cao [38] in 2018 and 2020 studied the solutions of some Fermat type
partial differential-difference equations (PDDEs) and obtained:

Theorem 3 (see [38] Theorem 1.2). Let c = (c1, c2) ∈ C2. Then, any transcendental entire
solutions with a finite order of the partial differential-difference equation

fz1(z)
2 + f (z + c)2 = 1 (4)
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has the form of f (z1, z2) = sin(Az1 + B), where A is a constant on C satisfying AeiAc1 = 1, and
B is a constant on C; in the special case whenever c1 = 0, we have f (z1, z2) = sin(z1 + B).

Remark 1. In general, f is called as a transcendental entire solution of the equation if f is a
transcendental entire function and also the solution of this equation, here a meromorphic function
f (z) is transcendental if and only if

lim sup
r→+∞

T(r, f )
log r

= ∞,

this definition can be found in [17].

Inspired by the above results, this article concerns the entire solutions of the following
PDDEs

[µ f (z) + λ fz1(z)]
2 + [α f (z + c)− β f (z)]2 = 1, (5)

and
[µ f (z) + λ1 fz1(z) + λ2 fz2(z)]

2 + [α f (z + c)− β f (z)]2 = 1, (6)

where z = (z1, z2), c = (c1, c2), and α, β, µ, λ, λ1, λ2, c1, c2 are constants in C. Obviously, we
can see that (5) and (6) are some deformation Equations of (1) and (4).

The details theorems on the properties of transcendental entire solutions of the partial
differential-difference Equations (5) and (6) are be shown in Section 2, and the proofs are
given in Sections 4 and 5. The results obtained in the paper are motivated by and benefit
from the factorization theory of meromorphic functions and Nevanlinna theory in several
complex variables. In particular, we will assume that the reader is familiar with the basics
of Nevanlinna theory in several complex variables.

2. Results and Examples

The first main theorem is about the existence and the forms of the solutions for
Equation (5).

Theorem 4. Let c = (c1, c2) ∈ C2, c2 6= 0, and α, β, µ, λ be nonzero constants in C. Let f (z1, z2)
be a finite order transcendental entire solution of Equation (5). Then, f (z1, z2) must satisfy one of
the following cases:

(i) if µ f (z) + λ fz1(z) is a constant, then

f (z1, z2) =
η1

µ
− 1

µ
e−

µ
λ z1+Az2+B,

where η1, A, B ∈ C satisfy η2
1 = µ2

µ2+(α−β)2 and eAc2 = β
α e

µ
λ c1 ;

(ii) if A1 6= ± µ
λ , then

f (z1, z2) =
1

2(λA1 + µ)
eA1z1+A2z2+B − 1

2(λA1 − µ)
e−A1z1−A2z2−B + ϑ(z2)e−

µ
λ z1 ,

where ϑ(z2) is a finite order entire function, A1, A2, B ∈ C satisfy

(λA1 + βi)2 = µ2 − α2, e2(A1c1+A2c2) =
λA1 + µ + βi
λA1 − µ + βi

,

and
ϑ(z2 + c2)

ϑ(z2)
=

β

α
e

µ
λ c1 ; (7)
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(iii) if A1 = µ
λ , then

f (z1, z2) =
1

4µ
eA1z1+A2z2+B +

z1

2λ
e−A1z1−A2z2−B + ϑ(z2)e−

µ
λ z1 ,

where ϑ(z2) is a finite order entire function satisfying (7). A1, A2, B ∈ C satisfy

2µβi = β2 − α2, βc1 = λi, e2(A1c1+A2c2) = 1− 2µ

β
i; (8)

(iv) if A1 = − µ
λ , then

f (z1, z2) =
z1

2λ
eA1z1+A2z2+B +

1
4µ

e−A1z1−A2z2−B + ϑ(z2)e−
µ
λ z1 ,

where ϑ(z2) is a finite order entire function satisfying (7). A1, A2, B ∈ C satisfy

2µβi = α2 − β2, βc1 = −λi, e−2(A1c1+A2c2) = 1 +
2µ

β
i. (9)

The following examples show the existence of transcendental entire solutions of
Equation (5).

Example 1. Let η2
1 = 1−

√
3+i

4−2
√

3+1
and

f (z1, z2) = η1 − e−
1
2 z1+z2 .

Thus, f (z1, z2) is a transcendental entire solution of (5) with α = e−
π
6 i, β = e

π
3 i, λ = 2,

µ = 1, (c1, c2) = (πi, πi) and ρ( f ) = 1. This shows that the form of solution in the conclusion (i)
of Theorem 4 is precise.

Example 2. Let A2 = 1
2πi ln cot π

12 −
1
3 −

√
3

2 and

f (z1, z2) =
1

2(
√

3 + 1)
e
√

3
2 z1+A2z2 − 1

2(
√

3− 1)
e−
√

3
2 z1−A2z2 − cos(2z2)e−

1
2 z1+z2 .

Thus, f (z1, z2) is a transcendental entire solution of (5) with α = e−
π
6 i, β = e

π
3 i, λ = 2,

µ = 1, (c1, c2) = (πi, πi) and ρ( f ) = 1. This shows that the form of solution in the conclusion
(ii) of Theorem 4 is precise.

Example 3. Let D = − 1
4 ln 2 + π

8 i + 1
2 i, A2 = 1

4 ln 2− π
8 i− 1

2 i and

f (z1, z2) =
1
4

e
i
2 z1+A2z2 − iz1

4
e−

i
2 z1−A2z2 − e(D+2πi)z2 e−

i
2 z1 .

Thus, f (z1, z2) is a transcendental entire solution of (5) with α = 2
5
4 e−

π
8 i, β = 2, λ = −2i,

µ = 1, (c1, c2) = (1, 1) and ρ( f ) = 1. This shows that the form of solution in the conclusion (iii)
of Theorem 4 is precise.

From Theorem 4, letting λ = µ = 1 and α = β = 1, one can obtain the following result:

Corollary 1. Let c = (c1, c2) ∈ C2 and c2 6= 0. If f (z1, z2) is a finite order transcendental entire
solution of equation,

[ f (z) + fz1(z)]
2 + [ f (z + c)− f (z)]2 = 1,
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then f (z1, z2) must be of the form

f (z1, z2) = ±1− e−z1+Az2+B,

where A, B are constants and
Ac2 = c1 + 2kπi, k ∈ Z;

or
f (z1, z2) =

1
2(1− i)

e−iz1+A2z2+B +
1

2(1 + i)
eiz1−A2z2−B + ϑ(z2)e−z1 ,

where ϑ(z2) is a finite order entire function, a2, b are constants and

e2(−ic1+A2c2) = −1,
ϑ(z2 + c2)

ϑ(z2)
= −ec1 ,

From Theorem 4, letting α = 1 and β = 0, one can obtain the following corollary:

Corollary 2. Let c = (c1, c2) ∈ C2, c2 6= 0, and λ, µ be nonzero constants. If f (z1, z2) is a finite
order transcendental entire solution of equation

[µ f (z) + λ fz1(z)]
2 + f (z + c)2 = 1,

then f (z1, z2) must be of the form

f (z1, z2) =
1

2(µ + λa1)
eA1z1+A2z2+B +

1
2(µ− λA1)

e−A1z1−A2z2−B,

where A1, A2, B are constants and satisfying

A2
1 =

µ2 − 1
λ2 , e2(A1c1+A2c2) =

λA1 + µ

λA1 − µ
.

Remark 2. In view of the form of f (z) in Corollary 2, one can see that the order of f must be 1.
However, the following example shows that the equation can admit the transcendental entire solution
of the order greater than one if we remove the condition c2 6= 0. Let

f (z) =
1

2i(
√

3 + 2)
ez1+z2+z2

2 +
1

2i(
√

3− 2)
e−z1−z2−z2

2 .

Then, ρ( f ) = 2 and f is a transcendental entire solution of equation[√
3i f (z1, z2) + 2i fz1(z1, z2)

]2
+ f (z1 − ln(2−

√
3), z2 + 0)2 = 1,

For α = 0 and β = 1 in Equation (5), we have

Corollary 3. Let λ, µ be two nonzero constants. Then, the following partial differential equation

[µ f (z) + λ fz1(z)]
2 + f (z)2 = 1 (10)

does not admit any finite order transcendental entire solution.

Proof. Assume that f (z) is a finite order transcendental entire solution of Equation (10).
By using the same argument as in the proof of Theorem 4, there exists a nonconstant
polynomial p(z) ∈ C2 satisfying

µ f (z) + λ fz1(z) =
1
2
(ep + e−p), f (z) =

1
2i
(ep − e−p).
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Thus, it follows that

(µ + λpz1(z)− i)e2p = µ− λpz1 + i. (11)

Noting that p is a nonconstant polynomial, we can deduce that

µ + λpz1 − i ≡ 0, µ− λpz1 + i ≡ 0. (12)

Otherwise, the left-side of Equation (11) is transcendental and the right is polynomial;
this is a contradiction. In view of (12), it follows that µ = 0, which is a contradiction.

Therefore, this proves the conclusion of Corollary 3.

For Equation (6), we obtain the following results about the existence and the forms of
transcendental entire solutions of such equation.

Theorem 5. Let c = (c1, c2) ∈ C2, α, β, µ, λ1, λ2 be nonzero constants in C, s1 := λ2z1 − λ1z2
and s0 := λ2c1 − λ1c2 6= 0. Let f (z1, z2) be a finite order transcendental entire solution of
Equation (6). Then, f (z) must satisfy one of the following cases:

(i) if µ f (z) + λ1 fz1(z) + λ2 fz2(z) is a constant, then

f (z1, z2) =
η1

µ
− 1

µ
e−

µ
λ1

z1+A(λ2z1−λ1z2)+B,

where η1, A, B ∈ C satisfy η2
1 = µ2

µ2+(α−β)2 and eA(λ2c1−λ1c2) = β
α e

µ
λ1

c1 ;

(ii) if µ2 6= (λ1 A1 + λ2 A2)
2, then

f (z1, z2) =
1

2(λ1 A1 + λ2 A2 + µ)
eA1z1+A2z2+B − 1

2(λ1 A1 + λ2 A2 − µ)
e−A1z1−A2z2−B

+ ϑ(s1)e
− µ

λ1
z1 ,

where ϑ(s1) is a finite order entire function in s1 satisfying

ϑ(s1 + s0)

ϑ(s1)
=

β

α
e

µ
λ1

s0 , (13)

and A1, A2, B ∈ C satisfy

(λ1 A1 + λ2 A2 + βi)2 = µ2 − α2, e2(A1c1+A2c2) =
λ1 A1 + λ2 A2 + βi + µ

λ1 A1 + λ2 A2 + βi− µ
; (14)

(iii) if µ = λ1 A1 + λ2 A2, then

f (z1, z2) =
1

4µ
eA1z1+A2z2+B +

z1

2λ1
e−A1z1−A2z2−B + ϑ(s1)e

− µ
λ1

z1 ,

where ϑ(s1) is a finite order entire function satisfying (13) and A1, A2, B ∈ C satisfy

2µβi = β2 − α2, βc1 = λ1i, e2(A1c1+A2c2) = 1− 2µ

β
i; (15)

(iv) if µ = −(λ1 A1 + λ2 A2), then

f (z1, z2) =
z1

2λ1
eA1z1+A2z2+B +

1
4µ

e−A1z1−A2z2−B + ϑ(s1)e
− µ

λ1
z1 ,
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where ϑ(s1) is a finite order entire function satisfying (13) and A1, A2, B ∈ C satisfy

− 2µβi = β2 − α2, βc1 = −λ1i, e−2(A1c1+A2c2) = 1 +
2µ

β
i. (16)

The following examples show the existence of transcendental entire solutions of (6).

Example 4. Let η2
1 = 1

1−2i and

f (z1, z2) = η1 − e−3z1+z2 .

Thus, f (z1, z2) is a transcendental entire solution of (6) with α = 1, β = i, λ1 = 1, λ2 = 2,
µ = 1, (c1, c2) = (π

2 i, 2πi) and ρ( f ) = 1. This shows that the form of solution in the conclusion
(i) of Theorem 5 is precise.

Example 5. Let

f (z1, z2) =
1

2(
√

2 + 1− i)
eA1z1+A2z2 +

1
2(
√

2− 1 + i)
e−A1z1−A2z2

− 1√
2

sin[2πi(2z1 − z2)]e−
√

2z1+
√

2(2z1−z2).

where A1 = 2 − 2 log(
√

2 + 1) − (2 − π)i and A2 = log(
√

2 + 1) − 1 + (π
2 − 1)i. Thus,

f (z1, z2) is a transcendental entire solution of (6) with α = 1, β = 1, λ1 = 1, λ2 = 2, µ =
√

2,
(c1, c2) = (1, 3) and ρ( f ) = 1. This shows that the form of solution in the conclusion (ii) of
Theorem 5 is precise.

From Theorem 5, we have

Corollary 4. Let c = (c1, c2) ∈ C2 and c1 6= c2. If f (z1, z2) is a finite order transcendental entire
solution of equation

[ f (z) + fz1(z) + fz2(z)]
2 + [ f (z + c)− f (z)]2 = 1,

then f (z1, z2) must be of the form

f (z1, z2) = ±1− e−z1+A(z2−z1)+B,

where A, B are constants and

A(c2 − c1) = c1 + 2kπi, k ∈ Z;

or
f (z1, z2) =

1
2(1− i)

e−iz1+A2z2+B +
1

2(1 + i)
eiz1−A2z2−B + ϑ(z1 − z2)e−z1 ,

where ϑ(z1 − z2) is a finite order entire function, A2, B are constants and

e2(−ic1+A2c2) = −1,
ϑ(z1 − z2 + c1 − c2)

ϑ(z1 − z2)
= ec1−c2 ,

When α = 1 and β = 0 in Equation (6), we obtain

Corollary 5. Let c = (c1, c2) ∈ C2 and λ1, λ2, µ be nonzero constants such that λ1c2− λ2c1 6= 0.
If f (z1, z2) is a finite order transcendental entire solution of equation

[µ f (z) + λ1 fz1(z) + λ2 fz2(z)]
2 + f (z + c)2 = 1, (17)
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then f (z1, z2) must be of the form

f (z1, z2) =
1

2(µ + λ1 A1 + λ2 A2)
eA1z1+A2z2+B +

1
2(µ− λ1 A1 − λ2 A2)

e−A1z1−A2z2−B,

where a1, a2, b are constants and satisfying

(λ1 A1 + λ2 A2)
2 = µ2 − 1, e2(A1c1+A2c2) =

λ1 A1 + λ2 A2 + µ

λ1 A1 + λ2 A2 − µ
, (18)

Remark 3. From Corollary 5, the order of f must be 1. However, we can find the transcendental
entire solutions of Equation (17) of the order greater than one if λ1c2 − λ2c1 = 0. For example, let

f (z) =
1

2i(
√

3 + 2)
ez1+z2+[(2i−1)z1−z2]

3
+

1
2i(
√

3− 2)
e−z1−z2−[(2i−1)z1−z2]

3
,

then ρ( f ) = 3 and f is a transcendental entire solution of equation

[√
3i f (z1, z2) + fz1 + (2i− 1) fz2

]2
+ f

(
z1 +

1
2i

ln(2 +
√

3), z2 +
2i− 1

2i
ln(2 +

√
3)
)2

= 1.

When α = 0 and β = 1 in Equation (6), similar to the argument as in the proof of
Corollary 3, we have

Corollary 6. Let λ1, λ2, µ be two nonzero constants. Then, the following partial differential
equation

[µ f (z) + λ1 fz1(z) + λ2 fz2(z)]
2 + f (z)2 = 1

does not admit any finite order transcendental entire solution.

3. Some Lemmas

The following lemma plays the key role in proving our results.

Lemma 1 ([39] Lemma 3.1). Let f j( 6≡ 0), j = 1, 2, 3 be meromorphic functions on Cm such that
f1 is not constant, and f1 + f2 + f3 = 1, and such that

3

∑
j=1

{
N2(r,

1
f j
) + 2N(r, f j)

}
< λT(r, f1) + O(log+ T(r, f1)),

for all r outside possibly a set with finite logarithmic measure, where λ < 1 is a positive number.
Then, either f2 = 1 or f3 = 1.

Remark 4. Here, N2(r, 1
f ) is the counting function of the zeros of f in |z| ≤ r, where the simple

zero is counted once, and the multiple zero is counted twice.

4. The Proof of Theorem 4

Proof. Suppose that f is a transcendental entire solution of Equation (5) with finite order.
Now, we will divide into two cases below.

(i) If λ fz1 + µ f is a constant, let

λ fz1 + µ f = η1, (19)

and
α f (z + c)− β f (z) = η2, (20)
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where η1, η2 are constants in C. In view of (5), it follows that

η2
1 + η2

2 = 1, (21)

Solving Equation (19), we have

f (z) =
η1 − e−

µ
λ z1+φ(z2)

µ
, (22)

where φ(z2) is an entire function in z2. Substituting (22) into (20), it yields

α
η1 − e−

µ
λ (z1+c1)+φ(z2+c2)

µ
− β

η1 − e−
µ
λ z1+φ(z2)

µ
= η2, (23)

Thus, it follows from (23) that

(α− β)η1 = µη2, − α

µ
e−

µ
λ (z1+c1)+φ(z2+c2) +

β

µ
e−

β
λ z1+φ(z2) = 0,

that is,

η2
1 =

µ2

µ2 + (α− β)2 , eφ(z2+c2)−φ(z2) =
β

α
e

µ
λ c1 ,

Hence, we have

φ(z2) = Az2 + b, eAc2 =
β

α
e

µ
λ c1 . (24)

Thus, the conclusion (i) of Theorem 4 is proved from (22) and (24).
(ii) If λ fz1 + µ f is not a constant, we can rewrite (5) as the form

[µ f (z) + λ fz1(z) + i(α f (z + c)− β f (z))][µ f (z) + λ fz1(z)− i(α f (z + c)− β f (z))] = 1.

Since f is an entire function, it follows that µ f (z) + λ fz1(z) + i(α f (z + c) − β f (z))
and µ f (z) + λ fz1(z)− i(α f (z + c)− β f (z)) do not exist zeros and poles. Thus, by virtue of
Refs. [3,10,11], there exists a nonconstant polynomial p(z) in C2 such that

µ f (z) + λ fz1(z) + i(α f (z + c)− β f (z)) = ep(z),

µ f (z) + λ fz1(z)− i(α f (z + c)− β f (z)) = e−p(z).

The above equations lead to

µ f (z) + λ fz1(z) =
1
2
(ep + e−p), (25)

α f (z + c)− β f (z) =
1
2i
(ep − e−p). (26)

In view of (25) and (26), we can deduce that

βµ f (z) + βλ fz1(z) =
α

2
(ep(z+c) + e−p(z+c))− λpz1 + µ

2i
ep(z) − λpz1 − µ

2i
e−p(z). (27)

Thus, it yields from (25) and (27) that

λpz1 + µ + βi
αi

ep(z)+p(z+c) +
λpz1 − µ + βi

αi
ep(z+c)−p(z) − e2p(z+c) ≡ 1. (28)

Noting that µ 6= 0, we thus have that
λpz1+µ+βi

αi ≡ 0 and
λpz1−µ+βi

αi ≡ 0 can not hold at
the same time. Otherwise, it follows from (28) that e2p(z+c) = 1, that is, p(z) ≡ 0, which is a
contradiction with p(z) being a nonconstant polynomial.
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If
λpz1−µ+βi

αi ≡ 0, it follows that
λpz1+µ+βi

αi 6≡ 0 from (28) and that

λpz1 + µ + βi
αi

ep(z)+p(z+c) − e2p(z+c) ≡ 1. (29)

By using the second basic theorem for the function e2p(z+c), we have from (29) that

T(r, e2p(z+c)) ≤ N
(

r,
1

e2p(z+c)

)
+ N

(
r,

1
e2p(z+c) + 1

)
+ S(r, e2p(z+c))

≤ N

r,
1

λpz1+µ+βi
αi ep(z)+p(z+c)

+ S(r, e2p(z+c))

≤ O(log r) + S(r, e2p(z+c));

this is impossible. If
λpz1+µ+βi

αi ≡ 0, similar to the argument as in the above, we also obtain

a contradiction. Hence, we have
λpz1+µ+βi

αi 6≡ 0 and
λpz1−µ+βi

αi 6≡ 0.
By Lemma 1, we have

λpz1 + µ + βi
αi

ep(z)+p(z+c) ≡ 1, or
λpz1 − µ + βi

αi
ep(z+c)−p(z) ≡ 1.

If
λpz1 + µ + βi

αi
ep(z)+p(z+c) ≡ 1,

then p(z) + p(z + c) should be constant; this is a contradiction.
If

λpz1 − µ + βi
αi

ep(z+c)−p(z) ≡ 1, (30)

then p(z + c)− p(z) is a constant. Thus, we have p(z) = L(z) + H(c2z1 − c1z2) + b, where
L(z) = A1z1 + A2z2, H(s) is a polynomial in s = c2z1 − c1z2, A1, A2, B are constants in C.
By combining (30) with (28), we have

λpz1 + µ + βi
αi

ep(z)−p(z+c) ≡ 1. (31)

Substituting p(z) into (30) and (31), it follows that

λ(A1 + c2H′)− µ + βi
αi

eL(c) ≡ 1,
λ(A1 + c2H′) + µ + βi

αi
e−L(c) ≡ 1, (32)

where L(c) = A1c1 + A2c2. Thus, we have that c2H′ is a constant, which implies degs H ≤
1 as c2 6= 0. This shows that L(z) + H(c2z1 − c1z2) + B is a linear form of z1, z2. For
convenience, we still denote it to be p(z) = L(z) + B. Thus, it follows from (32) that

λA1 − µ + βi
αi

eL(c) ≡ 1,
λA1 + µ + βi

αi
e−L(c) ≡ 1. (33)

This leads to

(λA1 + βi)2 = µ2 − α2, e2L(c) =
λA1 + µ + βi
λA1 − µ + βi

. (34)

Substituting p(z) = A1z1 + A2z2 + B into the Equation (25), it follows

µ f (z) + λ fz1 =
1
2
(eA1z1+A2z2+B + e−A1z1−A2z2−B). (35)
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If A1 6= ± µ
λ , solving Equation (35), we have

f (z1, z2) =
1

2(λA1 + µ)
eA1z1+A2z2+B − 1

2(λA1 − µ)
e−A1z1−A2z2−B + ϑ(z2)e−

µ
λ z1 , (36)

where ϑ(z2) is a finite order entire function. Substituting (36) into (26), and combining with
(34), we have

(λA1 + βi)2 = µ2 − α2, e2(A1c1+A2c2) =
λA1 + µ + βi
λA1 − µ + βi

,

and
ϑ(z2 + c2)

ϑ(z2)
=

β

α
e

µ
λ c1 . (37)

If A1 = µ
λ , similar to the above argument, we have

f (z1, z2) =
1

4µ
eA1z1+A2z2+B +

z1

2λ
e−A1z1−A2z2−B + ϑ(z2)e−

µ
λ z1 , (38)

where ϑ(z2) is a finite order entire function satisfying (37). Substituting (38) into (26), and
combining with (34), it follows that f (z1, z2) satisfies (8).

If A1 = − µ
λ , similar to the above argument, we have

f (z1, z2) =
z1

2λ
eA1z1+A2z2+B +

1
4µ

e−A1z1−A2z2−B + ϑ(z2)e−
µ
λ z1 , (39)

where ϑ(z2) is a finite order entire function satisfying (37). Substituting (39) into (26), and
combining with (34), it follows that f (z1, z2) satisfies (9).

Therefore, this completes the proof of Theorem 4.

5. The Proof of Theorem 5

Proof. Suppose that f is a transcendental entire solution of Equation (6) with a finite order.
Two cases will be considered below.

(i) If λ1 fz1 + λ2 fz2 + µ f is a constant, let

λ1 fz1 + λ2 fz2 + µ f = η1, (40)

and
α f (z + c)− β f (z) = η2, (41)

where η1, η2 are constants in C satisfying (21) from (6). The characteristic equations of (40)
are

dz1

dt
= λ1,

dz2

dt
= λ2,

d f
dt

= η1 − µ f .

Using the initial conditions: z1 = 0, z2 = s1, and f = f (0, s1) with a parameter s. Thus,
we obtain the following parametric representation for the solutions of the characteristic
equations: z1 = λ1t, z2 = λ2t + s1, and

f (z1, z2) =
η1

µ
− 1

µ
e−

µ
λ1

z1+ϕ(s1), (42)

where ϕ(s1) is an entire function in s1 := λ1z2 − λ2z1. Substituting (42) into (41), we have

α

(
η1

µ
− 1

µ
e−

µ
λ1

(z1+c1)+ϕ(s1+s0)
)
− β

(
η1

µ
− 1

µ
e−

µ
λ1

z1+ϕ(s1)
)
= η2,
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which implies that

αη1

µ
− βη1

µ
≡ η2,

α

µ
e−

µ
λ1

(z1+c1)+ϕ(s1+s0) − β

µ
e−

µ
λ1

z1+ϕ(s1) ≡ 0,

where s0 := λ2c1 − λ1c2. In view of (21), we have

η2
1 =

µ2

µ2 + (α− β)2 , (43)

and
eϕ(s1+s0)−ϕ(s1) =

β

α
e

µ
λ1

c1 .

Thus, it follows that ϕ(s1) = As1 + b where A, b are constants satisfying

eAs0 = eA(λ2c1−λ1c2) =
β

α
e

µ
λ1

c1 . (44)

In view of (42)–(44), we have

f (z1, z2) =
η1

µ
− 1

µ
e−

µ
λ1

z1+A(λ2z1−λ1z2)+b, (45)

where α, β, µ, λ1, λ2, η1, c1, c2, A are constants and satisfying (43) and (44). Therefore, this
proves the conclusion (i) of Theorem 5.

(ii) If λ1 fz1 + λ2 fz2 + µ f is not a constant, we can rewrite (6) as the form

[µ f (z) + λ1 fz1(z) +λ2 fz2(z) + i(α f (z + c)− β f (z))]×
[µ f (z) + λ1 fz1(z) + λ2 fz2(z)− i(α f (z + c)− β f (z))] = 1.

Since f is an entire function, it follows that µ f (z) + λ1 fz1(z) + λ2 fz2(z) + i(α f (z +
c)− β f (z)) and µ f (z) + λ1 fz1(z) + λ2 fz2(z)− i(α f (z + c)− β f (z)) do not exist zeros and
poles. Thus, by virtue of Refs. [3,10,11], there exists a nonconstant polynomial p(z) in C2

such that

µ f (z) + λ1 fz1(z) + λ2 fz2(z) + i(α f (z + c)− β f (z)) = ep(z),

µ f (z) + λ1 fz1(z) + λ2 fz2(z)− i(α f (z + c)− β f (z)) = e−p(z).

The above equations lead to

µ f (z) + λ1 fz1(z) + λ2 fz2(z) =
1
2
(ep + e−p), (46)

α f (z + c)− β f (z) =
1
2i
(ep − e−p). (47)

In view of (46) and (47), we can deduce that

αµ f (z + c) + β[λ1 fz1(z) + λ2 fz2(z)]

=
α

2
(ep(z+c) + e−p(z+c))− λ1 pz1 + λ2 pz2

2i
(ep(z) + e−p(z)). (48)

From (48) and (46), we have

αµ f (z + c)− βµ f (z) =
α

2
(ep(z+c) + e−p(z+c))− λ1 pz1 + λ2 pz2 + βi

2i
(ep(z) + e−p(z)). (49)
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Thus, it yields from (46) and (49) that

λ1 pz1 + λ2 pz2 + µ + βi
αi

ep(z)+p(z+c)+

λ1 pz1 + λ2 pz2 − µ + βi
αi

ep(z+c)−p(z) − e2p(z+c) ≡ 1. (50)

By using the same argument as in the proof of Theorem 4, we have
λ1 pz1+λ2 pz2+µ+βi

αi 6≡
0 and

λ1 pz1+λ2 pz2−µ+βi
αi 6≡ 0. By Lemma 1 and (50), we have

λ1 pz1 + λ2 pz2 + µ + βi
αi

ep(z)+p(z+c) ≡ 1, or
λ1 pz1 + λ2 pz2 − µ + βi

αi
ep(z+c)−p(z) ≡ 1.

If
λ1 pz1 + λ2 pz2 + µ + βi

αi
ep(z)+p(z+c) ≡ 1,

then p(z) + p(z + c) should be constant; this is a contradiction.
If

λ1 pz1 + λ2 pz2 − µ + βi
αi

ep(z+c)−p(z) ≡ 1, (51)

then p(z + c)− p(z) is a constant. Thus, we have p(z) = L(z) + H(c2z1 − c1z2) + b, where
L(z) = A1z1 + A2z2, H(s) is a polynomial in s = c2z1 − c1z2, A1, A2, B are constants in C.
By combining (51) with (50), we have

λ1 pz1 + λ2 pz2 + µ + βi
αi

ep(z)−p(z+c) ≡ 1. (52)

Substituting p(z) into (51) and (52), it follows that

λ1 A1 + λ2 A2 + (λ1c2 − λ2c1)H′ − µ + βi
αi

eL(c) ≡ 1, (53)

λ1 A1 + λ2 A2 + (λ1c2 − λ2c1)H′ + µ + βi
αi

e−L(c) ≡ 1. (54)

Thus, we have that (λ1c2 − λ2c1)H′ is a constant, which implies degs H ≤ 1 as
λ1c2 − λ2c1 6= 0. This shows that L(z) + H(c2z1 − c1z2) + B is a linear form of z1, z2. For
convenience, we still assume that p(z) = L(z) + B. Thus, it follows from (53) and (54) that

λ1 A1 + λ2 A2 − µ + βi
αi

eL(c) ≡ 1,
λ1 A1 + λ2 A2 + µ + βi

αi
e−L(c) ≡ 1. (55)

This leads to

(λ1 A1 + λ2 A2 + βi)2 = µ2 − α2, e2L(c) =
λ1 A1 + λ2 A2 + µ + βi
λ1 A1 + λ2 A2 − µ + βi

. (56)

Substituting p(z) = A1z1 + A2z2 + B into the Equation (46), it follows

µ f (z) + λ1 fz1 + λ2 fz2 =
1
2
(eA1z1+A2z2+B + e−A1z1−A2z2−B). (57)

If µ2 6= (λ1 A1 + λ2 A2)
2, solving Equation (57), we have

f (z1, z2) =
1

2(λ1 A1 + λ2 A2 + µ)
eA1z1+A2z2+B−

1
2(λ1 A1 + λ2 A2 − µ)

e−A1z1−A2z2−B + ϑ(s1)e
− µ

λ1
z1 , (58)
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where ϑ is a finite order entire function in s1. Substituting (58) into (47), and combining
with (55), we have

ϑ(s1 + s0)

ϑ(s1)
=

β

α
e

µ
λ1

s0 , (59)

where s0 = λ2c1 − λ1c2. Therefore, in view of (56), (58), and (59), we have

f (z1, z2) =
1

2(λ1 A1 + λ2 A2 + µ)
eA1z1+A2z2+B−

1
2(λ1 A1 + λ2 A2 − µ)

e−A1z1−A2z2−B + ϑ(s1)e
− µ

λ1
z1 , (60)

where ϑ is a finite order entire function in s1, and A1, A2, B are constants satisfying (56)
and (59).

If µ = λ1 A1 + λ2 A2, solving Equation (56), similar to the above argument, we have

f (z1, z2) =
1

4µ
eA1z1+A2z2+B +

z1

2λ1
e−A1z1−A2z2−B + ϑ(s1)e

− µ
λ1

z1 , (61)

where ϑ(s1) is a finite order entire function satisfying (59). Substituting (61) into (47), and
combining with (55), we can obtain (15).

If µ = −(λ1 A1 + λ2 A2), solving Equation (56), similar to the above argument, we have

f (z1, z2) =
z1

2λ1
eA1z1+A2z2+B +

1
4µ

e−A1z1−A2z2−B − ϑ(s1)e
− µ

λ1
z1 , (62)

where ϑ(s1) is a finite order entire function satisfying (59). Substituting (62) into (47), and
combining with (55), we can obtain (16).

Therefore, we complete the proof of Theorem 5.

6. Conclusions

From Theorems 4 and 5, we investigate the transcendental entire solutions of two
classes of partial differential-difference equations with constant coefficients, which are
more general than the previous equations given by [19,20,38]. We describe the forms of the
finite order transcendental entire solutions of these equations under the different conditions
of the coefficients, and we also give several examples to demonstrate that every form of
the solutions of these equations are precise. By comparing previous relevant references,
we can find that our results are some improvements and generalizations of the previous
theorems [19,20,38].
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