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Abstract: Efficiency mapping has an important place in examining the maximum efficiency distribu-
tion as well as the energy consumption of designed electric motors at maximum torque and speed.
Performing analysis at all operating points with FEM analysis in the motor design process requires
high processing costs and time. In this article, a machine learning-based multivariate polynomial
regression estimation model was developed to overcome these costly processes from FEM analysis.
With the proposed method, the operating points of the motors in different conditions during the
design process can be predicted in advance with high accuracy. In the study, two different models are
developed for efficiency map and core loss estimation of interior permanent magnet synchronous
motor design. The developed models use few parameters and predict with high accuracy. Estimation
models shorten the design process and offer a less complex model. Obtained results are validated by
comparison with FEM analysis.

Keywords: efficiency map; core loss; FEM; polynomial regression; electrical motor; estimation
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1. Introduction

Systems using electric motors have a large place in global energy consumption, while
their CO, emissions grow at significant rates [1]. Well-sized and optimized motor systems
with all their components play a key role in reducing this negative effect. The most
emphasized issue in studies of electric vehicles is how to extend the vehicle range as
much as possible according to the current battery capacity and weight of the vehicle. This
can only be achieved by the operation of electric vehicle components within maximum
efficiency regions. The most important and energy-consuming components of electric
vehicles are electric motors. While these motors provide the power/torque values required
for acceleration and hill climbing, they also need to be as efficient as possible. For this reason,
the efficiency map for the motors used in these vehicles or predicting these values as in
the proposed method plays a key role in both more efficient and widespread use of electric
vehicles. Especially with the development of power electronics components, induction
motors are frequently used in variable speed applications. These motors are preferred
because of their simple structure, low need for maintenance, and high efficiency at nominal
operating points [2]. However, rotor copper losses and accordingly low thermal load ability
are the biggest disadvantages of these motors. Especially in electric vehicle applications,
motors containing magnets are often preferred [3-6]. However, interior permanent magnet
synchronous motors (IPMSMs), some of the most often used motors in electric vehicles,
are very popular due to their high torque density, high efficiency, wide speed range, and
reluctance torque in addition to magnet torque [7,8]. Motors used in electric vehicles are
operated in a wide speed-torque range. Hence, in motor selection, vehicle characteristics
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such as vehicle weight and aerodynamics, as well as how the vehicle is used, play a key role
in determining the required speed, torque, and power values of the vehicle. In addition,
whether the vehicle is a hybrid or pure electric vehicle; what is the required maximum
speed, torque, and power values; what is battery capacity and voltage; whether the motor
has a direct drive or a gearbox; and the cost, which is the most important factor, are other
important factors affecting the selection of the motor. Efficiency class standards [9] of
motors used in industry mostly test motors in constant speed applications such as pumps,
fans, and compressors, and IE1, IE2, IE3, and 1E4 class standards are determined for these
motors [10]. There is no current regulation that determines the efficiency class of motors
used in electric vehicles and motors manufactured for industrial purposes. Motor efficiency
mapping is an important issue in electric motor design. This graph (efficiency map), which
is given as a function of the maximum torque produced by the motor depending on the
motor speed and efficiency, is crucial in determining the area where the electric motor is
most efficient in different driving combinations, especially when presented with the drive
cycle. In addition, parameters such as motor total losses, dg axis flux and current values,
and copper losses are also determined within voltage and current limits [6]. However,
while doing this, the current, current angle, voltage, and torque values applied to the
motor windings at each operating point, as well as the rotor speed and position, can be
recorded in appropriate resolution. The motor efficiency map determination is carried out
experimentally, through the analytical model or by analyzing the Finite Element Model
(FEM) of the motor [11]. In the experimental method, in addition to the motor shaft power,
the voltages applied to the motor windings and the currents drawn can also be recorded.
This is possible once the drive motor is manufactured and ready for testing. However,
prototyping and testing process steps must be carried out repeatedly for improvements
after experimental results. This process is both costly and time consuming. In the FEM
method, time-dependent transient analysis is usually performed on the 2D or 3D model
created depending on the physical dimensions, material properties, and winding structure
of the motor. In this method, these analyses can be repeated for different current, current
angle, and speed values. However, analysis at different operating points, especially with
the FEM method, is very time-consuming in terms of both time and processor load. This
situation becomes inescapable in cases such as the model being 3D, whether it contains a
skew or not.

In this study, a new method is presented using machine learning based multivariate
polynomial regression to eliminate these deficiencies and accelerate the process. To verify
and test the developed method, the data of the IPMSM modeled with the FEM method
were used, and the results obtained were presented comparatively for different velocity,
current and current angle values. The estimation of motor efficiency parameters using
learning algorithms has attracted considerable attention by researchers in the motor design
process [12]. In recent studies, Deep learning (DL) and Neural Network (NN) methods
have been used for efficiency map estimation [13,14]. The main contribution emphasized in
these studies is the reduction of the design process of the modeled motor compared to the
FEM method. In the proposed method, in addition to the reduction of the design process, a
multivariate polynomial regression model is used, and a model that can make predictions
with high accuracy using fewer model parameters has been developed.

2. Materials and Methods
2.1. IPMSM FEM Model and Efficiency Map Calculation

The IPMSM used in the modeling is shown in Figure 1. The analyzed motor has
a power of 50 kW and a torque of 400 Nm. Detailed information about the motor is
presented in Table 1 [15,16]. In the designed motor, the oil cooling system is used to prevent
the winding temperature from exceeding the specified limit value. Figure 1b shows the
magnetic flux density distribution at full load and rated speed. As shown in the figure, the
maximum value of the stator tooth average flux density (m1) is 2.07 T, and the end of the
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rotor flux barrier is 2.58 T. These are oversaturated regions. However, the stator back iron
section was found to be 1.51 T on average.
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Figure 1. Analyzed motor for the 2D FEM: (a) motor geometry; (b) magnetic flux density distribution;
(c) core loss versus frequency for JFE_Steel 35JN300.
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Table 1. Design specifications of used motor.

Parameter Value
Rated Power 50 kW
Rated Torque 400 Nm
Rated Speed 1194 rpm

DC Bus voltage 300 Vdc
Rated Current 200 Arms
Current density (A/mm?) 274
Poles&Slots 8&48
Stator outer diameter 269.2 mm
Stack length 83.6 mm
Lamination material JFE_Steel _35JN300
Magnet grade N36Z

The flux density distribution plots provide important information for determining the
motor performance. Ideally, the flux density distribution should be kept as low as possible
to reduce both magnetic reluctance and core losses. Figure 1c shows the watt loss curve of
JFE_Steel_35JN300 laminated steel used in the stator and rotor with respect to frequency. It
is an important curve to see the effect of source frequency on motor efficiency in variable
speed motors.

Two methods, known as Magneto-static FE and Transient FE, are generally used in
FEM analysis. In the magneto-static method, the current values defined by considering the
current density are used for excitation and the results are obtained by repeating analysis
at different rotor positions. In the second method, performance graphs such as motor
current and torque are obtained by stimulating the motor windings with a time dependent
voltage source. Especially if the motor model is analyzed by creating a 3D model instead
of a 2D model, this method offers solutions that are very close to the experimental results.
However, because the model is complex and requires a high level of mesh, the solution
time is quite long. Another preferred method in FEM analysis is the dq reference frame,
where sinusoidal variables are defined as constants. In this method, flux linkage values
(cross-saturation terms) in the d and g axes are defined by Equations (1) and (2) [17].

Y=Y+ Laly+ qulq )

L4, Ly, and Ly, given in the equations are the inductance values of the motor in the
relevant axes, and ¥,,; and ¥4 are the flux linkage values dependent on currents in d
and g axes. In this case, the steady state voltages and torque expressions in the dq axis set
are expressed by Equations (3)—(5).

Vd = RSId — w‘I’q — stgqu (3)

Vq = Rglq — cu‘Yd — ("JLSC‘w Id (4)
3

T = Ep(‘ydlq — \Iqud) (5)

V; and Vj; expressions given in the equations represent d and q axis voltages, Rs stator
winding phase resistance, w electrical working speed, p pole pair, and L, stator end
winding inductance. Accurate determination of losses is very important in motor efficiency
map calculations. Generally, the most dominant losses in electric motors are stator joule
losses. Joule losses depend on the square of the motor current and the winding resistance.
However, especially in inverter fed motors, as high frequencies are increased, temperatures
increase, and losses increase due to skin effect. The change of phase resistance with
temperature, skin, and proximity effects are very important for the correct calculation of
stator joule losses. For the correct calculation of AC resistance in the package program used,
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the change of resistance at 0, 100, ... , and 500 Hz supply frequencies was introduced to the
program, and the effect on temperature on resistance section was activated to calculate the
losses in the most accurate way. Another issue to be considered in the efficiency calculation
is core losses. As it is known, core losses vary depending on the supply frequency and
flux density [18]. However, the effect of hysteresis losses and harmonics in the supply
voltage on the core losses should also be considered [19]. Equation (6) was used to calculate
core losses [20]. With the equation presented, core losses are calculated as a function of
frequency. The effect of harmonics on losses is determined. The coefficients of core losses
become variable according to frequency and flux density. The correct time step size is
determined according to the harmonic content.

N

P = Z (Kh (nf)B% + Kc(nan)z + Kg(nan)l.S) (6)

n=1

The total core losses P is obtained according to the non-constant parameters Kj, K,
and K, are given in Equation (6). These parameters are tabulated in a lookup table and then
applied in FE using the cubic spline interpolation algorithm [20]. # is the harmonic number;
B, is the magnetic flux density related to nth harmonic, and f is the source frequency. n
is determined automatically in Ansys maxwell tool kit program. Hysteresis, eddy, and
excess loss coefficients depend on the lamination material used in the stator and rotor,
respectively. Depending on the conductivity of the magnet used in magnet motors, eddy
currents circulate in the magnets, and the magnitude of this current is directly proportional
to the magnet volume. Segmented placement of magnets is one of the most preferred
methods to reduce these losses. There are many studies on the accurate estimation of these
losses [21,22]. In addition to electrical and magnetic losses, windage, friction, and stray
losses are other issues to be considered in the efficiency calculation. These losses vary
depending on the spindle speed, radius, and spindle length [6]. In this case, the yield
expression is expressed by Equation (7).

1,] — Pout — Pout
Py, Pout+Prioss

()
Total Loss = CoreLoss + SolidLoss + StrandedLoss + Mechanical Loss

In the presented study, an Ansys Maxwell Electrical Machine Design Toolkit was used
for Efficiency map calculations. This toolkit program provides the solution to complex
problems in the design of electrical machines in a short time, and its results have been tested
and verified in industry [20]. With this toolkit, efficiency, torque, and other performance
curves of different types of motors can be calculated and plotted. Likewise, motor core
loss, solid loss, dq inductance, and flux linkage values together with currents can be
calculated within the determined current and voltage limits. Solid loss expresses the losses
of solid conductors. These losses are determined for the distribution of the eddy current
density. Stranded loss is the ohmic loss caused by stranded windings. Since a stranded
type conductor is defined in this study, the solid loss effect is neglected in the efficiency
calculation. In the presented study, Line-Line RMS voltage is selected as the voltage control
type, and the MTPA method is selected as the control strategy.

2.2. Machine Learning Based Polynomial Regression

Polynomial regression is a regression that model’s components in which the relation-
ship between an independent variable x with respect to a dependent variable y is not
linear [23]. Polynomial regression is more suitable for prediction models, especially when
the input variables have nonlinear dependence. A univariate k-order polynomial regression
is generally expressed in equation (8) [24]. x is the input variable; y is the output, and the
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coefficients of the polynomial model are expressed as (wg, wq, wo, . .., w) in k dimension.
Moreover, here wy is the bias.

y:w0+w1x+w2x2+w3x3...+wkxk 8)

If more than one variable is used in polynomial regression, it is called Multivariate
Polynomial Regression [25]. The general expression of multivariate polynomial regression
is given in Equation (9).

Y = wo + w1X1 + WyXxp + waxz + - -+ WXy + € 9)

Here ¢ is the error component in the normal distribution. To explain the polynomial
regression model in a more general way, its representation in matrix form is given in
Equation (10).

Y=XW+e (10)

The parameters of the polynomial model specified in the matrix form are expressed in
Equation (11) as X, W, and ¢, respectively. X is the inputs; Y is the outputs, and W is the
model coefficient matrix. n is the number of outputs, and s is the number of input variables.

1 wo €
y 1 X11 .. Xs1
W w1 € 1
w e X21 ... X2
Y= |¥3|, W= W2, e= (8|, X=| | (11)
1 x oo Xsn
Yn Ws En & g

The coefficient matrix used in the construction of the estimation model of the polyno-
mial regression is calculated by the residual sum of squares method. Depending on this
method, the minimum error (ss;.s) is expressed in Equation (12).

n

2
SSres = Y (Yi — Wo — W1X1j — WaXpj — - - — WiXe;) (12)
i=1

The estimated coefficients [26] (W) in the regression process are expressed as in Equation (13).
y -1
W= (XTX) xTy (13)

To obtain the polynomial regression model, the solution can be obtained through
multivariate linear regression. Thus, multivariate polynomial regression also uses a linear
equation to calculate the coefficients, although it calculates for the non-linear model. De-
pending on the multivariate linear regression model, the polynomial regression is defined
in Equation (14) [6].

m m m
y = wO + lealxal + Zlu ZH wﬂ]ﬂz xﬂlxaz + e
a1= ay=14a=ay
m 1m ml (14)
+Yr L ... X Waay.aXaXay-.Xa,
ay=14a2=a1 Ap=0x—1

where m is the number of input variables, and k is is the degree of the equation. This
expresses the general equation used in the calculation of a single output multivariate
polynomial regression. The same solution can be obtained by fitting the multivariate
polynomial regression model to a multivariate linear regression model.

Generalization success increases according to the degree of polynomial functions.
Depending on polynomial degree, polynomial functions are grouped as quartic, cubic,
quadratic, linear polynomial, and constant polynomial. Although polynomial functions are
both simple and easy to compute, it has been emphasized in the literature that the preferred
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polynomial model has poor asymptotic, extrapolation, and interpolation properties [27,28].
Although these are the weaknesses of the relevant model, we aimed to minimize these
limitations by preferring the multivariate regression model for the study.

2.3. Estimation of Efficiency and Core Loss Maps

In this study, the machine learning based multivariate polynomial regression model is
used for efficiency and core loss estimation. Figure 2 shows the diagram of the proposed
two models for efficiency and core loss map estimation. These developed models can
estimate efficiency and core loss by training a multivariate polynomial model with the
data set. Speed, gamma (current angle), and current are used for the input parameters
of each model. Torque and efficiency estimation can be made with Model-1, and torque
and core loss estimation can be made with Model-2. It is difficult to create an estimation
model because the core loss estimation model requires a complex nonlinear model [14].
The accuracy of the core loss estimation model is important because of its impact on the
design process. For this reason, two separated models have been created to make high
accuracy estimations for efficiency and core loss estimations.

Speed (RPM) — WRpA Torque (Nm) — T'nopEL-1

Gamma (Deg) — vYpEG
Predict Model-1

Current (A)— Apnps Efficiency (%) —

Speed (RPM) — WRpM Torque (Nm) — ThoprL-—2

Gamma (Deg) — YpEG Predict Model-2
CorelLoss (W) — P,y
Current (A)— ARMS

Figure 2. Efficiency and core loss map estimation models.

The input and output parameters of Model-1 and Model-2 based on the multivariate
polynomial regression general equation are expressed in Table 2 for clarity. The input
variables of Model-1 and Model-2 are defined as Speed (wgrppy), Gamma (yprg) and
Current (Agpss). The output variables of Model-1 are Torque (Tyoper-1) and Efficiency
(17). The output variables of Model-2 are Torque (Tyopgr-2) and CoreLoss (Peore).

Table 2. Input and output parameters for Model-1 and Model-2.

Models Input Parameters Input Variables Output
WRPM X1 TmopEL-1(WRPM, YDEG, ARMS)
Model-1 lezﬁ; zi 1(wrPM, YDEG, ARMS)
WRPM X TmopEL-2(WRPM, YDEG, ARMS)
Model-2 lez;i zi Peore(wWRPM, YDEG, ARMS)

Based on the general expression of the multivariate polynomial regression Equa-
tion (14), the output functions for Model-1 and Model-2 are redefined. Thus, the output
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variables for Model-1 are defined as torque Tyjoper-1(WrpM, YDEG, ArMms) and efficiency
(wrpM, YDEG, ArMs) as indicated in Table 2. Similarly, the output functions for Model-2
are defined as Trioper-2(wrpm, YDEG, ArRMs) @and Peore(wWrPM, YDEG, ARMs)- In addition,
model-1 and model-2 input variables are defined as x1, x, x3.

The calculations of the multivariate polynomial regression model defined for Model-1
and Model-2 are generally expressed in Equation (15). The calculated coefficients vary
according to each output function.

3 3 3
y(‘xll X2, x3) = wo + Z wlllxlll + Z Z wulaz xﬂlxaz
alzl 1,11:1 ay=aq
3 3 3
+ Z Z Z wll1112123x111 xﬂgxag,

ay=14a=ay a3=a;
3 3 3 3 (15)
+ Z Z E Z wﬂ1!12!13a4x121 xﬂz xﬂ3xu4

a1=1a=ay1 az=ap az=ay
3 3 3 3 3

+ Z Z Z Z Z wﬂ1ﬂzﬂ3ﬂ4ﬂ5xﬂ1 xﬂzxﬂ3xtl4xﬂ5

ay=14a=4ay a3=ap a3=ay a4=as

The coefficients of the output functions Tyioper-1, 4, TmoDEL-2, Peore depending on
the function y(x1, x2, x3) specified in Equations (15) are given Table Al in Appendix A.

The functions used for efficiency and core loss map predictions using Model-1 and
Model-2 are associated with the motor and FEM parameters as input variables and output
functions. In determining the input variables of the prediction models, the current angle
(gamma) and the applied current are very important in determining the points where
the maximum torque occurs according to the MTPA method. In addition, in order to
calculate the efficiency in constant torque and constant power regions, all speed regions
must be scanned. For this reason, these 3 parameters were selected as input parameters.
The relationship between these parameters and the output parameters is also seen in the
correlation coefficient matrix.

The developed estimation models are trained by using speed, gamma, current, torque,
efficiency, and core loss parameters obtained from the previously designed IPMSM FEM.
The main reason why multivariate polynomial regression is preferred in the proposed
method is that the training parameters used contain nonlinear components. The correlation
coefficient is used to examine the relationship between the training parameters. Correlation
coefficients indicate the linear relationship between parameters [29]. The coefficient of
correlation measures how much the input variables affect the output variables in data
analysis. In Equation (16), the coefficient of correlation (ryy) is defined as: the correlation
ryy between input variable x and output variable y.

MY g XilYi — Yieq Xi Y Yi
VT ) — (T ) n e vE — (T i)

where 7 is the number of data points in the dataset; x is the input variable, and y is the
output variable. At the same time, the coefficient of correlation gives the direction and
coefficient of the linear relationship between the variables. The direction of the linear
relationship is in the range [—1, 1]. As the coefficient of correlation approaches 0, the linear
relationship decreases. When we look at the correlation graphs in Figure 3, it is seen that
they contain non-linear components.

Txy = (16)
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Correlation Diagram
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Figure 3. Correlation diagram.

2.4. Data Set

In the method, the model results obtained from FEM analysis are used as a data
set. This data set consists of Speed, Gamma, Current, Torque, Efficiency and Core loss
parameters. The whole data set consists of 3325 data for each parameter.

The distribution of each parameter of the whole dataset among each other is expressed
in Figure 4. The input variables have a non-linear dependence on the distribution of the
data set. Moreover, since there is a non-linear relationship between the input and output
parameters, the proposed multivariate polynomial regression models are very effective for
Efficiency and Core loss.
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Figure 4. Dataset distribution.
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Figure 5 shows the flow diagram of the proposed method that expresses the efficiency
and core loss estimation process. The data set used for training the developed models is
divided into 2 parts. This division is training and test data. The whole data set consists of
many “samples” of different speed values. Depending on the values of each Speed_rpm, the
data are divided into 67% training and 33% test data. According to this split, 2233 training
data and 1092 test data are generated for each parameter. This split value is sufficient
to generate Efficiency and core loss maps. This procedure of splitting the data set has a
distribution that allows the data to form an accurate prediction model.

FEM analysis results
and model

Y

Collection data of Speed, Gamma, Torque,
Efficiency and CorelLoss
(3325 data for each parameter)

Y

Data spliting as Train data(%67) and Test )
data(%33)
(Train Data:2233 data for each parameter)
(Test Data: 1092 data for each parameter)
\ 4
[ Shuffle
|
) 4 \ 4
Training of Model-1 for Training of Model-2 for
torque and efficiency torque and coreloss
y
e A
Predictions for Model-1 and
Model-2
\ J
A 4
4 R
Performance evaluation of
models
" J

Figure 5. Proposed method flowchart.

The first part is the training set, and the other part is the test data used for model
prediction. For the training of Model-1 and Model-2, 33% of the dataset is used for efficiency
and core loss estimation. The remaining part is used as the training set. The training and test
data are shuffled before training the models to increase the efficiency of the model. Model-1
and Model-2 are trained with polynomial regression. The results obtained from the trained
model are used to generate prediction results according to the test data set. The effectiveness
of the model is measured by evaluating the performance of the prediction results.

In the present study, the degree of polynomial equation for the multivariate estimation
model of Model-1 and Model-2 was determined as 5. This value is obtained after several
experiments and is chosen for the best result. Machine learning based regression analyses
for Model-1 and Model-2 are performed with python programming language based scikit-
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learn package. The training and testing processes of the prediction model are implemented
on an 8 GB RAM computer with an 11th Gen Intel(R) Core (TM) i5-1135G7 2.4 GHz CPU.

2.5. Performance Metrics

In order to evaluate the performance of the prediction results obtained from the pro-
posed models (Model-1, Model-2), estimation performance skills are examined with regres-
sion metrics. R?, MAE (Mean Absolute Error), and RMSE (Root Mean Square Error) metrics
are commonly used to evaluate the results of the regression models developed in this study.
The y results are used in the calculation of the metrics specified in Equations (17)-(19); ¥
means the results, § the predicted results.

The general expression for R? (R-squared) is given in Equation (17). The R? metric is
also called coefficient of determination [30]. This metric describes the relationship between
actual results and predicted results. It specifies the variation between dependent variables
and independent variables. The higher this value, the better the model [31]. The best value
for R%is 1. )

RS §» B i
LT vi—7)

MAE gives an absolute mean measure of the errors of the estimation model [32]. Since
it calculates the absolute value of the errors, it is useless in estimating the direction of the
error. MAE shows the effect of outliers in the results obtained in the estimations model [33].
It also indicates how close the estimates are to the actual values. MAE is generally expressed
in Equation (18). The error decreases as the MAE criterion approaches 0.

(17)

1
MAE = 2 ) lyi 3l (18)
i=1

The RMSE is a metric of the square root of the mean squared error between the model
predicted value and the true value [31,34]. The general expression of the RMSE is given in
Equation (19). It can show the effect of estimated small-scale values on the error. A better
model is obtained as the error value approaches 0 in RMSE.

RMSE = , | Y (i i)’ (19)
i=1

2.6. Performance Evaluation of The Proposed Models

The proposed Model-1 and Model-2 for efficiency and core loss prediction are trained
by machine learning based multivariate polynomial regression. The training and prediction
(test) errors of the proposed models are evaluated with different performance measures
such as R?, MAE, and RMSE. In addition, the k-Cross-Validation technique is used to
evaluate the validation performance of the model.

The training and test error results of the model are presented in Table 3. R?, MAE, and
RMSE metrics are used to evaluate the test and training error results obtained for Model-1
and Model-2. According to the R?> metric, Model-1 and Model-2 predictions have achieved
successful results with values very close to 1. The R? metric indicates the success of the
variation between the input and output parameters of Model-1 and Model-2. According
to the MAE criterion, each model obtained values close to 0 when evaluated. Thus, the
models did not produce extreme values in outlier prediction results. The RMSE measure
is a general indicator of the effect of small-scale errors of the estimation models on the
model. Since the RMSE values are very close to 0, the prediction accuracy of the model is
quite high.

S|~
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Table 3. Train and test errors.

Models Errors R? MAE RMSE
Model 1 Train 0.99630 0.00811 0.01395
odel- Test 0.99172 0.01283 0.02130
Model2 Train 0.99974 0.00265 0.00359
odel- Test 0.99739 0.00709 0.01063

The k-fold Cross-Validation technique is used to validate the performance of machine
learning models more effectively [35]. k is usually chosen between 3 and 5. In this study, k
is chosen as 5. As shown in Figure 6, cross validation divides the dataset into k parts. The
error of each part is calculated. The average of the calculated errors determines the validity
of the model. MAE is used for error calculation.

Validation Fold Training Fold

L I I RS > B
"~ AL A J ”
s Y Y Y
e ) [ » E2
v, y, A A J
g Y a'g Y Y 13
3. ! s | | ----- > E;{ - E= g E,:
A J J A k=1
- ' ~ e N
a | | | . | ----- >
AL A — S
Y
s. | | | | . ----- > E |
y Al A J

Fold-1 Fold-2 Fold-3 Fold-4 Fold-5

Figure 6. 5-Fold Cross-Validation.

Table 4 shows the 5-fold cross-validation scores. For R?, MAE, and RMSE, k fold
cross-validation scores are calculated in 5 steps. The cross-validation score is determined
by averaging the 5 values obtained for each metric. According to the obtained metrics,
the average prediction performances of the model have high accuracy measures. The
cross-validation score calculated for Model-2 has a higher accuracy than Model-1. This is
because there is a more linear relationship between the input and output parameters of
Model-2. Although the cross-validation scores of the models differ, the prediction error of
the proposed model is quite low compared to the training and test error.

Table 4. Cross-validation score.

Models R? MAE RMSE
Model-1 0.78121253 0.184664 0.0913293
Model-2 0.960301 0.0360801 0.00219244

3. Results of the FEM and Proposed Method

In IPMSM’s FEM analysis, calculations are made according to the Maximum Torque
per Ampere unit (MTPA) strategy. Torque, speed, DC Bus voltage, and the trajectory of the
current are important parameters at the given operating point. However, the PWM method
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and switching frequency are other important parameters. With the control method used,
the points where the losses are at a minimum and the efficiencies at a maximum should be
determined well.

While the current angle at which the maximum torque occurs in surface mounted
magnet motors is 0 degrees, for IPMSM this value varies between 0 and 90 degrees depend-
ing on the reluctance torque. For these motors, the angle at which the maximum torque
occurs must first be determined. In Figure 7a, the torque curve obtained according to the
current angle and the maximum value of the applied current are presented. As can be seen,
the maximum torque value is 406 Nm at 50 degrees. Another aspect is the constant torque
and constant power zones for this motor. In Figure 7b, 0-1194 rpm is the constant moment,
and 1194-10,000 rpm is the field weakening area. Figure 8a shows the FEM efficiency
map presented as a contour graph. It is seen that the motor maximum efficiency is 96%
at speeds close to the corner speed. Figure 8b shows the efficiency map estimation for
Model-1 trained with polynomial regression. The estimation result is in good agreement
when compared with the FEM results. According to the FEM results, the estimation of the
motor maximum speed shows close values.
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Figure 7. Analyzed motor torque: (a) torque-current angle; (b) torque-speed map.
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Figure 8. Analyzed motor efficiency: (a) 2D FEM; (b) proposed method.

Core loss map FEM and estimation results are given in Figure 9a and b, respectively.
According to the results obtained from the FEM analysis, as expected, the highest losses are
closest to the maximum speed, that is, the points where the supply frequency is highest.
The estimation results of Model-2 trained for core loss are in close resemblance to FEM
analysis. The estimation results are of high accuracy comparable to the FEM analysis
during the design process.
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Figure 9. Analyzed motor core loss: (a) 2D FEM; (b) proposed method.

Different parameters of speed, angle, current, core loss, and efficiency are used to
develop the prediction models, which consist of training and test data. FEM and prediction
compatibility for Model-1 and Model-2 of 50 different test data samples selected from these
data are examined in detail.

In Figure 10. the estimated torque and efficiency match analysis with Model-1 is
shown comparatively. The FEM and test data in 50 different samples estimated by Model-1

are close.
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Figure 10. Comparison between FEM and prediction for 50 samples obtained with Model-1:
(a) torque; (b) efficiency.

Figure 11 shows the comparison results of Model-2, developed for torque and core
loss estimation, with FEM in 50 different samples. According to these results, Model-2
torque and core loss estimation values are very close.
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Figure 11. Comparison between FEM and prediction for 50 samples obtained with Model-2:
(a) torque; (b) efficiency.
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Efficiency map is often used in 2D-3D FEA analyses for different speeds, different
current angles, and different currents to obtain the motor performance of the motor model
using parametric analysis and, accordingly, draw an efficiency map.

In variable speed motors, the fact that the source output is far from the sinusoidal
waveform affects the winding resistance at high frequencies. Due to situations such as
the skin effect, accurate estimation of winding resistance is very important in obtaining
accurate motor performance. For this reason, the regression model uses two separate
models for both core and other losses.

In this method, if the model is 3D or contains more than one stator/rotor, the analysis
time is quite long. However, since the method is machine learning based, it can predict
the motor performance value using less data, which saves time and resources for motor
designs. The time performance of FEM and proposed models for predicting efficiency and
core loss is examined. The comparison of the processing time of the prediction process
with the machine learning based multivariate polynomial regression model is presented
in Table 5. Thus, the time spent per process for the results obtained by FEM analysis is
considerably longer than that of the proposed method.

Table 5. Time performance comparison of the proposed method (time per operation).

FEM Proposed Method
15s 0.0203 s

4. Conclusions

The efficiency map in electric motors is often determined by detailed analysis based
on FEM. In these analysis, losses, torque, and flux linkage values are mapped depending
on the currents in the d and q axes and motor speed. The efficiency mapping time of the
2D or 3D model designed with FEM takes days. In the presented method, high accuracy
efficiency map and core loss estimation are made using a polynomial regression-based
model. Thus, the design process is shortened with the proposed method.

The developed method offers a less complex model than ANN, DL, or other similar
learning algorithms. Models that can predict with high accuracy are created using a
small number of parameters. In the design process, an important advantage is provided
by predetermining the operating points of the motors under different conditions. In
addition, highly accurate efficiency and core loss estimations are validated by performance
metrics. The developed estimation method can be applied and modified to motor types in
different topologies.
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Appendix A

Table Al. Coefficients calculated for model-1 and model-2.

References

Eq. TryopeL-1(x1,%2,%3) 17(x1,x2,x3) TymopeL-2(x1,%2,%3) Pore(x1,%2,x3)
1 —0.1855 x 10~10 5.40037 x 10~ 1 —4.41855 x 10~10 —6.70102 x 10~10
X1 —0.01040614 2.223461499 —0.01040614 0.102099556
X 0.257945862 —0.173566871 0.257945862 —0.096338237
X3 0.800278736 2426193867 0.800278736 0.21954824
x2 0.004511307 —26.5858788 0.004511307 1.441670458
X1X0 —0.081800623 —0.300988663 —0.081800623 1.868839924
X1X3 0.331072627 9.493505418 0.331072627 1.364710171
x3 —1.030025155 11.60518471 —1.030025155 0.264684523
X2X3 —1.645771113 —29.48356205 —1.645771113 0.752012172
x3 1.625278532 0.613405206 1.625278532 —1.742215194
X 0.296143802 77.13570132 0.296143802 2.07084931
x2x; —1.485047006 —8.183799845 —1.485047006 —18.49713819
x2x; 0.948358448 33.36373522 0.948358448 15.60328151
X123 0.742572524 6.204857293 0.742572524 6.541083218
X1X2X3 2.839985505 12.18820514 2.839985505 —22.29984621
X123 —5.224390672 —61.51370975 —5.224390672 7.212440633
p% 1.333593807 —41.87288433 1.333593807 —1.110660866
x3x; 8.236891113 82.60955114 8236891113 —5.135667937
X023 —0.876150694 9.370949363 —0.876150694 9.505743396
X3 —2.099431984 5.070273145 —2.099431984 —0.24245764
xt —1.596883971 —88.56296516 —1.596883971 —7.7266445
Bxy 0.067609505 34.05100539 0.067609505 36.1395262
x3x3 4.425585006 141.2349006 4.425585006 —70.77485692
x%x% 0.787365309 —123.6626331 0.787365309 —22.41807134
23 11.30889623 49.75141728 11.30889623 134.1280755
x2x3 —13.21140071 —199.4535296 —13.21140071 —76.35220461
X125 3.839726464 118.272236 3.839726464 7.640299472
X1%3%3 —35.59545235 —386.1648547 —35.59545235 —49.51210094
x1%203 39.63556414 452.7095145 39.63556414 74.60415419
x1x3 —3.654552896 —26.44490044 —3.654552896 —24.20769484
x3 —2.16194355 19.60854789 —2.16194355 —2.183843801
3x3 —7.16358501 49.22512228 —7.16358501 22.58182018
x2x3 0.330411496 —225.2552857 0.330411496 —26.78475608
X3 —4.031479404 100.8648552 —4.031479404 —0.40663652
x3 2509891165 —30.8710055 2509891165 1.540612901
X 1.520097822 10.30157734 1.520097822 —12.61284229
xdxy —3.13768331 52.34667118 —3.13768331 51.41740053
x3xs —3.097042388 —10.1022335 —3.097042388 —15.33748672
x%x% 3.145881627 —64,33176964 3.145881627 —92.83820489
Bapxs 15.21874315 —69.5347401 15.21874315 90.18170667
B3x2 —13.86241656 —40.85391566 —13.86241656 27.53616394
x%xg 2.138555237 143.1098268 2.138555237 70.99856742
x2x3x3 —43.7017644 —261.7424631 —43.7017644 —147.2524879
x3x%3 4206517177 334.8009696 42.06517177 9.5538821
3 —3.200458629 18.32869371 —3.200458629 26.75569696
x5 —6.930984407 —135.4330182 —6.930984407 —23.54702987
X1%3%3 50.54368948 510.4062607 50.54368948 58.1983485
x1X3%3 —50.70176882 —510.0694027 —50.70176882 —20.87892363
X122%3 3.634109024 —8.940534381 3.634109024 —31.33945953
X3 0.632064195 10.97306289 0.632064195 14.75879043
3 2.192335126 13.9092056 2.192335126 3.753905646
x‘l‘xg —3.056811449 —135.7876994 —3.056811449 —15.71916208
x3x3 1.044715288 238.4612272 1.044715288 8.488592009
x2x3 6.322667642 —75.28551163 6.322667642 10.01019862
X003 —2.084729859 —0.685593331 —2.084729859 —2.769192918
X3 —0.25789423 10.08474252 —0.25789423 —0.577972739
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