
Citation: Wang, P.; Chen, S.; Yang, S.

Recent Advances on Penalized

Regression Models for Biological

Data. Mathematics 2022, 10, 3695.

https://doi.org/10.3390/

math10193695

Academic Editor: Junseok Kim

Received: 14 September 2022

Accepted: 6 October 2022

Published: 9 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Review

Recent Advances on Penalized Regression Models for
Biological Data
Pei Wang 1,2,* , Shunjie Chen 1 and Sijia Yang 1

1 School of Mathematics and Statistics, Henan University, Kaifeng 475004, China
2 Center for Applied Mathematics of Henan Province, Henan University, Kaifeng 475004, China
* Correspondence: wangpei@henu.edu.cn or wp0307@126.com

Abstract: Increasingly amounts of biological data promote the development of various penalized
regression models. This review discusses the recent advances in both linear and logistic regression
models with penalization terms. This review is mainly focused on various penalized regression
models, some of the corresponding optimization algorithms, and their applications in biological
data. The pros and cons of different models in terms of response prediction, sample classification,
network construction and feature selection are also reviewed. The performances of different models
in a real-world RNA-seq dataset for breast cancer are explored. Finally, some future directions
are discussed.
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1. Introduction

With the rapid development of high-throughput technologies, researchers can eas-
ily obtain various omics data (genomics, transcriptomics, proteomics, metabonomics,
phenomics, etc.) for interested species [1–6]. The obtained omics data can quantify the
expression of biomolecules (genes, RNAs, proteins, metabolites, etc.) or phenotype features
under well-designed experimental conditions, and therefore help people to explore factors
that affect phenotypes and the underlying biomolecular mechanisms [7].

Since RNA-seq allows the entire transcriptome to be explored in a high-throughput and
quantitative manner [1], when we mention biological data, we are using RNA-seq data as
examples. Based on RNA-seq, researchers can catalogue all species of transcripts (mRNAs,
non-coding RNAs, etc.); researchers can also determine a gene’s transcriptional structure
and quantify the expression of each transcript under given experimental conditions [1].
There are many challenges in exploring RNA-seq data, such as efficient methods to store,
retrieve and process massive data, sequence assembly, sequence mapping and alignment,
identifying novel splicing events, data-driven network inference, crucial gene identification
and so on [1,6,8–12]. Among these issues, the statistical exploration of sample clustering
or classification and crucial gene selection are intriguing yet important.

Many data-driven statistical methods have been proposed to tackle sample clus-
tering or classification [13–16]. On the one hand, various traditionally distance-based
or similarity-based methods, e.g., support vector machine (SVM), posterior probability,
Bayesian discriminant analysis, and Fisher’s discriminant analysis, have been developed.
However, since the number of observations is often far less than the detected genes, the
associated sample covariance or dispersion matrices are always singular ones; methods
that rely on the inverse of the covariance matrices are invalid. For example, the traditional
Mahalanobis distance and Fisher’s discriminant methods are all invalid, since they all rely
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on the inverse of the sample dispersion matrix. On the other hand, different from the tradi-
tional distance or similarity-based methods, penalized logistic regression models have been
extensively used to perform sample classification [17]. Researchers have developed various
binary or multinomial logistic regression models to realize sample classification under
different cases. Penalized logistic regression models can not only serve as predictors and
classifiers with strong statistical meaning, but can also be used to perform gene selection
and network construction using biological data [5].

Except for sample clustering or classification, gene identification is one of the most
important issues in exploring biological data. For functionally crucial gene identifica-
tion from biological data, there are generally two frequently used approaches [12]. The
first approach relies on the topological features of the complex interaction networks or
co-expression networks among biomolecules [18]. Based on the structural features of the
networks that reflect the relationships among biomolecules, researchers have proposed the
centrality–lethality rule [19], the guilt-by-association rule [20–25] and the guilt-by-rewiring
rule [26,27]. However, the network-based approaches rely on the reliable construction of
biomolecular networks. Data-driven network construction is another interesting topic in
systems biology and network science [5,27]. Penalized linear or logistic regressions can
also be used to infer network structure, which will be discussed in the following sections.
The second approach relies on well-developed statistical models. Traditionally, as a regular
bioinformatics analysis process, gene differential expression analysis has been a neces-
sary process in all RNA-seq experiments. Through gene differential expression analysis,
researchers can determine which genes are differentially expressed under treatment in
comparison with those under control. However, differential expression analysis relies on
hard thresholds of log2 fold change (FC) and the hypothesis test P value. The selected
genes severely depend on the chosen threshold. Moreover, the selected genes are often
difficult to further explain, and some actually crucial genes may be neglected due to their
trivial expression changes between treatments and controls [27,28]. Except for differential
expression analysis, various regression models have been successively developed to real-
ize gene selection [29,30] or screen single-nucleotide polymorphisms that are associated
with diseases via genome-wide association studies (GWAS) [31–35]. Especially, penalized
logistic regression models can be used to realize response prediction, crucial gene selection,
network construction and sample classification under different circumstances. Moreover,
researchers have developed various penalizations to realize reliable informative gene selec-
tion [5,17], including bridge regression [36,37], ridge regression [38,39], `1/2 penalty [40],
LASSO [41], adaptive LASSO [42], elastic net [43], group LASSO [29,44], SCAD [45] and so
on. With the rapid development and application of high-dimensional penalized regression
models, it is interesting to comprehensively review the associated theories and the advances
of applications in biological data.

This review focuses on the recent advances of penalized linear and logistic regression
models for biological data, where we mainly consider their applications in response pre-
diction, sample classification, informative gene selection and network construction. The
main contents are summarized in Figure 1. To formulate this review, extensive surveys on
existing references have been performed. Rigorous searching criteria for references were
made. The main platforms for searching the related references include “web of science”
and “Pubmed”. To collect the related papers, firstly, we summarized some frequently
used penalizations (such as LASSO, adaptive LASSO, elastic net, ridge regression, bridge
regression, etc.), and then, based on the original papers that proposed the associated pe-
nalizations, we downloaded the most relevant papers (especially for methods that have
been used to explore biological data) that cited the original works. The searching keywords
include “linear regression”, “logistic regression”, “LASSO”, “penalty”, “biological data”,
etc. In this review, we mainly considered the most relevant references published in recent
5 years. Except this, some high-impact papers were also surveyed. For each penalization
model, roughly 5 to 10 of the most relevant papers were considered. The organization
of this review is as follows: Section 2 introduces a mathematical description of biological
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data and various data normalization methods; Section 3 reviews various penalized linear
regression models, some of the numerical algorithms and some of their applications in
biological data; Section 4 reviews the advances of various penalized logistic regression
models and their applications in biological data. In particular, we will discuss both binary
and multinomial logistic regression models. Optimization algorithms for some penalized
logistic regression models will also be discussed. Section 5 gives numerical simulation
results from some of the penalized models in a breast cancer dataset, where both penalized
linear and logistic regression models are considered and compared. Several potential future
research directions and concluding remarks will be presented in Section 6.
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Figure 1. The main contents and structure of this review. This review focuses on linear and logistic
regression models for biological data. Models with various penalizations are discussed, and the
applications of penalized regression models in response prediction, variable selection, network
construction and sample classification are explored.

2. Mathematical Description of Biological Data

RNA-seq data, as an example, can be explored at different levels, including sample,
gene, transcript and exon levels [6,12]. For gene-level analysis, RNA-seq technologies
enable us to quantify genome-wide gene expression patterns and perform differential
expression analysis. Normalization is a critical step for gene expression analysis. Typical
normalization approaches include RPKM [46], FPKM [47], and TPM [48]. The three popular
measures all remove the effects of total sequencing depths and gene lengths; different
methods have different advantages, but we will give no detailed discussion on this topic.
For other biological data, various data normalization processes can be similarly performed.
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For a specific species under certain experimental conditions, suppose the expression of
p genes (variables) in n samples has been detected, which can be described by the following
observational data matrix:

X =


x11 x12 · · · x1p
x21 x22 · · · x2p

...
...

. . .
...

xn1 xn2 · · · xnp


n×p

=


XT
(1)

XT
(2)
...

XT
(n)

 = (X1, X2, · · · , Xp). (1)

In Equation (1), X(i) = (xi1, xi2, · · · , xip)
T denotes the i’th observation for the p genes.

Xj = (x1j, x2j, · · · , xnj)
T represents the expression vector for the j’th gene Xj (Xj can be

seen as a random variable, Xj is the observation vector of Xj, similarly hereinafter). For
convenience, we assume the data matrix X has been scaled in a column-wise manner,
where Xj has zero mean and unit variance. Additionally, denote y = (y1, y2, · · · , yn)T as
the response vector, where each element characterizes the category of the corresponding
sample. For binary classification, yi = 1 if the i’th sample is experimentally treated
(diseased, treated, positive, etc.); otherwise, yi = 0 (normal, untreated, negative, control,
etc.). For multinomial classification problems, yi ∈ {1, 2, · · · , C}, where C denotes the total
categories of samples.

In RNA-seq data, based on the observed data X and y, differentially expressed genes
(DEGs) can be determined via log2(FC) and statistical hypothesis test [12]. The log2(FC)
quantifies the relative expression difference of a gene under treatments and controls. The
hypothesis test P value from the adjusted t test can help to further judge whether the expres-
sions of a gene under two experimental conditions are significantly different. Traditionally,
|log2(FC)| ≥ 1, P ≤ 0.05 are taken as thresholds to screen DEGs from gene expression data.
Besides differential expression analysis, various penalized linear or logistic regression mod-
els can also be established. If we obtained prior information or determined the interested
genes as dependent variables, we could set the other genes as covariates, and thus linear
regression models can be established. However, for the cases with categorical response (y),
we can establish logistic regression models that reflect the correlation between X and y.
Hereinafter, we review the two types of models in detail.

3. Penalized Linear Regression Models for Biological Data

Mathematical and statistical models are powerful tools for exploring useful informa-
tion from biological data. Linear regression models are primary models, which typically
consider the linear relationships among variables. Through linear regression models, one
can explore the correlations among genes, and therefore infer the co-expression network
for genes [5]; one can also predict the response of certain genes given the expression of
the other genes [17]; most importantly, one can select the most relevant genes that are
responsible to the response variable [29,30]. Without loss of generality, taking the i’th gene
Xi as the response variable and the other p− 1 genes Xj(j = 1, 2, · · · , i− 1, i + 1, · · · , p) as
covariates, and suppose each variable has been normalized, one can establish the following
linear regression model without considering the intercept term [17]:

Xi = αi1X1 + αi2X2 + · · ·+ αi,i−1Xi−1 + αi,i+1Xi+1 + · · ·+ αipXp + εi, i = 1, 2, · · · , p. (2)

Here, αij are regression coefficients to be estimated; the error term εi ∼ N(0, σ2
i ) indepen-

dently for different i, which is unobservable. Given n samples, as shown in Equation (1)
and based on Equation (2), we obtain the following set of equations:

x1i = αi1x11 + αi2x12 + · · ·+ αi,i−1x1,i−1 + αi,i+1x1,i+1 + · · ·+ αipx1p,
x2i = αi1x21 + αi2x22 + · · ·+ αi,i−1x2,i−1 + αi,i+1x2,i+1 + · · ·+ αipx2p,

...
xni = αi1xn1 + αi2xn2 + · · ·+ αi,i−1xn,i−1 + αi,i+1xn,i+1 + · · ·+ αipxnp.

(3)
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Equivalently, the matrix form of Equation (3) can be written as:

Xi = X(−i)α(−i). (4)

Here, X(−i) represents the n × (p − 1) matrix, which corresponds to the data matrix X
without the i’th column; α(−i) = (αi1, αi2, · · · , αi,i−1, αi,i+1, · · · , αip)

T ∈ Rp−1 is the param-
eter vector. Equation (3) or (4) can be used to estimate parameters in Equation (2). It is
noted that the parameters in Equation (3) or (4) represent the estimation of parameters in
Equation (2). For convenience, we do not distinguish the symbols between parameters and
their estimation unless otherwise noted.

3.1. Penalized Linear Regression Models

For p < n, α(−i) can be estimated via the ordinary least square (OLS) estimation by
minimizing the following function:

l1(α(−i)) = ||Xi − X(−i)α(−i)||22. (5)

Whereas a typical feature of most omics data is p � n. For p � n, Equation (5) fails to
obtain the unique estimation of α(−i). Fortunately, researchers have developed various
penalized strategies, which are described as:

α̂(−i) = arg min
α(−i)

{
l1
(

α(−i)
)
+ g
(

α(−i), λ
)}

. (6)

Some frequently used penalization functions are summarized in Table 1. For conve-
nience, we relabeled the parameter vector α(−i) as vector β = (β1, β2, · · · , βm)T . Here, for
model (6), m = p− 1. In g(β, λ), λ, λi > 0 are tuning parameters, which control the final
model, similarly hereinafter.

Table 1. Some typical penalization functions g(β, λ). Detailed explanations of different penalization
functions are provided in the main text.

Name g(β, λ) Reference

Bridge λ ∑m
j=1 |β j|q, 0 ≤ q [36,37]

Ridge λ||β||22 = λβT β = λ ∑m
j=1 β2

j [38,39]

`1/2 λ ∑m
i=1|βi|

1
2 [40]

LASSO λ||β||1 = λ ∑m
j=1 |β j| [41]

Adaptive LASSO λ ∑m
j=1 wj|β j| [42]

Adaptive bridge λ ∑m
j=1 wj|β j|q, 0 ≤ q [49]

Adaptive ridge λ ∑m
j=1 wjβ

2
j [49]

Elastic net λt||β||1 + λ(1− t)||β||22, t ∈ [0, 1] [43]
Adaptive elastic net λt ∑m

j=1 wj|β j|+ λ(1− t)∑m
j=1 wjβ

2
j , t ∈ [0, 1] [50]

Fused LASSO λ1||β||1 + λ2 ∑m
j=1 |β j − β j−1| [51]

Group LASSO λ ∑G
j=1

√
dj||β(j)||2 [29,44]

Group bridge λ ∑G
j=1

√
dj||β(j)||q, 0 ≤ q [52]

Network-constr. penal. λ1||β||1 + λ2βTWβ [53]
Pairwise struct. penal. λt ∑m

j=1 θj|β j|+ λ(1− t)∑m
i=1 ∑m

j=1 wij(µiβi − µjβ j)
2, t ∈ [0, 1] [54]

Prior LASSO η‖Xi − ̂X(−i)α(−i)‖2
2 + λ ∑m

j=1 |β j|, η ≥ 0 [55]
Group reg. elastic net λ1

2 ∑G
g=1

√
dg ∑j∈G(g)

|β(j)|+ λ2
2 ∑G

g=1
√

dg ∑j∈G(g)
β2
(j) [56]

Spline LASSO λ1 ∑m
j=1 |β j|+ λ2 ∑m−1

j=2 (β j+1 − 2β j + β j−1)
2 [57]

Reciprocal LASSO ∑m
j=1

λ
|β j | I(β j 6= 0) [58]
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Table 1. Cont.

Name g(β, λ) Reference

Sparse group LASSO λt‖β‖1 + λ(1− t)∑G
j=1

√
dj||β(j)||2, t ∈ [0, 1] [59,60]

Smooth. group LASSO ∑G
j=1 λ1

√
dj‖β(j)‖Σj +

λ2
2 ∑G−1

j=1 ζ jd
(
‖β(j)‖Σj√

dj
−
‖β(j+1)‖Σj+1√

dj+1

)2
[61]

MCP ∑m
j=1 h(|β j|, λ) [62,63]

SCAD ∑m
j=1 Pλ(β j) [45]

OSCAR λ(‖β‖1 + t ∑j<k max{|β j|, |βk|}) [64]

Precision LASSO λ

∥∥∥∥[t
(

X(−i)T X(−i)
) 1

2
+ (1− t)

(
X(−i)T X(−i) + µI

)− 1
2
]

diag(β)

∥∥∥∥
∗

[65]

Xturn LASSO ∑m
j=1 λj|β j|, λ = eZξ [66]

Different penalization functions actually impose different constraints on the regression
model. For example, the bridge regression [36,37] minimizes the loss function (5) that
is subjected to the constraint ∑m

j=1 |β j|q ≤ t0. Here, t0 > 0 is a constant and q ≥ 0. For
different q, the constraints are quite different [17,37]. Moreover, q = 1/2 of the bridge
regression corresponds to the `1/2 penalization; q = 1 corresponds to the LASSO [41] or
`1 penalty.

LASSO continuously shrinks β j toward 0 with the increase in λ, and it encourages
many coefficients to shrink to exactly 0 if λ is large enough [42]. Additionally, LASSO can
often improve prediction accuracy owing to the bias-variance trade-off [36,42]. However,
the selected number of variables from LASSO will be no more than n, and LASSO can only
screen one out of a set of highly correlated variables, which means that the solution of
LASSO is unstable. q = 2 of the bridge regression corresponds to the Tikhonov regulariza-
tion or ridge regression [38,39]. The ridge regression shrinks the OLS estimator towards 0;
compared with the OLS estimation, the ridge regression yields a biased estimation with
smaller variance [38,39]. However, the ridge regression cannot generate a sparse solution,
which indicates that it has poor interpretability. Different from LASSO, the adaptive LASSO
introduces a weight parameter wj for each parameter β j. wj is defined as wj = 1/|β̂ j|r; here,
r > 0, β̂ j is an estimation of β j, such as the OLS estimation. The adaptive LASSO has the
oracle property, and it can be solved by the same efficient algorithm for solving LASSO [42].
The wj in the adaptive bridge, the adaptive ridge regression and the adaptive elastic net
are similar to that in the adaptive LASSO. g(β, λ) = λt||β||1 + λ(1− t)||β||22 with t ∈ [0, 1]
corresponding to the elastic net [43]; numerical simulations reveal that the elastic net fre-
quently outperforms LASSO, and it has similar sparsity. The elastic net has been shown
to be particularly useful when the parameters are far more than the observations [43].
The fused LASSO is developed for features that are ordered in a meaningful way [51],
which encourages sparsity in the coefficients and also sparsity in their differences [51].
g(β, λ) = λ ∑G

j=1

√
dj||β(j)||2 represents the group LASSO [29,44]. Here, G is the total

number of groups for which the m features can be classified; β(j) denotes the j‘th group
of parameters; dj represents the number of features in group j. The group LASSO can
realize variable selection in a group-wise manner, which is invariant under group-wise
orthogonal reparameterizations [29]. In the network-constrained regularization, W denotes
the graph Laplacian matrix. The network-constrained regularization can incorporate the
network information for variables, which increases the explainability of the obtained re-
sults [53]. In the pairwise-structured penalization, θj = 1/ρ(y, Xj)

2, µj = ρ(y, Xj), t ∈ [0, 1];
wij represents the weight of Xi and Xj, which measures the similarity between them [54].

Except for the above penalizations, there are many others, including SCAD [45], prior
LASSO (pLASSO) [55], group regularized elastic net [56], spline LASSO [57], reciprocal
LASSO [58], smoothed group LASSO [61], octagonal shrinkage and clustering algorithm
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for regression (OSCAR) [64], precision LASSO [65], xturn LASSO [66], adaptive huber [67]
and so on. In the SCAD, Pλ(β j) is defined as [45]:

Pλ(β j) =


λ|β j|, |β j| ≤ λ,
−|β j|2+2aλ|β j|−λ2

2(a−1) , λ < |β j| < aλ,
(a+1)λ2

2 , |β j| ≥ aλ.

(7)

Here, a > 2, λ ≥ 0. The estimation result from the SCAD is simultaneously unbiased,
sparse and continuous [68]. This penalty function makes larger coefficients less penalized

and makes the solution continuous. In the pLASSO [55], ̂X(−i)α(−i) represents the predicted
response that summarizes the a priori information. η ∈ [0, ∞] is a tuning parameter that
matches the current dataset and its a prior information, if η = 0, pLASSO degenerates into
the LASSO. For η = ∞, pLASSO will only depend on the a priori information. For the
group regularized elastic net, G(g) represents the variables in the g’th group; dg > 0 is a
group-specific penalty weight. The spline LASSO can well capture the effects of different
features within a group. The reciprocal LASSO overcomes some drawbacks of the existing
penalty functions, which gives small coefficients strong penalties, and therefore avoids
selecting overly dense models [58].

In the smoothed group LASSO, ‖β(j)‖Σj = (βT
(j)Σjβ(j))

1/2, Σj is the empirical sample
covariance matrix for the j’th group; dj is the same as that in the group LASSO; ζ j is a weight
that measures the correlation between the j’th and (j + 1)’th groups;
d = max{d1, d2, · · · , dG} is the largest group size. The smoothed group LASSO encourages
sparsity and smooth coefficients for adjacent groups [61]. The OSCAR can simultaneously
select variables and perform supervised clustering in the context of linear regression [64].
The tunning parameter t > 0 in the OSCAR controls the relative weighting of the norms. In

the MCP [62,63], h(|β j|, λ) = λ
∫ |β j |

0 (1− θ/(λr))+dθ; r > 1 is a parameter. Given certain
thresholds for variable selection and unbiasedness, the MCP guarantees the convexity of
the penalized loss in sparse regions to the utmost degree [62]. The precision LASSO is
a variant of the LASSO, which encourages stable and consistent variable selection with
highly linearly correlated variables. In Table 1, ‖ · ‖∗ represents the trace norm, which is
defined as the sum of the matrix eigenvalues [69]. µ > 0 is used to make the singular matrix
X(−i)TX(−i) invertible for p > n. Both parts of the penalty term add different weights
to the variables: the first term addresses instability and the second term addresses the
inconsistencies. t is similar to that in the elastic net, which is used to control the weights
of the first term and the second term. The xturn LASSO gives each coefficient a different
penalty parameter based on the a priori information. In the penalty function, the penalty
parameter vector λ is defined as λ = eZξ , where the matrix Z is the meta-feature data
matrix representing the observations for a priori genes; ξ is a parameter vector that links
external information Z to individual penalties. The xturn LASSO allows the a priori inte-
gration of external meta-features, which improves prediction performance as well as model
interpretation [66].

3.2. Algorithms to Solve Penalized Linear Regression Models

In this section, taking the ridge regression and the LASSO as examples, we introduce
some algorithms to solve the penalized linear regression problems. For the ridge regression,
since the optimization function

L1(α
(−i)) = ||Xi − X(−i)α(−i)||22 + λ||α(−i)||22

is continuously differentiable with respect to α(−i), we set

∂L1(α
(−i))

∂α(−i)
= −2X(−i)T(Xi − X(−i)α(−i)) + 2λα(−i) = 0. (8)
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Thus, we obtain the estimation of α(−i) as:

α̂
(−i)
ridge =

(
X(−i)TX(−i) + λI

)−1
X(−i)TXi. (9)

Here, I is the identity matrix. The ridge regression is a biased estimation of α(−i), which is
complementary to the traditional OLS estimation:

α̂
(−i)
OLS =

(
X(−i)TX(−i)

)−1
X(−i)TXi.

Although the ridge regression is biased, it is appropriate for the case when X(−i)TX(−i) is
singular. Moreover, the ridge regression has high computational accuracy.

The LASSO needs to solve the following optimization problem:

L2(α
(−i)) = ||Xi − X(−i)α(−i)||22 + λ||α(−i)||1

=
n

∑
k=1

(
xki −

p

∑
v=1,v 6=i,j

αivxkv − αijxkj

)2

+ λ
p

∑
v=1,v 6=i,j

|αiv|+ λ|αij|.
(10)

Different from the ridge regression, the loss function L2(α
(−i)) is non-differentiable at

αij = 0. For αij 6= 0, j = 1, 2, · · · , i− 1, i + 1, · · · , p, set

∂L2(α
(−i))

∂αij
= −2

n

∑
k=1

xkj

(
xki −

p

∑
v=1,v 6=i,j

αivxkv

)
+ 2

n

∑
k=1

x2
kjαij + λsgn(αij) = 0. (11)

Here, sgn(αij) = 1 if αij > 0, and sgn(αij) = −1 if αij < 0. Since the data matrix has been
normalized in a column-wise manner, we have ∑n

k=1 x2
kj = n, and

α̃ij =
1
n

n

∑
k=1

xkj

(
xki −

p

∑
v=1,v 6=i,j

αivxkv

)

can serve as an OLS estimation of αij. Thus, if α̃ij > 0 and α̃ij > λ/(2n), we have

α̂ij = α̃ij −
λ

2n
.

If α̃ij < 0 and α̃ij < −λ/(2n), we have

α̂ij = α̃ij +
λ

2n
.

When α̃ij and αij have reverse signs, or equivalently, λ/(2n) ≥
∣∣α̃ij
∣∣, it must be that α̂ij = 0.

Thus, we obtain the following soft-threshold function for the LASSO problem (10):

α̂ij = S
(

α̃ij,
λ

2n

)
=


α̃ij − λ

2n , α̃ij > 0 and λ
2n <

∣∣α̃ij
∣∣,

α̃ij +
λ
2n , α̃ij < 0 and λ

2n <
∣∣α̃ij
∣∣,

0, λ
2n ≥

∣∣α̃ij
∣∣. (12)

Based on the soft-threshold function (12), researchers have developed a coordinate-wise
descent algorithm [70] to iteratively obtain the estimation of each parameter, and the
iteration stops when it converges.

It is noted that, except for the coordinate-wise descent algorithm, there are also many
other algorithms to solve the linear regression models with LASSO, such as the least angle
regression [71]. Due to space limitation, no details will be given for the other algorithms.
It is also noted that some effective software packages have been developed, such as the
glmnet package [72]. The glmnet implements the coordinate descent method for many
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popular models, which allows us to easily use the linear regression model with LASSO to
explore real-world data.

3.3. Applications of Penalized Linear Regression Models in Biological Data

The penalized linear regression model can be applied to realize response prediction,
variable selection and network construction in biological data. Firstly, prediction is an
important application of regression models. Based on the final fitted model and a given
observation, the response can be predicted. Secondly, variables in the model with non-zero
estimated coefficients can be selected as informative variables. Finally, the penalized linear
regression models can also be used to reconstruct biological networks. In fact, each gene
can be iteratively treated as response variable, and it connects with the other genes that are
selected by the penalized linear regression model.

3.3.1. Prediction

Penalized linear regression models have been widely used to predict the response
under given conditions and predict the association between certain phenotypes and clinical
factors. For example, LASSO and elastic net have been used to predict pain intensity in
patients with chronic back pain (CBP). To verify whether the severity of CBP is associated
with changes in the dynamics of functional brain network topology, Li et al. firstly gener-
ated dynamic functional networks for 34 patients with CBP and 34 age-matched healthy
controls (HC) through a sliding window method, and then they obtained the nodal degree,
clustering coefficient, and participation coefficient of all windows as features to describe
the temporal alterations of network structure [73]. A feature called temporal grading
index (TGI) was proposed, which can quantify the temporal deviation of each network
property of CBP patients to HCs [73]. Linear regression models with LASSO and elastic net
are considered to predict the correlation between pain intensity and the TGI of the three
features. They reported that brain regions that most correlated with pain intensity have
higher clustering coefficients and lower participation coefficients across time windows in
the CBP cohort, in comparison with HCs. The investigations revealed spatio-temporal
changes in the functional network structure in CBP patients, which can serve as a potential
biomarker for evaluating the sensation of pain in the brain.

For association relationship prediction, regression models have been used to predict
the association between phenotypes and genotypes [25,31–35]. LASSO and group LASSO
have been used to find targets associated with drug resistance. In order to explore the
mechanism of EGFR inhibitors in lung cancer and to identify new targets for drug resis-
tance, Yuan et al. [74] studied drug sensitivity from the perspective of DNA methylation,
and revealed DNA methylation sites associated with EGFR inhibitor-sensitive genes. The
expression profiles of 24,643 genes (RNA-seq) and the beta values of 418,677 methylation
sites for 153 lung cancer cell lines are studied [74]. In order to identify genes that are closely
related to EGFR inhibitor effectiveness, the authors establish a group LASSO linear regres-
sion model. Then, they identify the methylation sites associated with the drug sensitivity
genes via LASSO regression. It is reported that the predicted methylation sites are related
to regulatory elements [74]. Correlation analysis reveals that the methylation sites located
in the promoter region are more correlated with EGFR inhibitor sensitivity genes than those
located in the enhancer region and the TFBS [74]. Moreover, they reported that changes in
the methylation level of some sites may affect the expression of the corresponding EGFR
inhibitor-responsive genes. Therefore, they suggested that DNA methylation may be an
important regulatory factor, which can affect the sensitivity of EGFR inhibitors in patients
with lung cancer [74].

Except for the above works, in the year 2021, Walco et al. established a multivariate
linear regression model and studied the correlation between the etiology and timing of
rapid response team (RRT) activation in postoperative patients [75]. The data include 2390
adult surgical inpatients with RRT activated within 7 days of surgery. The authors selected
six covariates, including gender, surgical service, obesity, intraoperatively managed red
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blood cell volume, peripheral vascular disease and trigger category [75]. Combining
with the chi-squared test of association and analysis of variance, researchers reported
that respiratory triggers were significantly associated with the timing of postoperative
RRT calls, and clinical decompensation due to respiratory etiologies tended to occur later
postoperatively. Richie-Halford et al. explored informative features in human-brain white
matter via the liner regression model with sparse group LASSO. They declared that the
associated model can make accurate phenotypic predictions and can discover the most
correlated features of the white matter [76].

3.3.2. Variable Selection

Variable selection can also be seen as a kind of prediction. Since variable selection
is a widely discussed issue, we cover this topic in great detail. For variable selection in
biological data, we mainly consider three categories of works.

The first category of model evaluates the sparsity of the finally selected variables.
Typical models include methods of the LASSO family, bridge regression, `1/2 penalty
and so on. In 1996, Tibshirani proposed LASSO [41] and applied it to a prostate cancer
dataset [77] to examine the correlation between prostate-specific antigen levels and multiple
clinical indicators. The prostate cancer dataset contains eight clinical variables from 97
male patients aged from 41 to 79 years old. LASSO selects three variables lcavol, lweight
and svi. The coefficients obtained by LASSO are smaller than those of OLS estimation,
which is related to the coefficient shrinkage of LASSO. Fu [37] further explored the prostate
cancer dataset by bridge regression, OLS, LASSO and ridge regression. The results showed
that the bridge regression performed better than LASSO and ridge regression. However,
Fu pointed out that bridge regression does not always perform the best in estimation and
prediction compared to the other shrinking models, since the penalty in bridge regression
is nonlinear [37]. Zou et al. [42] compared the performances of elastic net with OLS, ridge
regression and LASSO in the prostate cancer dataset, and declared that the elastic net is the
best among all competitors according to prediction accuracy and sparsity. Xu et al. also
explored the prostate cancer dataset via linear regression models with `1/2 penalty [40].
They showed that LASSO selects five variables, `1/2 penalty selects four variables, and
the prediction error of the `1/2 is lower than that of LASSO. Therefore, `1/2 tends to
produce a sparser model than LASSO, and `1/2 has better prediction performance in the
prostate cancer dataset. Besides the prostate cancer dataset and the mentioned studies,
there are many other works. For example, Qin et al. applied the LASSO linear regression
model to identify molecular descriptors that significantly affected biological activity [78].
Yang et al. established the LASSO linear regression model and studied imaging genetic
associations [79]. The adaptive LASSO has been used to select metabolites associated with
chronic obstructive pulmonary disease [80], the five selected metabolites with the highest
weights include vanillylmandelate, N1-methyladenosine, glutamine, 2-hydroxypalmitate
and choline phosphate. The selected metabolites are enriched in arginine biosynthesis,
aminoacyl-tRNA biosynthesis and the metabolism of glycine, serine and threonine. The
spline LASSO and the fused LASSO encourage both sparsity in the coefficients and their
differences, which have been applied to protein mass spectroscopy and gene expression
data [51,57].

The second category of models considers both sparsity and the correlation structure
among genes. In fact, genes always play functions via complex interaction networks and
cluster into modulars [29,44,81]. Group LASSO is a well-known penalty that considers
the correlation between variables, which retains a few group of variables that are strongly
correlated with the dependent variable. Yuan and Lin applied group LASSO to a real birth
weight dataset [82]. The weights of newborn babies are predicted, and variables that are
strongly correlated with the weights of newborn babies are identified. The results show
that the prediction error of the group LASSO is smaller than that of the stepwise regression
method. The network-constrained penalty combines LASSO and the penalty induced by the
Laplace matrix of the network for the considered variables, which is effective in screening
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genes and subnetworks that are correlated with disease, and has higher sensitivity than the
other methods [53]. In a glioblastoma microarray gene-expression dataset, the network-
constrained penalty method identified several subnetworks that are related to survival
from glioblastoma [83]. The largest subnetwork identified by the network-constrained
penalty includes genes involved in the MAPK signaling pathway (such as PLCE1, PRKCG,
MAP2K7, ZAK, KBKG, TRAF2 and MAPK11) and related pathways (e.g., PI3K/AKT
pathway), as well as its target gene FOXO1A [83]. The sparse group LASSO was applied
to select supracortical and intracortical features related to brain age [84]. Among 150
covariates, the sparse group LASSO selected 94 features, containing 93 cortical regions
of interest and education. By visualizing brain features that contribute significantly to
age estimation, they found that age-related cortical thinning arises in regions that are
responsible for executive processing tasks, spatial cognition, vocabulary learning, episodic
memory retrieval, and age-related cognitive decline [84]. Frost and Amos [85] developed a
gene set selection method via LASSO penalized regression, which is called SLPR. Based on
TCGA data, they demonstrated that the SLPR outperforms the existing multiset methods
in some cases [85].

The third category of models considers the effect of a prior information during gene
selection. With the development of bioinformatics, rich a prior information including
functional annotations, pathway information and knowledge from previous studies for
genes has been accumulated, which can be used to improve model performance. The
xturn LASSO incorporates a prior information into linear regression model with LASSO to
select informative genes, which has been applied to bone density [86] and breast cancer
datasets [87]. In the bone density dataset, the relationship between gene expression profiles
and bone density was analyzed. This dataset contains the expression profiles of 22,815
genes from 84 women. Compared with LASSO and adaptive LASSO, the xturn LASSO
selects fewer genes and has the best prediction performance. Among the genes selected
by the xturn LASSO, the genes SOST and DKK1 are involved in the WNT pathway, while
the WNT pathway is the core of bone turnover. The breast cancer dataset contains 29,476
gene expression profiles and three clinical variables. A total of 594 samples make up the
training set and 564 samples comprise the testing set. Zeng et al. [66] applied the xturn
LASSO model to the breast cancer dataset and predicted the five-year survival of patients.
The results show that the xturn LASSO exhibits a better prediction performance than
LASSO and the adaptive LASSO, and it tends to produce a model that is sparser and more
interpretable than LASSO.

3.3.3. Network Construction and Network Dynamics Inference

The application of penalized linear regression models for network construction and
dynamics inference is another research focus [5,88–93]. Network construction is a typi-
cal inverse problem in systems biology and network science, which aims to clarify the
pairwise relationship among variables from data. In 2015, Han et al. [91] established the
LASSO framework to realize robust network construction from sparse and noisy data. The
authors decomposed the reconstruction task of the network to infer local structures for
each node [94], where the LASSO linear regression model was used. Based on reverse
phase protein arrays, Erdem et al. measured the expression profiles of 134 proteins in 21
breast cancer cell lines, which were stimulated with IGF1 or insulin for up to 48 h [92],
and they inferred the directed protein expression networks from three approaches, one
of which was based on LASSO linear regression. Finkle et al. [90] proposed the Sliding
Window Inference for Network Generation (SWING) framework to determine the network
structure from time-series data. The SWING first divided time series data into several
windows with a user-defined width, and then inferences were made for each window by
iteratively solving regression models between response and covariates (genes). Edges from
each regression model were finally integrated into a single network that represents the
biological interactions among genes [90]. Roy et al. proposed PoLoBag to determine the
signed gene regulatory network from expression data [88]. The PoLoBag is an ensemble
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regression model with a bagging framework, where the weights estimated from LASSO for
bootstrap samples are averaged [88]. The results demonstrated that the PoLoBag was often
more accurate in inferring signed gene regulatory network than the existing algorithms [88].
In 2020, we converted the data-driven weighted network construction problem into pa-
rameter estimations of penalized linear regression problems, and a variational Bayesian
framework was developed to solve the problems. Numerical simulations revealed that the
variational Bayesian framework outperformed LASSO in terms of accuracy and computa-
tional speed [93]. Penalized regression models can also be used to infer system dynamics.
Recently, in order to realize the autonomous inference of the dynamics of complex net-
works, a two-phase approach has been proposed [89]. Based on the established libraries of
elementary functions and observed data, Gao and Yan converted the dynamics inference
tasks into penalized regression problems to identify the necessary elementary functions
and learn their precise coefficients [89]. It is noted that Gaussian graphical models are also
based on various penalizations to realize sparse network construction [95–97]. Except for
the mentioned works, there are many other related investigations, due to space limitation,
for which no more details will be given.

4. Penalized Logistic Regression Models for Biological Data
4.1. Penalized Binary Logistic Regression Models

Based on the binary response vector y and the gene expression data matrix X, one can
establish the following logistic regression model to simultaneously realize response predic-
tion, gene selection and sample classification. Specifically, suppose that yi ∼ Bernoulli(πi),
and denote πi = P{yi = 1|X(i)}, i = 1, 2, · · · , n. For simplicity, it is also assumed that X
is normalized in a column-wise manner. Then, based on the n observations, the sample
regression function can be written as [17]:

logit(πi) = XT
(i)β, i = 1, 2, · · · , n. (13)

Here, logit(πi) = ln(πi/(1− πi)) is the logit function. To estimate the parameter vector
β = (β1, β2, · · · , βp)T , different from the linear regression, since Equation (13) is nonlinear,
we can use maximum likelihood estimation (MLE) rather than OLS estimation. For the case
of n > p, the parameter can be estimated via maximizing the following likelihood function:

max
β

Πn
i=1π

yi
i (1− πi)

1−yi . (14)

Considering that

πi =
exp{XT

(i)β}
1 + exp{XT

(i)β}
,

we can easily prove that the optimization problem (14) is equivalent to minimizing the
following negative logarithmic likelihood function, also known as the loss function:

l2(β) = −
n

∑
i=1

[yilnπi + (1− yi)ln(1− πi)] = −
n

∑
i=1

[
yiXT

(i)β− ln
(

1 + eXT
(i)β
)]

. (15)

For the case of p� n, similar to the linear regression, the parameter can be estimated via
the following penalized negative logarithmic likelihood function [29,44,54,98,99]:

β̂ = arg min
β
{l2(β) + g(β, λ)}. (16)

Here, the penalization term g(β, λ) is similar to the linear regression with m = p in Table 1.
Most of the penalizations can be extended to the logistic regression models, such as LASSO,
group LASSO, ridge regression and so on.
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4.2. Penalized Multinomial Logistic Regression Models

Multinomial logistic regression is also called as softmax regression, which is a natural
extension of the binary logistic model to cases where the response variable has three
or more possible categories [100–104]. Suppose the response variable y has C possible
categories: there are two approaches to establish the multinomial logistic regression models.
Given the observations yi, X(i)(i = 1, 2, · · · , n) as shown in Section 2, the first model is
non-symmetrical [105,106]:

ln
(

P(yi=1|X(i))

P(yi=C|X(i))

)
= XT

(i)β(1),

ln
(

P(yi=2|X(i))

P(yi=C|X(i))

)
= XT

(i)β(2),

· · ·

ln
(

P(yi=C−1|X(i))

P(yi=C|X(i))

)
= XT

(i)β(C−1).

(17)

Here, ∑C
k=1 P(yi = k|X(i)) = 1. β(j)(j = 1, 2, · · · , C − 1) are parameter vectors to be

estimated. Under model (17), we can obtain the following probability distribution:
P(yi = s|X(i)) =

exp{XT
(i)β(s)}

1+∑C−1
j=1 exp{XT

(i)β(j)}
, s = 1, 2, · · · , C− 1,

P(yi = C|X(i)) =
1

1+∑C−1
j=1 exp{XT

(i)β(j)}
.

(18)

Based on MLE, one can minimize the following negative logarithmic likelihood func-
tion to estimate parameters β(j):

l3(β(1), β(2), · · · , β(C−1)) = −ln
{

ΠC−1
k=1 P(yi = k|X(i))

yk
i (1− P(yi = k|X(i)))

1−∑C−1
k=1 yk

i

}
. (19)

Here, yk
i = 1 if and only if yi = k; otherwise, yk

i = 0 if yi 6= k. yk
i satisfies ∑C−1

k=1 yk
i = 1 and

yC
i = 0.

The second multinomial logistic regression model is a symmetrical one [100,107],
which can be written as:

P(yi = s|X(i)) =
exp{XT

(i)β(s)}

∑C
j=1 exp{XT

(i)β(j)}
, s = 1, 2, · · · , C. (20)

The corresponding loss function can be established as:

l4(β(1), β(2), · · · , β(C)) = −ln
{

ΠC
k=1P

(
yi = k|X(i)

)yk
i
}

= −
C

∑
k=1

yk
i ln
(

P(yi = k|X(i))
)

. (21)

Different from Equation (19), in Equation (21), yk
i = 1 if and only if yi = k, and it satisfies

∑C
k=1 yk

i = 1.
Besides the above models, the multinomial logistic regression model can also be

converted into a series of binary logistic regression models [108]. Three approaches can
be considered: one-versus-one, one-versus-rest and many-versus-many. For the one-
versus-one approach, we can extract any two of the C categories as treatment and control,
respectively, and consider C(C− 1)/2 binary logistic regression models. For the one-versus-
rest approach, we can treat one of the interested categories as treatment, and treat the rest
categories as the control. For the many-versus-many approach, we can combine multiple
categories as the treatment, and the combination of the rest categories as the control.



Mathematics 2022, 10, 3695 14 of 24

4.3. Algorithms to Solve the Penalized Logistic Regression Models

Taking the binary logistic regression with group LASSO as an example, we review
numerical algorithms to solve the optimization problem. Based on Equation (16) and
Table 1, the loss function for the binary logistic regression with group LASSO is as follows:

L3(β) = l2(β) + g(β, λ) = −
n

∑
i=1

[
yiXT

(i)β− ln
(

1 + eXT
(i)β
)]

+ λ
G

∑
j=1

√
dj||β(j)||2. (22)

The first term l2(β) can be expanded at β(k) to its second order as follows [81]:

l2(β) ≈ l2(β(k)) +∇l2(β(k))T(β− β(k)) +
1
2
(β− β(k))T H(k)(β− β(k)), (23)

where ∇l2(β(k)) = −XT(y − π(k)) is the gradient of l2(β) at β(k);
π(k) = (π

(k)
1 , π

(k)
2 , · · · , π

(k)
n )T ,

π
(k)
i =

exp
{

XT
(i)β

(k)
}

1 + exp
{

XT
(i)β

(k)
} . H(k) =

∂2l2(β(k))

∂β(k)T∂β(k)
= XTQ(k)X

is the Hessian matrix of l2(β) at β(k); Q(k) is a diagonal matrix with elements
q(k)ii = π

(k)
i (1 − π

(k)
i ). Since the right-hand side of Equation (23) is continuous differ-

entiable, after setting its first-order derivative with respect to β as 0, we can obtain the
following Newton–Raphson algorithm [44] to numerically obtain the approximated optimal
solution for β as:

β(k+1) = β(k) − (H(k))−1∇l2(β(k)) = β(k) +
(

XTQ(k)X
)−1

XT(y− π(k))

=
(

XTQ(k)X
)−1

XTQ(k)
(

Xβ(k) + (Q(k))−1(y− π(k))
)

=
(

XTQ(k)X
)−1

XTQ(k)S(k). (24)

Here, S(k) = (S(k)
1 , S(k)

2 , · · · , S(k)
n )T = Xβ(k)+(Q(k))−1(y−π(k)) can be seen as a temporary

working response variable [81], where

S(k)
i = XT

(i)β
(k) +

yi − π
(k)
i

π
(k)
i (1− π

(k)
i )

.

In fact, Equation (24) can be seen as the solution of the following reweighted least
square estimation problem [54,81,109]:

min
β

n

∑
i=1

q(k)ii

(
S(k)

i − XT
(i)β

(k)
)2

= min
β

(
S(k) − Xβ(k)

)T
Q(k)

(
S(k) − Xβ(k)

)
. (25)

Therefore, the optimization problem (22) can be approximated by the following reweighted
least square problem with group LASSO [81]:

L4(β(k)) =
(

S(k) − Xβ(k)
)T

Q(k)
(

S(k) − Xβ(k)
)
+ λ

G

∑
j=1

√
dj||β

(k)
(j) ||2. (26)

Similar to the discussions in the linear regression and the method introduced in refer-
ence [29], further assume that the data have been normalized, satisfying (X(i))TQ(k)X(i) =



Mathematics 2022, 10, 3695 15 of 24

Idi
(i = 1, 2, · · · , G). X(i) represents the subset of X with the dimensions n × di and

∑G
i=1 di = p. One obtains the iteration algorithm for the parameter group β(i) as

β
(k+1)
(i) =

1− λ
√

di

||S(k)
(−i)||2


+

S(k)
(−i). (27)

Here, (θ)+ = max{θ, 0}, and

S(k)
(−i) = X(i)TQ(k)

(
S(k) −

G

∑
j=1,j 6=i

X(j)β
(k)
(j)

)
.

Based on Equation (27), researchers have developed group-wise coordinate descent
algorithms [29,44,110] to obtain the numerical estimation of β. It is noted that, since
Equation (27) requires (X(i))TQ(k)X(i) = Idi

, one needs X(i) to be orthogonalized. It is also
noted that when the group number G = p, the group LASSO degenerates into LASSO, and
algorithms for the logistic regression model with LASSO can be also obtained, similar to
the linear regression with LASSO. Due to space limitation, we omit any detailed discussion.

4.4. Applications of Penalized Logistic Regression Models in Biological Data

For biological data with categorical response and continuous gene expression data,
depending on the total categories of the response variable, one can establish penalized
binary or multinomial logistic regression models. Based on the established penalized
logistic regression models, we can not only predict the probability of each sample that
belongs to a certain category, but also select genes that are responsible for the response
variable and realize gene network inference. Moreover, based on the established logistic
regression model, we can also evaluate the odds ratio of a gene associated with a certain
phenotype, or how strong a gene is associated with exposure.

4.4.1. Prediction, Sample Classification and Gene Selection

Penalized logistic regression models play important roles in tackling response predic-
tion, sample classification and variable selection [17,111]. Liao et al. proposed a parametric
bootstrap method for penalized logistic regression models to more accurately realize dis-
ease classification in microarray data [99]. Lin et al. proposed a disease risk scoring system
using logistic regression with group LASSO, and applied it to the survey data of porcine
reproductive and respiratory syndrome (PRRS) [112]. The investigated dataset contains 896
samples and 127 variables. Among the samples, 499 had PRRS outbreaks, and the rest did
not. The results showed that the logistic group LASSO-based risk scoring system had the
highest AUC (0.848). Its AUC was significantly higher than that of the other models (such
as the models based on expert opinion or logistic regression models based on variable sig-
nificance selection) [112]. This algorithm can help swine producers to reduce their reliance
on expert advice, and identify variables that could potentially lead to PRRS outbreaks.
Zhang et al. explored the application of the `1/2 logistic regression model in detecting key
risk factors for heart disease [113]. Three datasets were considered: the California dataset
contains 270 samples with 46 clinical features; the Hungarian dataset contains 245 samples
with 37 clinical features; the Long Beach VA dataset contains 103 samples with 50 clinical
features. The prediction accuracy of `1/2 in the Cleveland, Hungarian and Long Beach VA
datasets reached 76.8%, 86.8% and 81.6%, respectively. Thus, this illustrates that penalized
logistic regression based on `1/2 is an effective technique in practical classification problems.
They reported that sex- and exercise-induced angina were commonly selected features
in two different datasets, and the feature height at rest in the Hungarian dataset and the
feature ramus in the Long Beach VA dataset were only selected by the `1/2 regulariza-
tion [113]. Based on elastic net logistic regression, Torang et al. proposed a classifier for
immune cells and T helper cell subsets [114]. To evaluate the performance of the proposed
classifier in immune cell classification, two single-cell RNA-seq (scRNA-seq) datasets were
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considered. The first dataset contained malignant, mesenchymal, immune and endothelial
cells from 15 melanoma tissues [115]. The second dataset comprised 317 epithelial breast
cancer cells, 175 immune cells and 23 noncancerous stromal cells from 11 patients with
breast cancer [116]. The simulation results show that the developed classifier addresses the
problem of identifying immune cell types from noisy scRNA-seq signatures. The elastic
net logistic regression was also used to detect brain function and structural changes in
female, schizophrenic patients [117] and to determine predictors of dengue patients, as
well as to predict the length of hospital stay [118]. In the year 2021, in order to diagnose
early Alzheimer’s disease (AD), Cui et al. proposed an adaptive LASSO penalized logistic
regression model based on particle swarm optimization (PSO-ALLR) [119]. A dataset from
the AD Neuroimaging Initiative database was considered, which contained MRI images
of 197 subjects, including 51 samples with AD, 50 healthy controls (HC), and 96 MCI
(including 51 converted MCI (cMCI) and 45 stable MCI (sMCI)) [119]. Three classification
missions were designed, AD vs. HC, MCI vs. HC and cMCI vs. sMCI; 70% of the dataset
was used as the training set, and 30% of the dataset served as the testing set. The simulation
results showed that the PSO-ALLR selected 17 features in AD vs. HC, 23 features in MCI
vs. HC, and 16 features in cMCI vs. sMCI [119]. The classification accuracies of AD vs. HC,
MCI vs. HC, cMCI vs. sMCI can reach 96.27%, 84.81%, and 76.13%, respectively.

Recently, Yang et al. applied the LASSO logistic regression model to find biomarkers
from a breast cancer dataset [120]. The breast cancer dataset was from TCGA-BRCA, which
contained 1070 samples. To explore genes that were related with lymphatic metastasis,
patients with breast cancer were partitioned into two groups: those without lymphatic
metastasis and those with lymphatic metastasis. A total of 15 hub genes with prognostic
value for overall survival were identified by the LASSO logistic regression model. Further
investigations revealed that the selected BAHD1 gene could predict lymph node metastasis
and prognosis. In vitro investigations have revealed that BAHD1 significantly affected the
proliferation, migration and invasion of breast cancer cells, and that the down-regulation of
BAHD1 can induce cell cycle arrest in the G1 phase [120,121]. Moreover, the mRNA levels
of CCND1, CDK1 and YWHAZ decreased after BAHD1 silencing [120,121]. The obtained
results indicated that BAHD1 was crucial during the development and progression of
breast cancer. Except for this, the LASSO logistic regression models were also applied to
explore the risk factors of venous thrombosis [122]; the sparse logistic regression with a
`1/2 penalty has been applied to gene selection and cancer classification [123]; the network-
regularized logistic model has been used to identify molecular pathway that related to
certain phenotype [124]. The elastic net regularized logistic regression model has been used
to perform a longitudinal study in eating disorders, and the authors declared that elastic
net regularized logistic regression model can promote the prediction of eating disorders
and can screen important risk markers [125]. A penalized multiple logistic regression with
adaptive elastic net has been used to find predictive biomarkers for preterm birth [126].
Additionally, the multinomial logistic regression model has been applied to predict the
discharge status after liver transplantation [101].

4.4.2. Network Construction

Similar to the penalized linear regression, penalized logistic regression models can
be also used to realize network construction [127–129]. In 2008, Park et al. developed a
new logistic regression model with `2 penalization, and the model was applied to infer
gene–gene and gene–environment interactions [128]. They illustrated that the proposed
model can not only concretely characterize interaction structures among genes, but also has
additional advantages when tackling discrete factors [128]. In 2017, Zhou et al. proposed
a dynamic logistic regression method [127]. They observed a time series of network
structures. Then, the dynamic logistic regression model can dynamically predict future
links by exploring the network structure of the past [127]. A novel conditional MLE method
was also proposed to reduce computational burden. Liu et al. developed a new method to
reconstruct network structures with binary-state dynamics. In the algorithm, the knowledge
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of the original dynamical processes was assumed to be unknown [129]. In the proposed
algorithm, the transition probabilities of binary dynamical processes were modeled via
a logistic regression model, and the original dynamical processes can be simulated via
parameter estimations in the regression model [129]. The proposed algorithm can not
only infer network structures, but also can estimate dynamical processes of networked
systems [129].

5. Performances of Different Models in a RNA-Seq Dataset for Breast Cancer
5.1. Dataset, Models and Simulation Settings

The breast cancer RNA-seq dataset was downloaded from TCGA, which contains the
expression of 19,420 genes in 230 samples [130]. Among the 230 samples, 119 samples are
for patients with breast cancer, while the remaining 111 samples serve as normal controls.
For simplicity, we first performed differential expression analysis, and only considered
DEGs in the subsequent regression models. By setting |log2(FC)| ≥ 1 and P ≤ 0.01,
4606 genes were retained.

Based on the 230 × 4606 gene expression data matrix X and the vector y, which
characterizes the type of each sample, we can establish penalized linear or logistic regression
models (see Sections 3 and 4). The linear regression models only rely on the gene expression
data X. For simplicity, we took gene BRCA1 as the response variable and the other 4605
genes as covariates in the linear regression models. The penalized logistic regression
models rely on X and y. LASSO, elastic net, ridge regression and adaptive LASSO will
be considered and compared in both of the two types of models. In the adaptive LASSO,
the inverse of the absolute values of the OLS estimations are considered as the weights.
The four types of models are solved by using the glmnet package in Matlab. For linear
regression models, we consider the mean square errors (MSEs) to evaluate the accuracy
of models, while for logistic regression models, we consider the F1 score [54,81]. The F1
score is defined as the harmonic mean of precision and recall [81], which can evaluate the
performance of a classification model. For each simulation setting, we randomly extracted
50% of samples as the training set, and the remaining samples were used as the testing set.
Totally, 100 simulation runs were performed and averaged for each case, and genes that
were selected at least in 80 simulation runs were retained.

5.2. Performances of Different Penalized Regression Models

The boxplots of MSEs for different penalized linear regression models and the boxplots
of F1 scores for different logistic regression models are shown in Figure 2. The finally
selected informative genes from each type of models are shown in Tables 2 and 3. From the
linear regression models, 19, 24, 946, and 19 informative genes were screened by LASSO,
elastic net, ridge regression and adaptive LASSO, respectively (Table 2), whereas the four
logistic regression models finally selected 24, 82, 3295, and 24 informative genes.
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Figure 2. Accuracy of different penalized linear and logistic regression models in the breast cancer
dataset. (A) Boxplots of MSEs for each penalized linear regression models. (B) Boxplots of F1 score
for each penalized logistic regression models.
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Table 2. Informative genes that were selected from the breast cancer dataset based on linear regression
models with LASSO, elastic net, adaptive LASSO and ridge regression. Genes that are simultaneously
screened by the four methods are shown in bold. Since the results from the ridge regression are not
sparse, we only show some commonly selected genes by the four methods.

Methods Selected Informative Genes

LASSO (19) NSF, WDR76, DIAPH3, NCAPG2, TLCD3B, RAB3C, FBXO43, ATAD2, HSF2BP, ESCO2, PAH,NSF, WDR76, DIAPH3, NCAPG2, TLCD3B, RAB3C, FBXO43, ATAD2, HSF2BP, ESCO2, PAH,NSF, WDR76, DIAPH3, NCAPG2, TLCD3B, RAB3C, FBXO43, ATAD2, HSF2BP, ESCO2, PAH,
RASGRP1, ATAD5, SAMD12, C12orf42, DDX53, SHTN1, WDHD1, RDM1RASGRP1, ATAD5, SAMD12, C12orf42, DDX53, SHTN1, WDHD1, RDM1RASGRP1, ATAD5, SAMD12, C12orf42, DDX53, SHTN1, WDHD1, RDM1

Elastic net (24)
NSF, WDR76, DIAPH3, NCAPG2, TLCD3B, RAB3C, FBXO43, ATAD2, HSF2BP, ESCO2, PAH,NSF, WDR76, DIAPH3, NCAPG2, TLCD3B, RAB3C, FBXO43, ATAD2, HSF2BP, ESCO2, PAH,NSF, WDR76, DIAPH3, NCAPG2, TLCD3B, RAB3C, FBXO43, ATAD2, HSF2BP, ESCO2, PAH,
RASGRP1, ATAD5, SAMD12, C12orf42, DDX53, SHTN1, WDHD1, RDM1RASGRP1, ATAD5, SAMD12, C12orf42, DDX53, SHTN1, WDHD1, RDM1RASGRP1, ATAD5, SAMD12, C12orf42, DDX53, SHTN1, WDHD1, RDM1, FSTL4, CGA, FLVCR1,
LRRN2, XRCC2

Ridge (946) NSF, WDR76, DIAPH3, NCAPG2, TLCD3B, RAB3C, FBXO43, ATAD2, HSF2BP, ESCO2, PAH,NSF, WDR76, DIAPH3, NCAPG2, TLCD3B, RAB3C, FBXO43, ATAD2, HSF2BP, ESCO2, PAH,NSF, WDR76, DIAPH3, NCAPG2, TLCD3B, RAB3C, FBXO43, ATAD2, HSF2BP, ESCO2, PAH,
RASGRP1, ATAD5, SAMD12, C12orf42, DDX53, SHTN1, WDHD1, RDM1, . . .RASGRP1, ATAD5, SAMD12, C12orf42, DDX53, SHTN1, WDHD1, RDM1, . . .RASGRP1, ATAD5, SAMD12, C12orf42, DDX53, SHTN1, WDHD1, RDM1, . . .

Adap. LASSO (19) NSF, WDR76, DIAPH3, NCAPG2, TLCD3B, RAB3C, FBXO43, ATAD2, HSF2BP, ESCO2, PAH,NSF, WDR76, DIAPH3, NCAPG2, TLCD3B, RAB3C, FBXO43, ATAD2, HSF2BP, ESCO2, PAH,NSF, WDR76, DIAPH3, NCAPG2, TLCD3B, RAB3C, FBXO43, ATAD2, HSF2BP, ESCO2, PAH,
RASGRP1, ATAD5, SAMD12, C12orf42, DDX53, SHTN1, WDHD1, RDM1RASGRP1, ATAD5, SAMD12, C12orf42, DDX53, SHTN1, WDHD1, RDM1RASGRP1, ATAD5, SAMD12, C12orf42, DDX53, SHTN1, WDHD1, RDM1

Table 3. Informative genes that are selected from the breast cancer dataset based on logistic regression
models with LASSO, elastic net, adaptive LASSO and ridge regression. Genes that were simultane-
ously screened by the four methods are shown in bold. Since the results from the ridge regression are
not sparse, we only show some commonly selected genes from using the four methods.

Methods Selected Informative Genes

LASSO (24)
MFAP2, PCDH17, MICAL2, SPRY2, CAPN11, TINAGL1, TSLP, APCDD1, B4GALT3, KIF26B, TDRD10,MFAP2, PCDH17, MICAL2, SPRY2, CAPN11, TINAGL1, TSLP, APCDD1, B4GALT3, KIF26B, TDRD10,MFAP2, PCDH17, MICAL2, SPRY2, CAPN11, TINAGL1, TSLP, APCDD1, B4GALT3, KIF26B, TDRD10,
NDRG2, PPP1R14A, SCN4B, SYNM, MME, SLC12A8,NDRG2, PPP1R14A, SCN4B, SYNM, MME, SLC12A8,NDRG2, PPP1R14A, SCN4B, SYNM, MME, SLC12A8, LIMS2, NKAPL,PAFAH1B3, SLC35A2, ADAMTS5,
SAMD14, CAVIN2

Elastic net (82)

MFAP2, PCDH17, MICAL2, SPRY2, CAPN11, TINAGL1, TSLP, APCDD1, B4GALT3, KIF26B, TDRD10,MFAP2, PCDH17, MICAL2, SPRY2, CAPN11, TINAGL1, TSLP, APCDD1, B4GALT3, KIF26B, TDRD10,MFAP2, PCDH17, MICAL2, SPRY2, CAPN11, TINAGL1, TSLP, APCDD1, B4GALT3, KIF26B, TDRD10,
NDRG2, PPP1R14A, SCN4B, SYNM, MME, SLC12A8,NDRG2, PPP1R14A, SCN4B, SYNM, MME, SLC12A8,NDRG2, PPP1R14A, SCN4B, SYNM, MME, SLC12A8, C1orf112, KLHL13, CX3CL1, GTF2IRD1, ADAMTS6,
NGFR, COL17A1, LIMS2, PAFAH1B3, CBX7, ADAMTS5, SLC35A2, CCN4, AP1S1, FGF1, GPR89A, ECRG4,
KLHL29, EEPD1, LAMP5, RASL11B, PGAP6, MATN2, NES, RAB25, C1QTNF6, ANXA1, FAM189A2,
CKAP2, TMEM63B, SSTR1, PMM2, GNAL, P3H4, CRB2, PAMR1, ADAM33, SCN2B, PPP4C, ROBO3,
NTF4, CACHD1, LMOD1, TSACC, CTHRC1, VEGFD, SAMD14, COA6, CAVIN2, ATOH8, ADRB2,
CHST11, MARCKSL1, SOX12, LRRC3B, C3orf80, TMEM220, NKAPL, HOXA4, ENTPD7, ITPRIPL1,
CCDC167, DMD, PSENEN, TRIM59

Ridge (3295) MFAP2, PCDH17, MICAL2, SPRY2, CAPN11, TINAGL1, TSLP, APCDD1, B4GALT3, KIF26B, TDRD10,MFAP2, PCDH17, MICAL2, SPRY2, CAPN11, TINAGL1, TSLP, APCDD1, B4GALT3, KIF26B, TDRD10,MFAP2, PCDH17, MICAL2, SPRY2, CAPN11, TINAGL1, TSLP, APCDD1, B4GALT3, KIF26B, TDRD10,
NDRG2, PPP1R14A, SCN4B, SYNM, MME, SLC12A8NDRG2, PPP1R14A, SCN4B, SYNM, MME, SLC12A8NDRG2, PPP1R14A, SCN4B, SYNM, MME, SLC12A8 . . .

Adap. LASSO (24)
MFAP2, PCDH17, MICAL2, SPRY2, CAPN11, TINAGL1, TSLP, APCDD1, B4GALT3, KIF26B, TDRD10,MFAP2, PCDH17, MICAL2, SPRY2, CAPN11, TINAGL1, TSLP, APCDD1, B4GALT3, KIF26B, TDRD10,MFAP2, PCDH17, MICAL2, SPRY2, CAPN11, TINAGL1, TSLP, APCDD1, B4GALT3, KIF26B, TDRD10,
NDRG2, PPP1R14A, SCN4B, SYNM, MME, SLC12A8,NDRG2, PPP1R14A, SCN4B, SYNM, MME, SLC12A8,NDRG2, PPP1R14A, SCN4B, SYNM, MME, SLC12A8, LIMS2, NKAPL, PAFAH1B3, SLC35A2, ADAMTS5,
SAMD14, CAVIN2

Among the four linear regression models, LASSO and adaptive LASSO are the most
sparse, but their average MSEs are all slightly higher than the elastic net. The elastic net
has the smallest average MSE value, while the average MSE of the ridge regression is
the highest. In fact, since the ridge regression is not sparse, the finally obtained model is
always overfitted. Therefore, the ridge regression has the highest average MSE among the
four methods.

For the penalized logistic regression models, it shows that the ridge regression has
very high F1 score. This indicates that the logistic regression model with ridge regression
tends to have good classification accuracy. Our results reveal that though the ridge re-
gression couldn’t generate a sparse solution, it tends to have good performance in sample
classification. However, since extensive features are selected in the ridge regression, its
real-world applications are limited. The adaptive LASSO penalized logistic regression
model only selects 24 genes, but it has comparative F1 score with the ridge regression,
therefore, the adaptive LASSO penalized logistic regression model may be the best choice
to perform sample classification.
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Comparing between the finally selected gene sets (genes in bold) from the linear and
the logistic regression models, no genes are commonly selected by the two types of models.
This can be explained as follows. The finally selected genes from the linear regression
models are linearly correlated with BRCA1, while the selected genes from the logistic
regression model mainly play roles in distinguishing between patients and normal controls.
The finally selected genes from the two kinds of models play different roles, and they
explain the dataset from different perspectives.

Except for the above analysis, one can also consider and compare the results from
the other penalization methods. Moreover, the finally selected genes can be also further
explored through GO and KEGG pathway enrichment analysis, and their biological func-
tions in breast cancer can be also experimentally determined. Finally, we mention that the
obtained results can be used to construct gene co-expression networks. For example, in
the linear regression models, since gene BRCA1 has been treated as the response variable,
therefore, we can deem that all the finally selected genes are co-expressed with BRCA1.
Due to space limitation, no more details will be given.

6. Future Directions and Conclusions

This paper reviews some recent advances on penalized regression models and their
applications in biological data. Both linear and logistic regression models with various
penalization approaches are discussed. Algorithms for some models are introduced and ap-
plications of various penalized regression models using biological data have been discussed
in detail. The penalized regression models provide effective tools to explore biological data.

Although great advances have been achieved over recent decades, there are also some
interesting issues to be further explored. The first issue is to propose some novel penaliza-
tion methods to more concretely select informative genes, such as those incorporating a
priori knowledge. Extensive works on some diseases have provided much useful knowl-
edge; to better understand the disease from biological data, it is important to incorporate
the existing a priori information. Secondly, applications of penalized regression models
should be further extended, especially developing effective models for ultra-high dimen-
sional biological data. Gene expression data in RNA-seq often contain tens of thousands of
genes and tens to hundreds of samples. Dealing with such ultra-high dimensional data is
still a challenge in ultra-high-dimensional statistics [4]. Thirdly, the interpretability of the
selected results by penalized regression models needs to be further enhanced. Most of the
linear and logistic regression models neglect the correlations among genes, which assume
that genes are independent of each other. The selected genes are always involved in differ-
ent biological pathways, and it is hard biologically interpret the obtained results. In fact,
genes play their functions via complex regulatory networks or signaling networks [5]. It is
interesting to develop models that consider the correlations among genes. In fact, the group
penalized algorithms [44], the network constrained penalization [53] and the pairwise
structured penalization [54] are all efforts to solve the mentioned problems. Especially, the
network-constrained penalization encourages the selection of genes in the same pathways,
which helps to explain the mechanisms of certain phenotypes. Fourthly, effective numerical
simulation algorithms are still in great demand. Although researchers have developed
many optimization algorithms [5], such as OLS estimation, gradient descent algorithm,
Newton’s method, Newton–Raphson algorithm, stochastic gradient descent [131], the least
angle regression, stepwise regression, coordinate descent algorithms, coordinate gradient
descent method [132], blockwise coordinate descent algorithms, iteratively reweighted least
square, alternating direction method of multipliers (ADMM) [133] and so on, novel efficient
algorithms for high-dimensional biological data are still in great demand. Fifthly, except
for gene selection and sample classification, applications of regression models in network
construction should also be further explored. Actually, both linear and logistic regression
models have been applied to detect gene interactions [88,90,91,128,129]. However, since
the regression approaches only consider the linear correlation among expression profiles
of genes, and gene expression profiles are highly affected by noise (measurement error,
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instrument error, varied gene expression abundance due to copy number variations, etc.),
the reliability and practicality of the inferred interactions are still to be enhanced. Finally,
gene expression profiles are highly nonlinear or oscillate with time [5,27,134]; however, the
penalized linear and logistic regression models both assume linear relationships among
variables. Therefore, it is intriguing to develop methods that consider such nonlinearity.

As a summary, both theories and applications of penalized regression models have
been extensively investigated, and great advances on the related theories have been
achieved over recent decades. Besides the mentioned works in this review, there are
also many other related works [135–138], but due to space limitations and the limited
knowledge of the authors, this review can not cover all of the works in this topic.
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