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Abstract: This paper addresses the issue of optimal redundancy allocation in hybrid structure large
binary systems. Two aspects of optimization are considered: (1) maximizing the reliability of the
system under the cost constraint, and (2) obtaining the necessary reliability at a minimum cost. The
complex binary system considered in this work is composed of many subsystems with redundant
structure. To cover most of the cases encountered in practice, the following kinds of redundancy
are considered: active redundancy, passive redundancy, hybrid standby redundancy with a hot or
warm reserve and possibly other cold ones, triple modular redundancy (TMR) structure with control
facilities and cold spare components, static redundancy: triple modular redundancy or 5-modular
redundancy (5MR), TMR/Simplex with cold standby redundancy, and TMR/Duplex with cold
standby redundancy. A classic evolutionary algorithm highlights the complexity of this optimization
problem. To master the complexity of this problem, two fundamentally different optimization
methods are proposed: an improved evolutionary algorithm and a zero-one integer programming
formulation. To speed up the search process, a lower bound is determined first. The paper highlights
the difficulty of these optimization problems for large systems and, based on numerical results, shows
the effectiveness of zero-one integer programming.

Keywords: redundancy allocation; hybrid structure binary systems; Markov chains; evolutionary
algorithms; RELIVE algorithm; zero-one integer programming
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1. Introduction

The problem of reliability optimization in large hybrid systems mainly refers to the
type of the system (binary or multi-state), type of solution (reliability allocation and/or
redundancy allocation), or the kind of redundancy, which can be static (TMR or 5MR, for
example), dynamic (active redundancy or standby redundancy), or hybrid (TMR/Simplex
or TMR/Duplex with spare components, etc.). Useful overviews covering models and
methods for these reliability optimization problems (ROPs), including reliability allocation,
redundancy allocation, and reliability-redundancy allocation can be found in many works,
such as [1–3].

The mathematical formulation of a reliability optimization problem requires the specifi-
cation of three elements: decision variables, imposed constraints, and objective function(s).

The decision variables describe those elements that can be changed or adjusted or the
decisions that can be made to improve system performance, as expressed by the objective
function(s). As examples of decision variables one can mention the types of components
and their characteristics (reliability, cost, etc.), the type of redundancy for each subsystem,
the number of spare components for each subsystem, etc.

The constraints reflect practical design limitations, e.g., a required level of reliability
or the available budget, which occur in almost all cases. But in practice there may be other
limitations, related to the volume or weight of the system, for example.
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The objective function measures the performance of the system for a set of values of
the decision variables. Thus, by optimizing the objective function(s) under the specified
constraints it is possible to identify the combination of values of the decision variables that
leads to the best possible design solution for the studied system.

Usually for ROPs, the goal of optimization is to maximize system reliability or mini-
mize system cost. In reliability engineering the problem of system reliability maximization
under two or more constraints often arises, e.g., under cost constraints, but also under
weight and/or volume constraints. When an analytical approach is possible (e.g., in the
case of active-redundancy-only subsystems), to ensure that two or more constraints are
satisfied, Lagrangian multipliers are often introduced as part of the objective function [4–6].

In this paper we address a class of redundancy allocation problems (RAPs) where
the decision variable is the number of redundant components for each subsystem in a
series redundant reliability model. RAP is one of the most studied reliability optimization
problems, because it has been proven to be quite difficult to solve, and many different
optimization approaches have been used to determine optimal or near-optimal solutions.
As [7] demonstrates, RAPs belong to the NP-hard class of optimization problems.

The RAPs we consider involves hybrid structures with no less than eight types of
redundancy; these are conditions where the optimization problems are difficult to solve,
even if we limit ourselves to single-constraint optimization problems. More specifically,
our goal is to highlight the difficulty of these RAPs for large systems, when the number of
subsystems grows to the order of tens or even hundreds.

In order to master the complexity of RAPs in case of large systems, for which the
difficulty of the problem increases, special research efforts have been made in recent
years. In addition, to cover a wide range of techniques used to increase the reliability
encountered in practice, many hybrid reliability models have been considered for which
the RAPs get even more complicated. For example, [8] investigates a complex reliability-
redundancy allocation problem with a component mixing strategy, which changes the
traditional RAP model to a heterogeneous one. Moreover, in the hybrid reliability models
proposed in [9], the choice of redundancy strategy is considered as a decision variable. So,
for each subsystem, an active or cold standby redundancy may be considered. In addition,
components of different types can be used in each subsystem, i.e., a component mixing
strategy. Consequently, this RAP involves determining a solution that maximizes system
reliability in terms of the type of redundancy and the number of spare components of each
type (for each subsystem). To solve this RAP, a genetic algorithm is developed. Also, a
reliability model based on cold standby redundancy combined with component mixing is
investigated by [10]. For this complex problem, the author proposes a simplified swarm
optimization method in which a multi-role resource sharing strategy is adopted to provide
the diverse system components. Another reliability model based on active or cold standby
redundancy combined with component mixing is investigated in [11]. To solve this RAP,
the authors propose a parallel stochastic fractal search algorithm. Other RAPs involving a
heterogeneous structure and/or component allocation strategy of a different type can be
found in [12–14].

Such a hybrid reliability model is also considered in this paper. In the previously
cited works, RAPs are formulated by considering redundant systems with hybrid re-
dundancy strategies and/or reliability models with heterogeneous components, which
means that each component of a subsystem can have its own failure rate. In this paper
we limit ourselves to the case where subsystems include homogeneous components, but
we extend RAPs to cover more redundancy strategies (not just active redundancy or cold
standby), including static redundancy or reconfigurable structures such as TMR/Simplex
or TMR/Duplex with cold standby redundancy.

To solve redundancy allocation problems of this type, several techniques can be ap-
plied, such as heuristic methods [15–18], Lagrange multiplier analytical methods, and
branch-and-bound techniques, especially for active redundancy [5,6,19,20], dynamic pro-
gramming [21–23], evolutionary algorithms [9,10,24–27], linear programming methods [28–30]
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or a mix of integer and nonlinear programming [31]. As the RAPs we considered are com-
plex, two evolutionary algorithms and a special model of zero-one integer programming
are used.

As the highlights of our contribution we can mention:

• The formalization of two RAPs for binary systems with hybrid structure, which include
no less than eight types of redundancy, where reliability modeling of redundant and
reconfigurable structures is based on Markov chains;

• The design and implementation of two evolutionary algorithms and the formulation
of a zero-one integer program for solving these complex optimization problems;

• Conducting an extensive performance evaluation study of the three proposed tech-
niques on thousands of problems, which demonstrates the effectiveness of the zero-one
integer programming approach for large systems with tens or even hundreds of sub-
systems.

This paper is organized as follows. Section 2 presents the issue addressed, whereas
the types of redundancy considered here and the models or equations used for reliabil-
ity evaluation are presented in detail in Section 3. Some related works are mentioned
in Section 4. The algorithms used for these optimal allocation issues are described in
Section 5. The objective functions adopted for the evolutionary algorithms and for the
linear programming model are reported in Section 6, whereas in Section 7 a lower bound
solution is proven. Experimental results are presented in Section 8. Further discussion
is the subject of Section 9. The conclusions of the paper and several directions of future
research are included in Section 10.

2. Problem Description

For systems with a large number of components without redundancy, reliability is
often very low. To achieve the required reliability, a certain type of redundancy is applied
to a certain element, depending on technical particularities, which can be static, dynamic,
or hybrid redundancy. All of these types of redundancy are considered in this paper.
The reliability model for this redundant system is a series-redundant one as presented in
Figure 1.
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Figure 1. Series-redundant reliability model for a complex hybrid system.

The notations used to describe the redundant structures and their reliability evaluation
models are presented at the end of the paper. Along with these notations we include a
short nomenclature and some assumptions under which the reliability models are valid.

Typically, in this allocation process the criterion may be reliability, cost, weight, or
volume. One or more criteria can be considered in an objective function, while the others
may be considered constraints, as considered by [22] (pp. 331–338). In this paper, the criteria
we consider are reliability and cost, and in this situation, two optimization problems are
frequently encountered in practice:

1. Minimizing the cost of the redundant system for which a required reliability must be
achieved;

2. Maximizing the reliability of the system within a maximum allowed cost.
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In both cases, from the mathematical point of view, one must solve an optimization
problem with an objective function and constrains. More exactly, for the first problem, one
must minimize the cost function:

Crs = f (C1, C2, · · · , Cn) =
n

∑
i=1

Ci (1)

with the constraint of reliability:

Rrs =
n

∏
i=1

Ri ≥ R∗. (2)

For the second problem, one must maximize the reliability function:

Rrs = f (R1, R2, · · · , Rn) =
n

∏
i=1

Ri (3)

with the cost constraint:
n

∑
i=1

Ci ≤ C∗. (4)

For example, when for all the subsystems an active redundancy is considered, for the
redundant system a series-parallel reliability model results. Thus, the cost and reliability
functions can be expressed by the equations:

Crs =
n

∑
i=1

ciki (5)

Rrs = 1−
n

∏
i=1

(1− ri)
ki (6)

Thus, we have to determine the values k1, k2, . . . , kn that minimize the cost function
in Equation (5) with the reliability constraint in Equation (2), or maximize the reliability
function in Equation (6) with the cost constraint in Equation (4), as the case may be.

3. Types of Redundancy

To cover most situations encountered in practice, the following types of redundancy
are considered in this study, namely:

• active redundancy (tr = A);
• passive redundancy (or cold standby redundancy) (tr = B);
• hybrid standby redundancy with a hot reserve (tr = C) or a warm one (tr = D) and

possibly other cold ones;
• hybrid redundancy consisting of a TMR structure with control facilities and possibly

cold reserves (tr = E);
• static redundancy: TMR or 5MR (tr = F);
• reconfigurable TMR/Simplex type structure with possible other cold-maintained spare

components (tr = G);
• reconfigurable TMR/Duplex type structure with possible other cold-maintained spare

components (tr = H).

The reliability model and the equations used to evaluate the reliability for a subsystem,
depending on the type of redundancy, are presented in this section. Since the time to failure
for a component is assumed to have a negative exponential distribution, the following
equations are valid:

r = e−λT (7)
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and
λT = − ln r (8)

Remember that for any redundant subsystem the spare components are considered
identical to the basic ones.

3.1. Active Redundancy (tr = A)

For this parallel reliability model where all components operate simultaneously, the
well-known equation is applied:

R = 1− (1− r)k, k = 2, 3, . . . (9)

3.2. Passive Redundancy (tr = B)

In this case, one component is in operation and all other identical k− 1 spare compo-
nents are maintained in a cold state, which means that a spare component is switched off
until it is needed to replace the defective one (i.e., a redundant component does not fail in
cold standby mode). The following equation can be applied to this model:

R =
k−1

∑
j=0

(λT)j

j!
e−λT = r

k−1

∑
j=0

(− ln r)j

j!
, k ≥ 2 (10)

Note that Equation (10) is the sum of the first k terms of the Poisson distribution of the
parameter λT.

3.3. Hybrid Standby Redundancy with a Hot (tr = C) or a Warm (tr = D) Spare and Possibly
Other Cold Ones

In this case of standby redundancy, a component is in operation, a spare component
is active or kept in a warm state, and possibly other spare components are kept in cold
conditions as illustrated in Figure 2.
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A warm component may fail before being put into operation and its failure rate is
less than that of the same component in active mode. Therefore, let αλ, 0 < α ≤ 1, be the
failure rate for this reserve. For this type of redundancy, the subsystem reliability function
is obtained based on the Markov method, depending on the total number of components,
as shown below.

3.3.1. Case 1: k = 2

Consider a subsystem consisting of a component in operation and a warm-maintained
reserve. The evolution of this redundant subsystem until failure is illustrated by the Markov
chain presented in Figure 3.
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To begin with, let us refer to a general Markov model. Let S1, S2, . . . , SN be the
states of the Markov chain and A =

[
ax,y
]

N×N be the matrix of state transition rates, where
ax,y, x 6= y, represents the rate of transition from state Sy to state Sx, while an element of
the main diagonal (i.e., x = y) is the negative value of the sum of all the other elements in
the column.

Let s(t) be the state of the subsystem at the time t, and

px(t) =prob(s(t) = Sx), x ∈ {1, 2, . . . , N}. (11)

To obtain the probability functions px(t), x = 1 : N, the following system of differen-
tial equations must be solved:

P′ = A× P, (12)

where P = [p1(t) p2(t) · · · pN(t)]
T , and P′ =

[
p′1(t) p′2(t) · · · p′N(t)

]T .
Note that the state probabilities for t = 0 are also known.
Let us resume the analysis of the subsystem under study. In the Markov chain

presented in Figure 3, S1 and S2 are successful states, while S3 is a failure state. Thus, the
reliability function of this redundant subsystem can be defined as

R(t) = p1(t) + p2(t), t ≥ 0. (13)

As the transition rate matrix is:

A =


−(1 + α)λ 0 0

(1 + α)λ −λ 0

0 λ 0

, (14)

to determine the probability functions p1(t) and p2(t), the following system of differential
equations must be solved: {

p′1(t) = −(1 + α)λp1(t)

p′2(t) = (1 + α)λp1(t)− λp2(t)
(15)

With the initial values: p1(0) = 1 and p2(0) = p3(0) = 0, by applying the Laplace
transform (L), the following system of algebraic equations results:{

sP1(s)− 1 = −(1 + α)λP1(s)

sP2(s) = (1 + α)λP1(s)− λP2(s)
(16)

where Pi(s) = L {pi(t)}, i ∈ {1, 2}, are functions in the frequency domain, and s is the
Laplace operator. Based on (16), after some algebraic operations, the following functions
are obtained:

P1(s) =
1

s + (1 + α)λ
, P2(s) =

(1 + α)λ

s + (1 + α)λ
· 1
s + λ

(17)
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After a partial-fraction-expansion, the function P2(s) can be expressed as follows:

P2(s) = −
1 + α

α

1
s + (1 + α)λ

+
1 + α

α

1
s + λ

(18)

As the functionR(s) = L{R(t)} = P1(s) + P2(s), the following expression results:

R(s) = 1 + α

α

1
s + λ

− 1
α

1
s + (1 + α)λ

(19)

The reliability function R(t) can then be obtained by applying the inverse Laplace
transform, R(t) = L−1{R(s)}. Thus, the reliability function has the following form:

R(t) =
1 + α

α
e−λt − 1

α
e−(1+α)λt, t ≥ 0, 0 < α ≤ 1. (20)

For a certain period of time T, the component reliability is r = e−λT , so that the
subsystem reliability R as a function of r and α is given by the equation:

R(r, α) =
1 + α

α
r− 1

α
r1+α = r +

1
α

r(1− rα), 0 < α ≤ 1. (21)

For a redundancy subsystem with a larger number of components, the reliability
function can be obtained based on the Markov method in the same way, but algebraic
operations are more complicated. The results for the other two cases are presented below.

3.3.2. Case 2: k = 3

Take a redundant subsystem composed of an active component, a hot/warm spare
component, and another one maintained in cold conditions. For this case, the following
reliability function results:

R(r, α) =
(1 + α)2

α2 r−
(

1 + 2α

α2 − 1 + α

α
ln r
)

r1+α, 0 < α ≤ 1. (22)

3.3.3. Case 3: k = 4

For a redundant subsystem with an active component, a hot/warm spare component,
and two other ones maintained in cold conditions, the reliability function is given by the
following equation:

R(r, α) =
(1 + α)3

α3 r−
(

1 + 3α + 3α2

α3 − 1 + 3α + 2α2

α2 ln r +
(1 + α)2

2α
(ln r)2

)
r1+α, 0 < α ≤ 1. (23)

3.4. TMR Structure with Control Facilities and Cold Spare Components (tr = E)

In this case, another hybrid redundancy is considered. Thus, a redundant system
is composed of a TMR structure with control facilities as a basic structure (i.e., static
redundancy) and possibly one or more components maintained in cold conditions (i.e.,
standby redundancy). This type a hybrid redundancy is illustrated in Figure 4.

The decision logic works on the principle of majority logic, 2 out of 3, called voter and
represented by the symbol V in Figure 4. When one of the three components in operation
(CO1, CO2 or CO3) fails, an error signal indicates the faulty component. Thus, the faulty
component can be replaced with a cold-maintained standby one as soon as possible. In this
way, this redundant hybrid subsystem can tolerate one or more defective components, as
the case may be. For additional decision and control block the failure rate, denoted by λdc,
is expressed based on the basic component rate, λ. In this study, the following expression
is used:

λdc =
λ

β
, β > 1. (24)
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Consequently, the reliability function for logical decision and control block, denoted
by rdc, is expressed as:

rdc = e−λdcT = e−
λ
β T

=
(

e−λT
)β−1

= rβ−1
, β > 1. (25)

3.4.1. Case 1: TMR Structure without Standby Redundancy

In case of a TMR structure without reserves (i.e., k = 3), the redundant subsystem can
tolerate only one faulty component, so the subsystem reliability function is given by the
well-known equation:

R(r, β) = (3r2 − 2r3)rdc = (3r2 − 2r3)rβ−1
, β > 1 (26)

3.4.2. Case 2: TMR Structure and One Cold Spare Component

A redundant subsystem with hybrid redundancy composed of a TMR structure and
one CSC (i.e., k = 4) may tolerate two faulty components. For a start, for the logical block
of decision and control, the possibility of failure is neglected. The reliability evaluation is
made based on the Markov graph given in Figure 5.
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In this graph, S1, S2 and S3 are successful states, while S4 is a failure one. Given these
aspects, the reliability function of this redundant subsystem is expressed as:

R(t) = p1(t) + p2(t) + p3(t), t ≥ 0. (27)
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As the transition rate matrix is:

A =


−3λ 0 0 0

3λ −3λ 0 0

0 3λ −2λ 0

0 0 2λ 0

, (28)

by applying Equation (12) in order to determine the probability functions p1(t), p2(t) and
p3(t), the next system of differential equations results:

p′1(t) = −3λp1(t)

p′2(t) = 3λp1(t)− 3λp2(t)

p′3(t) = 3λp2(t)− 2λp3(t)

(29)

With the initial values: p1(0) = 1, and p2(0) = p3(0) = 0, by applying the Laplace
transform, the following system of algebraic equations is obtained:

sP1(s)− 1 = −3λP1(s)

sP2(s) = 3λP1(s)− 3λP2(s)

sP3(s) = 3λP2(s)− 2λP3(s)

(30)

By solving the system, the following functions in the frequency domain result:
P1(s) = 1

s+3λ

P2(s) = 3λ

(s+3λ)2

sP3(s) = 9λ2

(s+3λ)2 · 1
s+2λ = 9

s+2λ −
9

s+3λ −
9λ

(s+3λ)2 .

(31)

As the function

R(s) = L{R(t)} = P1(s) + P2(s) + P3(s), (32)

the following expression results:

R(s) = 9
s + 2λ

− 8
s + 3λ

− 6λ

(s + 3λ)2 (33)

The reliability function R(t), obtained by applying the inverse Laplace transform, is of
the form:

R(t) = 9e−2λt − 8e−3λt − 6λte−3λt, t ≥ 0. (34)

Finally, taking also into account the reliability of the decision and control logic, the
subsystem reliability R as a function of r and β is given by the equation:

R(r, β) = (9r2 − r3(8− 6 ln r))rdc = (9r2 − r3(8− 6 ln r))rβ−1
, β > 1 (35)

For a hybrid redundancy subsystem with a larger number of CSCs, the reliability
function can be obtained by applying the Markov method in the same way, but algebraic
operations are more complicated. A result obtained for another case is presented as follows.

3.4.3. Case 3: TMR Structure and Two Cold Spare Components

Take a redundant subsystem with hybrid redundancy composed of a TMR structure
and two CSCs (i.e., k = 5). This redundant subsystem can tolerate three defective compo-
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nents. A Markov-based approach similar to the one presented above gives the following
subsystem reliability as a function of r and β:

R(r, β) =
(

27r2 − r3(26− 24 ln r + 9(ln r)2)
)

rβ−1
, β > 1 (36)

3.5. Static Redundancy: TMR or 5MR (tr = F)

This type of redundancy refers to those subsystems for which a static redundancy with
majority logic (TMR or 5MR) can be adopted, depending on the desired level of reliability.
Thus, in the process of finding an optimal solution, the valid values for variable k are 1, 3
and 5.

3.5.1. Case 1: TMR Structure

This case where k = 3 was also considered in Section 3.4, Case 1, so that the reliability
function for this redundant subsystem is given by Equation (25).

3.5.2. Case 2: 5MR Structure

When a 5MR redundancy is adopted (i.e., k = 5), as [22] (pp. 165–176) appreciates,
the additional logic of decision and control is more complex than that used for TMR
redundancy. Consequently, the failure rate, denoted by λ′dc, expressed on the basis of the
failure rate of the basic components, is considered of the form:

λ′dc =
λ

γ
, γ > 1 (37)

where the reduction factor γ is lower than the reduction factor β used for the TMR redun-
dancy. Because the 5MR structure can tolerate two defective components, the reliability of
the subsystem can be calculated as follows:

R(r, γ) = (r5 + 5r4(1− r) + 10r3(1− r)2)λ′dc
=
(
10r3 − 15r4 + 6r5)rγ−1

, γ > 1.
(38)

3.6. TMR/Simplex and Cold Standby Redundancy (tr = G)

This is another case of hybrid redundancy in which the basic structure is reconfig-
urable. Specifically, the redundant subsystem consists of a TMR structure with control and
reconfiguration facilities and other possible CSCs, as shown in Figure 6.

If one of the three components in operation fails, the subsystem continues to operate
successfully based on redundancy, and the control logic generates an error signal indicating
the faulty component. The status of the active component (good or failed) is reflected by
three dedicated flip-flops. For example, Figure 6 illustrates the case where components
CO1 and CO3 work successfully and component CO2 is defective.

When an error signal is activated, the defective component must be replaced with a
spare one as soon as possible to restore the initial fault tolerance state. Let us suppose this
replacement is done quickly enough so reliability is not significantly affected. When only
two components remain in good state, in order to increase the reliability, it is preferable for
only one component to continue to work, not both. This reconfigurable structure is known
as TMR/Simplex [32] (p. 233) or TMR 3-2-1 [22] (p. 152). Note that after a component has
failed, the control logic can no longer correctly indicate another fault, so the values of the
status flip-flops must be preserved until the fault tolerance is restored. This is the role of
the 3-input NAND logic gate in Figure 6.
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For an additional decision, control and reconfiguration logic block, the faulty rate
denoted by λdcr is expressed based on the basic component rate. In this study, the following
equation is used:

λdcr =
λ

δ
, δ > 1 (39)

where the reduction factor δ is lower than the reduction factor β used for TMR redundancy.
Consequently, the reliability function for the logic of decision, control and reconfiguration
denoted by rdcr is expressed as:

rdcr = e−λdcrT = e−
λ
δ T =

(
e−λT

)δ−1

= rδ−1
, δ > 1. (40)

The reliability of the redundant subsystem depends on the number of CSCs, as shown
below.

3.6.1. Case 1: TMR/Simplex without Standby Redundancy

In case of TMR/Simplex redundancy without spare components (i.e., k = 3), the
subsystem reliability function is given by the well-known equation [32], (p. 233):

R(r, δ) = (1.5r− 0.5r3)rdcr = (1.5r− 0.5r3)rδ−1
, δ > 1. (41)

3.6.2. Case 2: TMR/Simplex and One Cold Reserve

For this case of hybrid redundancy, the reliability evaluation is made by applying the
Markov method. For starters, for the logical block of decision, control and configuration
the possibility of failure is neglected. In this condition, the evolution of the redundant
subsystem to failure is illustrated by the Markov chain shown in Figure 7.
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In this graph, S1, S2 and S3 are states of success, while S4 is a failure state. Conse-
quently, the subsystem reliability is defined as:

R(t) = p1(t) + p2(t) + p3(t), t ≥ 0. (42)

Since the transition rate matrix is:

A =


−3λ 0 0 0

3λ −3λ 0 0

0 3λ −λ 0

0 0 λ 0

, (43)

based on (12), the following system of differential equations results:
p′1(t) = −3λp1(t)

p′2(t) = 3λp1(t)− 3λp2(t)

p′3(t) = 3λp2(t)− λp3(t)

(44)

With the initial values: p1(0) = 1, and p2(0) = p3(0) = 0, by applying the Laplace
transform, the following system of algebraic equations is obtained:

sP1(s)− 1 = −3λP1(s)

sP2(s) = 3λP1(s)− 3λP2(s)

sP3(s) = 3λP2(s)− λP3(s)

(45)

By solving this equation system, the following functions in the field of Laplace trans-
form are obtained:

P1(s) = 1
s+3λ

P2(s) = 3λ

(s+3λ)2

sP3(s) = 9λ2

(s+3λ)2 · 1
s+λ = 9

4(s+λ)
− 9

4(s+3λ)
− 9λ

2(s+3λ)2

(46)

The reliability function in the field of Laplace transform is:

R(s) = P1(s) + P2(s) + P3(s) =
9

4(s + λ)
− 5

4(s + 3λ)
− 3λ

2(s + 3λ)2 (47)

The reliability function R(t), obtained by applying the inverse Laplace transform, is of
the form:

R(t) =
9
4

e−λt − 5
4

e−3λt − 3
2

λte−3λt, t ≥ 0. (48)
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Finally, taking also into account the reliability of the logical block of decision, control
and configuration, the reliability of the subsystem R as a function of r and δ is given by the
equation:

R(r, δ) =
(
2.25r− r3(1.25− 1.5 ln r)

)
rdcr

=
(
2.25r− r3(1.25− 1.5 ln r

)
)rδ−1

, δ > 1
(49)

3.6.3. Case 3: TMR/Simplex and Two Cold Reserves

Take a reconfigurable subsystem with hybrid redundancy composed of a TMR/Simplex
structure and two CSCs (i.e., k = 5). This redundant subsystem can tolerate three defective
components. A Markov-based approach similar to the one presented above gives the
following subsystem reliability as a function of r and δ:

R(r, δ) =

(
27
8

r− 1
8

(
19− 30 ln r + 18(ln r)2

)
r3
)

rδ−1
, δ > 1 (50)

3.7. TMR/Duplex and Cold Standby Redundancy (tr = H)

As in the previous case, the redundant subsystem has a hybrid redundancy consisting
of a reconfigurable TMR structure and possibly other CSCs, as shown in Figure 6. But this
reconfigurable structure also aims at high operational safety. Thus, when one component
of the TMR structure fails, the other two good components are put into operation in duplex
mode. Specifically, the two components operate in parallel and their outputs are compared
continuously. When the two components no longer generate the same response, an error
signal is activated (as shown in Figure 6), so that the operation is stopped in safe mode.
This reconfigurable structure is called by [32] TMR/Duplex.

Regarding the reliability assessment, note that this redundant subsystem can tolerate
the same number of faulty components as the TMR structure presented in Section 3.4 for
type E redundancy. Consequently, depending on the total number of components (k),
Equations (26), (35) or (36) are valid in this case as well, with the only difference that the
reduction factor β is replaced by δ.

4. Related Work

The problems of maximizing reliability with a cost constraint or minimizing cost with
a reliability constraint can be solved using various methods. One is by solving an analytical
model based on Lagrange multipliers with an alternative indicator for reliability [4]. The
resulting system of algebraic equations can be solved but involve some approximate
relations which may impact the accuracy of the solution. Also, this method gives real-
valued results which must be converted into integers, and this may have a strong impact
on solution quality. Therefore, heuristic methods can be appropriate. For example, one
such technique described by [22] (p. 335) is a greedy approach that tries to make an optimal
choice at each step: starting with the minimum system design, the system reliability is
increased by adding one component to the subsystem with the lowest reliability. This
process is repeated as long as the cost constraint is met.

Another method described by [33] (pp. 499–532) tries to accelerate the allocation
process by noticing that the subsystem with the highest reliability should have the smallest
number of components, and the least reliable subsystem should have the greatest number
of components. Starting with the initial system, the reliability is increased by adding one
component to each subsystem as long as the cost constraint is met. For the most reliable
subsystem, this is the final allocation. The process continues with the other subsystems,
until no allocation is possible any longer.

Pairwise Hill Climbing (PHC) [29] adapts the idea of classic hill climbing to the
reliability-cost problem. Two candidate solutions are generated for each pair of subsystems.
The first candidate is created by adding one component to the first subsystem, i.e., the
direct hill climbing operation. The second is created by adding one component to the first
subsystem and subtracting one from the second subsystem, i.e., a swapping operation. A
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hybrid approach starting from an approximate, but nearly-optimal solution given by the
analytical approach, further improved by PHC was found to provide good results.

The problem can also be expressed as a quadratic unconstrained binary optimization
(QUBO). This formulation has the potential of being solved by the D-Wave quantum
computer as shown by [29] or [34].

The problem must be stated in the form of:

O(q; a, b) = ∑
i

aiqi + ∑
(i, j)

bijqiqj. (51)

The user needs to specify the parameters ai (the weights associated with each qubit)
and bij (the strengths of the couplers between qubits). The expression is minimized by
quantum annealing when run on the quantum computer and the observed qi values of
either 0 or 1 represent the solution. A special procedure is required to transform the
inequality constraint into additional terms to be optimized together with the main objective
function in the same expression [29].

5. The Optimization Algorithms

The experimental studies presented in Section 9 are based on three approaches: a
classical real-valued evolutionary algorithm, an improved evolutionary algorithm called
RELIVE, that combines global search with local search, and a zero-one integer programming
model, i.e., a special case of linear programming. While these techniques have been
extensively used for various optimization problems, an original contribution of the current
paper is the design of the objective functions corresponding to the problem under study,
described in Section 6.

5.1. Classic Evolutionary Algorithm

Evolutionary algorithms (EAs) are inspired by biological natural selection [35,36].
They maintain a population of individuals (or chromosomes) which are potential solu-
tions, i.e., different values of the x input of the objective function f (x) that needs to be
optimized. There are three main genetic operators which are repeatedly applied for a
pre-specified number of generations or until a convergence criterion is satisfied: selection
(which identifies “parents”, such that individuals with better objective functions have a
higher probability of being selected), crossover (which combines the genes of two parents
and creates an offspring), and mutation (which may change some genes of a child before it
is inserted into the new population). All these operators are stochastic, but the constant
favoring of better individuals to reproduce drives the algorithm towards increasingly better
solutions, while random changes in the chromosomes try to prevent it from convergence
into local optima. For the experiments in Section 8, the standard evolutionary algorithm
(SEA) uses the following types of operators and parameters:

• tournament selection with two individuals;
• elitism is used, i.e., the best individual is directly copied into the next generation;
• arithmetic crossover, where a child chromosome is a linear combination of the parent

chromosomes, with a probability of 0.9;
• mutation by gene resetting, where the value of a randomly selected gene is set to a

random number from a uniform distribution defined on its domain of definition, with
a probability of 0.2;

• stopping criterion with a fixed number of generations; depending on the experiment
1000 or 10,000 generations are used.

5.2. RELIVE

The cross-generational evolutionary algorithm with local improvements (RELIVE) [4]
is an original evolutionary algorithm which performs secondary local searches in addition
to the main global search and includes the concept of personal improvement of individuals
that survive for several generations, instead of just one. Since the lifespan of individuals is
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no longer fixed, the size of the population is variable. Personal improvement is based on
a number of hill climbing steps in each generation. During a generation, the individuals
undergo the classic evolution based on selection, crossover and mutation. Another typical
feature of RELIVE is the way in which it encourages exploration. This has proved particu-
larly useful for difficult optimization problems such as the one addressed in our work. First,
a few newly created chromosomes are added in each generation. Secondly, to generate a
neighbor state in the hill climbing stage, three types of mutation are used with different
probabilities: Gaussian mutation, resetting mutation, and pairwise mutation, where two
genes exchange a unit, i.e., one’s value is incremented and the other’s value is decremented.
The latter type is again specifically designed for problems involving integer solutions, such
as the present one. For the experiments in Section 8, RELIVE uses the following parameter
values:

• the initial size of the population is 50;
• the fraction of newly generated chromosomes in a generation is 0.25;
• the life span of an individual is 4;
• the number of neighbors generated for hill climbing is 20;
• the number of hill climbing steps is 20;
• the probability of overall mutation is 0.2, divided into:

# Gaussian mutation, with a probability of 0.05, where the value of a randomly
selected gene is set to a normal random number with the mean equal to the
original gene value and a standard deviation of 2;

# resetting mutation, with a probability of 0.05, where the value of a randomly
selected gene is set to a random number from a uniform distribution defined on
its domain of definition is 0.25;

# pairwise mutation, with a probability of 0.1, where two genes exchange a unit.

For the rest of the operators RELIVE uses, like SEA, tournament selection with two
individuals, elitism, arithmetic crossover, with a probability 0.9, and a maximum number
of 100 or 1000 generations.

5.3. Linear Programming

Linear programming (LP) is an optimization method aimed at problems with a lin-
ear objective function and linear constraints. There are several specific LP algorithms
implemented in various libraries and programs. For our experiments, lpsolve [28] was
used, which implements an optimized version of the simplex algorithm proposed by [37].
Depending on the nature of the optimization problem, it can select either the primal or the
dual method, with factorization and scaling procedures to increase numerical stability. The
problem we address in this paper is in fact cast as a zero-one integer programming (01IP)
problem, a special case of LP.

6. Designing the Objective Functions
6.1. Evolutionary Algorithms
6.1.1. Problem Definition

For the two evolutionary algorithms, the objective (or fitness) function closely follows
the definition of the two correlated problems stated in Section 3 and repeated here for
convenience.

The maximization of the reliability with a maximum cost limit can be expressed as:
Maximize :

n
∏
i=1

Ri

subject to :
n
∑

i=1
Ci ≤ C∗

(52)



Mathematics 2022, 10, 3698 16 of 33

The minimization of the cost of the redundant system with a required reliability can
be expressed as: 

Minimize :
n
∑

i=1
Ci

subject to :
n
∏
i=1

Ri ≥ R∗
(53)

As Ci and Ri are computed by means of the equations detailed in Section 3, which
depend on the number of components for each subsystem, the optimization problem
reduces to finding k1, k2, . . . , and kn.

For the two evolutionary algorithms, the fitness functions are the expressions in (52)
and (53) that need to be optimized. Since an EA maximizes the fitness function by default,
in case of (53), the negative of the sum of costs is actually used as the fitness function.
The encoding of the problem uses real values, thus the chromosomes have n real genes,
corresponding to ki. The domain of the genes is [1, kmax], i.e., 1 ≤ ki ≤ kmax. It depends on
the problem and therefore kmax needs to be chosen by the user.

6.1.2. Genotype-Phenotype Mapping

The real values involved in the evolutionary search are interpreted as integer values
for ki before the computation of the fitness function. Therefore, the first step is to round the
real values to the nearest integer:

kp
i =

⌊
kg

i + 0.5
⌋

(54)

where kg
i reflects the genotype (the actual value of the gene), and kp

i reflects the phenotype
(its interpretation for further use).

Because in our case studies, for some types of redundancy we limited ourselves to a
certain number of spare components as sufficient, another important issue is related to the
unsuitability of some values of ki for certain subsystems. Therefore, the adjustment rules in
Table 1 are used to interpret the values of ki as valid ones.

Table 1. Adjustment rules for phenotype interpretation.

Redundancy Type Adjustment Rule

tr = A or tr = B No adjustment

tr = C if kp
i > 5 then kp

i ← 5

tr = D if kp
i > 4 then kp

i ← 4

tr = E
if kp

i < 3 then kp
i ← 3

if kp
i > 5 then kp

i ← 5

tr = F
if kp

i < 4 then kp
i ← 3

else kp
i ← 5

tr = G
if kp

i < 3 then kp
i ← 3

if kp
i > 5 then kp

i ← 5

tr = H
if kp

i < 3 then kp
i ← 3

if kp
i > 5 then kp

i ← 5

It must be mentioned that trying to enforce a valid domain for each subsystem gene a
priori would have caused discontinuities in the evolutionary search, would have decreased
the genetic diversity, and thus would have led to inferior results.
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6.1.3. Chromosom Repairing Procedure

Although expressed with a very simple equation, because of the possibly large size of
a problem (e.g., n = 50 or n = 100, as considered in our case studies), the constraints are
actually difficult to satisfy.

A naïve approach based on penalties for constraint violation decreases the genetic
diversity to such an extent that the algorithms usually fail to find any solution at all, or find
feasible solutions very far from the optimum.

Therefore, one can apply a repairing procedure for the chromosomes, such that even
if a certain individual resulted from the application of the genetic operators is initially
unfeasible, it can be slightly modified to become feasible. In this way, all the individuals
in the population represent feasible solutions and the evolutionary algorithm focuses on
optimizing the fitness function.

For the reliability maximization problem with cost constraints, a random repairing
method is applied. Iteratively, a subsystem whose ki > 1 is randomly selected and its ki is
decreased by 1, until the overall cost of the system becomes smaller than C∗.

Alternative methods were also attempted, but they were slower with no significant
improvement of results:

• The selection of the subsystem with the highest cost. Because of the genotype-
phenotype distinction, this could sometimes lead to infinite loops (e.g., the repairing
procedure decrements a value, and the corresponding adjustment rule increments it);

• The selection of the subsystem with the highest reliability. This is even slower because
it requires the recomputation of the system reliability after each ki is decremented,
with i from 1 to n.

The repairing procedure for the cost minimization with reliability constraints proved
much more challenging. Eventually, a random repairing method was also applied in this
case. Iteratively, a subsystem whose ki < kmax is randomly selected and its ki is increased
by 1, until the overall reliability of the system becomes greater than R∗. However, the
way in which this increment affects the overall system reliability is nonlinear. Simple
random selection may be very slow, because it may take several trials to choose the proper
subsystem whose increased reliability may turn the overall reliability above the imposed
threshold. That is why a specified number of repairing attempts trials is imposed (e.g., 10).
If after these repeated trials the reliability does not exceed R∗, the individual is penalized
with a very low value for its fitness function (e.g., −106) and thus becomes likely to be
excluded from the evolutionary selection process.

Several other alternative methods were attempted as well, but they all had various
drawbacks compared to the random method presented above:

• The selection of the subsystem with the lowest reliability. This method is slower and
its results are not much better;

• A more elaborate method, where the number of components is increased on layers,
with subsystems taken in a random order. When one layer of incrementation is
completed, the next one begins. This method was the slowest, about an order of
magnitude slower than random selection.

6.2. Linear Programming

The objective function is transformed in a different way in order to apply 01IP opti-
mization. This is based on the idea proposed by [29]. The maximization of the product
is equivalent to the maximization of the sum of logarithms. The desired solutions of the
problem, i.e., ki, i = 1 : n, are included as separate terms, one for each possible result, from
1 to kmax:

Maximize :
n

∑
i=1

kmax

∑
j=1

xij· ln Ri(j) (55)
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where xij ∈ {0, 1}, ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , kmax}, is a binary variable that shows
that for subsystem i, j components are needed to maximize reliability. The notation Ri(j)
signifies the reliability of subsystem i when it contains j redundant components.

For a subsystem i, only one solution is possible, i.e., its binary indicator must be 1, and
the rest must be 0, and this can be written as an additional constraint:

kmax

∑
j=1

xij = 1, ∀i ∈ {1, . . . , n} (56)

The main constraint of the problem is also expressed by using a different term for each
possible solution:

n

∑
i=1

kmax

∑
j=1

xij·j·ci ≤ C∗ (57)

For the cost minimization problem, the formulation becomes:

Maximize :

n
∑

i=1

kmax
∑

j=1
xij·j·ci

subject to :

n
∑

i=1

kmax
∑

j=1
xij· ln Ri(j) ≥ R∗

kmax
∑

j=1
xij = 1, ∀i ∈ {1, . . . , n}

(58)

The genotype-phenotype mapping described above is also used here to compute
the reliability of the subsystems by handling the ki values that are not allowed for the
corresponding subsystem type.

7. Lower Bound Solution

The minimum system design represents the first step toward achieving an optimized
system design. Let us consider the optimization problem in which the required reliability
R∗ must be achieved at a minimum cost. To obtain a lower bound solution expressed by
the values k′i, i = 1 : n, as the first step for optimization, an improved version of Albert’s
method [22,38] is used. Albert’s method assumes that as spare elements are added, the
reliability of the subsystems tends to become more uniform. This method involves the
following steps:

Step 1. The components are renumbered so that the reliabilities are in increasing order:

r1 ≤ r2 ≤ · · · ≤ rn. (59)

Step 2. Let m be the lower limit to which all subsystems certainly require an additional
allocation. According to Albert’s method, the limit m is adopted so that

rm ≤ R∗ < rm+1, (60)

or m = n in case of rn ≤ R∗.
As an improved version, we propose that the limit m be adopted as the highest value

for which the following condition is met:

rmrm+1 · · · rn < R∗. (61)
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Let R be the reliability level that the first m subsystems must reach. Based on the
condition that:

Rmrm+1rm+2 · · · rn ≥ R∗, (62)

for R the following condition results:

R ≥ (R∗/(rm+1rm+2 · · · rn))
m−1

. (63)

Step 3. With this intermediate result (reliability value R), for each subsystem i, i = 1:m,
depending on the redundancy type, the lower bound k′i is then determined. For example,
for a subsystem i with active redundancy (tr = A), the following equations apply:

1− (1− ri)
ki ≥ R = (1− ri)

ki ≤ 1− R, i = 1 : m (64)

After applying the logarithm we get:

ki ln(1− ri) ≤ ln(1− R), (65)

and then:

ki ≥
ln(1− R)
ln(1− ri)

, i = 1 : m (66)

So, the lower bound as an integer value is:

k′i =
⌊

ln(1− R)
ln(1− ri)

⌋
+ 1, i = 1 : m (67)

where the equations are too complicated, the lower bound is determined iteratively, and
not algebraically.

For other components with higher reliability, the lower bound corresponds to the
non-redundant variant, so that:

k′i = 1, i = m + 1 : n (68)

Based on this lower bound solution, the search for an optimal solution can decrease
significantly.

8. Experimental Results

In order to evaluate the effectiveness of the proposed algorithms, a large number of
optimization problems of the order of thousands were analyzed. For all these optimization
problems, all eight types of redundancy presented in Section 3 are considered. For any of the
n subsystems, the type of redundancy is randomly generated based on the predetermined
weights, as shown in Table 2.

Table 2. Weights for types of redundancy considered in experimental studies.

Type of Redundancy A, B, C, D E, F, G, H

Weight 15% 10%

Component reliabilities and costs are also randomly generated. In terms of cost, the
values are in the range of [1, 50] units for all n subsystems. In terms of reliability, the value
ranges depend on the type of redundancy, as shown in Table 3.

Table 3. Value ranges for component reliability by type of redundancy.

Type of Redundancy A, B, C, D E, F, G, H

Weight [0.9, 1) [0.95, 1)
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Regarding the coefficient α and the reduction factors β and δ, the values are randomly
generated in the ranges:

0 < α < 1, 50 ≤ β ≤ 100, 40 ≤ δ ≤ 80 (69)

In the case of type F redundancy subsystems, the value of the reduction factor γ is
taken as half of the value for β (γ = β/2).

For the optimization problems we address, two levels of complexity were taken into
account, when n = 50 and n = 100. For each case, extensive experimental studies were
performed, including thousands of optimization problems.

For each reliability model, the proposed algorithms were tested taking into account
both optimization problems. Specifically, for any reliability model, the study on the optimal
allocation of redundancy was conducted in this way. First, the issue of redundancy alloca-
tion is considered to maximize system reliability at a maximum allowable cost C∗ = 3×Cns.
Let Rmax be the maximum system reliability obtained in this way. Then, another redundancy
allocation problem is solved to obtain the required reliability R∗ = Rmax at a minimum
cost. In this way, either the solution from the first optimization problem is validated, or an
improved solution is obtained.

This is the final allocation that we consider, reflected by the vector k and for which the
reliability and cost are Rrs and Crs, respectively. For any allocation solution, the redundancy
efficiency is then calculated as follows:

E f =
1− Rsn

1− Rrs
. (70)

Efficiency is a more intuitive indicator that shows how often the risk of a failure for
the redundant system decreases compared to the basic, non-redundant one.

To illustrate this approach, the numerical results of four experimental studies (problems
P1 − P4) are presented below. First, two reliability models for a system with 50 subsystems
are considered (problems P1 and P2). All the details of these models are presented in
Tables 4 and 5.

Each problem is defined by a set of n tuples corresponding to the parameters of
its subsystems. In Table 4, we define a problem with 50 subsystems, therefore we have
50 tuples. The first number in the tuple, i, goes from 1 to 50. The second item of a tuple is
the subsystem type. It is identified by a letter following the convention defined in Section 3.
For example, the first tuple (1: D, 0.989, 39; α = 0.55) has tr1 = D, which corresponds
to hybrid standby redundancy with a warm reserve and possibly other cold ones. The
following two numbers identify the reliability and the cost of a single component. Again,
for the first tuple, the reliability is r1 = 0.989 and the cost is c1 = 39.

Table 4. Problem P1 for n = 50 subsystems.

Structural Details: Tuples of (i: tri,ri, ci) Extended with Parameters αi, βi, or as Appropriate, i = 1:n.

(1: D, 0.989, 39; α = 0.55), (2: C, 0.958, 25), (3: C, 0.905, 41), (4: E, 0.952, 46; β = 50), (5: C, 0.975, 44), (6: A, 0.984, 14),
(7: D, 0.939, 43; α = 0.86), (8: A, 0.944, 13), (9: G, 0.987, 48; δ = 74), (10: A, 0.914, 9), (11: H, 0.955, 32; δ = 65), (12: A, 0.986, 41),
(13: D, 0.957, 16; α = 0.84), (14: D, 0.920, 1; α = 0.31), (15: C, 0.913, 27), (16: A, 0.985, 8), (17: A, 0.902, 9), (18: F, 0.956, 26; β = 80, γ = 40),
(19: B, 0.910, 32), (20: F, 0.986, 42; β = 95, γ = 48), (21: F, 0.968, 47; β = 80, γ = 40), (22: D, 0.965, 47; α = 0.24), (23: H, 0.981, 31; δ = 72),
(24: H, 0.982, 31; δ = 53), (25: F, 0.953, 45; β = 77, γ = 39), (26: B, 0.959, 18), (27: H, 0.962, 13; δ = 49), (28: E, 0.974, 46; β = 98),
(29: C, 0.915, 26), (30: D, 0.983, 18; α = 0.74), (31: H, 0.975, 8; δ = 47), (32: A, 0.988, 12), (33: A, 0.971, 21), (34: C, 0.909, 17),
(35: C, 0.953, 7), (36: C, 0.926, 7), (37: D, 0.989, 8; α = 0.74), (38: C, 0.906, 43), (39: H, 0.971, 11; δ = 66), (40: C, 0.944, 16),
(41: E, 0.989, 21; β = 79), (42: A, 0.907, 36), (43: B, 0.942, 5), (44: C, 0.975, 18), (45: F, 0.961, 42; β = 95, γ = 48), (46: G, 0.979, 8; δ = 60),
(47: E, 0.970, 38; β = 82), (48: H, 0.952, 23; δ = 48), (49: G, 0.958, 15; δ = 68), (50: C, 0.975, 7)

Cns = 1241, C∗ = 3× Cns = 3723
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Table 5. Problem P2 for n = 50 subsystems.

Structural Details: Tuples of (i: tri, ri, ci) Extended with Parameters αi, βi, or as Appropriate, i = 1:n.

(1: D, 0.925, 39; α = 0.42), (2: B, 0.985, 31), (3: E, 0.968, 29; β = 67), (4: A, 0.969, 35), (5: B, 0.904, 36), (6: A, 0.909, 18),
(7: F, 0.973, 6; β = 92, γ = 46), (8: C, 0.976, 10), (9: C, 0.947, 19), (10: C, 0.940, 33), (11: A, 0.931, 22), (12: G, 0.970, 35; δ = 62),
(13: H, 0.966, 14; δ = 69), (14: B, 0.989, 31), (15: A, 0.945, 41), (16: C, 0.974, 17), (17: B, 0.980, 47), (18: H, 0.972, 4; δ = 79),
(19: C, 0.917, 44), (20: B, 0.902, 32), (21: B, 0.981, 1), (22: C, 0.983, 34), (23: F, 0.983, 12; β = 92, γ = 46), (24: G, 0.960, 12; δ = 54),
(25: D, 0.936, 28; α = 0.41), (26: G, 0.965, 11; δ = 56), (27: F, 0.976, 7; β = 53, γ = 26), (28: B, 0.978, 10), (29: H, 0.972, 21; δ = 55),
(30: C, 0.980, 2), (31: G, 0.975, 46; δ = 41), (32: B, 0.901, 46), (33: H, 0.972, 26; δ = 56), (34: C, 0.928, 7), (35: A, 0.909, 5), (36: A, 0.977, 49),
(37: D, 0.973, 22; α = 0.72), (38: C, 0.918, 42), (39: A, 0.930, 29), (40: B, 0.986, 37), (41: G, 0.968, 37; δ = 60), (42: G, 0.977, 31; δ = 41),
(43: F, 0.981, 41; β = 84, γ = 42), (44: G, 0.975, 33; δ = 40), (45: B, 0.975, 25), (46: E, 0.965, 37; β = 81), (47: B, 0.941, 20),
(48: F, 0.979, 8; β = 86, γ = 43), (49: F, 0.964, 40; β = 58, γ = 29), (50: E, 0.967, 25; β = 64)

Cns = 1287, C∗ = 3× Cns = 3861

The rest of the parameters depend on the subsystem type. They were defined in the
mathematical description in Sections 3.1–3.7, but for convenience we include a summary
here with the list of the parameters used for each type of subsystems:

• active redundancy (tr = A), passive redundancy (or cold standby redundancy) (tr = B),
and hybrid standby redundancy with a hot reserve (tr = C) and possibly other cold
ones: no additional parameters;

• hybrid standby redundancy with a warm reserve (tr = D) and possibly other cold
ones: parameter α (the coefficient of reduction of the failure rate for a warm-maintained
reserve compared to the failure rate of the component in operation);

• hybrid redundancy consisting of a TMR structure with control facilities and possibly
cold reserves (tr = E): parameter β (the reduction factor used to express the failure
rate of the decision and control logic of a TMR structure based on the failure rate of
the basic components);

• static redundancy: TMR or 5MR (tr = F): parameters β (as above) and γ (the reduction
factor used to express the failure rate of the decision and control logic of a 5MR
structure based on the failure rate of the basic components);

• reconfigurable TMR/Simplex type structure with possible other cold-maintained spare
components (tr = G) and reconfigurable TMR/Duplex type structure with possible
other cold-maintained spare components (tr = H): parameter δ (the reduction factor
used to express the failure rate of the decision, control and reconfiguration logic of
a TMR/Simplex or a TMR/Duplex structure based on the failure rate of the basic
components).

For example, in Table 4, since subsystem 1 is of type D, its parameter α1 is 0.55. Since
subsystem 4 is of type E, its parameter β4 is 50. The subscripts were omitted to avoid
cluttering the table, but the parameters have distinct values for each subsystem, i.e., they
are αi, βi, γi or δi.

On the last line, one can see the cost of the non-redundant system Cns and the maxi-
mum allowable cost of the system C∗, chosen to be three times greater than Cns. C∗ could
have in fact any value, but greater values do not make the problem harder, because the
main difficulty lies in finding the proper distribution of redundant components in the
“upper” part of the allocation. Greater values for C∗ would lead to a certain number of
redundant components included for all subsystems, and then the main issue would also lie
in this “upper” part of the allocation.

The redundancy allocation for these problems generated by the three proposed al-
gorithms after the first optimization process, that tries to maximize system reliability at a
maximum allowable cost C∗, is presented in Tables 6 and 7.
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Table 6. Best solutions to problem P1 after first optimization (maximizing reliability under cost
constraint: C∗ = 3723).

Algorithm Optimal Allocation: k1, k2, . . . , kn Crs Rrs Ef

SEA 2, 2, 3, 4, 2, 2, 3, 4, 3, 5, 4, 2, 3, 3, 3, 3, 4, 3, 3, 3, 3, 2, 3, 3, 3,
2, 5, 4, 3, 2, 4, 3, 2, 3, 3, 4, 4, 3, 4, 3, 3, 3, 3, 3, 3, 4, 3, 4, 4, 2 3719 0.973398 33.714

RELIVE 2, 3, 3, 4, 2, 2, 3, 3, 3, 4, 4, 2, 3, 4, 3, 2, 4, 3, 3, 3, 3, 2, 3, 3, 3,
3, 4, 4, 3, 2, 4, 2, 2, 3, 3, 4, 2, 3, 4, 3, 3, 3, 3, 2, 3, 4, 4, 4, 4, 3 3719 0.977724 40.260

LP 2, 3, 3, 4, 2, 2, 3, 3, 3, 4, 4, 2, 3, 4, 3, 2, 4, 3, 3, 3, 3, 2, 3, 3, 3,
3, 4, 4, 3, 2, 4, 2, 2, 3, 3, 4, 2, 3, 4, 3, 3, 3, 3, 2, 3, 4, 4, 4, 4, 3 3719 0.977724 40.260

Table 7. Best solutions to problem P2 after first optimization (maximizing reliability under cost
constraint: C∗ = 3861).

Algorithm Optimal Allocation: k1, k2, . . . , kn Crs Rrs Ef

SEA 3, 2, 4, 2, 3, 3, 3, 2, 3, 3, 4, 4, 5, 2, 3, 3, 2, 5, 3, 3, 8, 2, 3, 4, 3,
4, 3, 2, 4, 5, 3, 3, 4, 5, 4, 2, 4, 3, 3, 2, 3, 3, 3, 3, 2, 4, 3, 3, 3, 4 3856 0.978930 41.911

RELIVE 3, 2, 4, 3, 3, 4, 3, 3, 3, 3, 3, 4, 4, 2, 3, 3, 2, 5, 3, 3, 4, 2, 3, 4, 3,
4, 3, 2, 4, 3, 3, 3, 4, 4, 4, 2, 2, 3, 3, 2, 4, 3, 3, 3, 2, 4, 3, 3, 3, 4 3861 0.981474 47.666

LP 3, 2, 4, 3, 3, 4, 3, 3, 3, 3, 3, 4, 4, 2, 3, 3, 2, 5, 3, 3, 4, 2, 3, 4, 3,
4, 3, 2, 4, 3, 3, 3, 4, 4, 4, 2, 2, 3, 3, 2, 4, 3, 3, 3, 2, 4, 3, 3, 3, 4 3861 0.981474 47.666

The solutions after the second optimization process trying to minimize the cost under
the reliability constraint Rrs ≥ R∗ = Rmax are presented in Tables 8 and 9.

Table 8. Best solutions to problem P1 after second optimization (minimizing cost under reliability
constraint R∗).

Algorithm Optimal Allocation: k1, k2, . . . , kn Crs Rrs Ef

SEA
R* = 0.973398

2, 3, 3, 4, 2, 2, 3, 3, 3, 3, 4, 2, 3, 4, 3, 3, 4, 3, 3, 3, 3, 2, 3, 3, 3,
3, 5, 3, 3, 2, 4, 2, 2, 3, 3, 3, 2, 3, 4, 3, 3, 3, 3, 3, 3, 4, 3, 4, 4, 3 3658 0.973465 33.798

RELIVE
R* = 0.977724

2, 3, 3, 4, 2, 2, 3, 3, 3, 4, 4, 2, 3, 4, 3, 2, 4, 3, 3, 3, 3, 2, 3, 3, 3,
3, 4, 4, 3, 2, 4, 2, 2, 3, 3, 4, 2, 3, 4, 3, 3, 3, 3, 2, 3, 4, 4, 4, 4, 3 3719 0.977724 40.260

LP
R* = 0.977724

2, 3, 3, 4, 2, 2, 3, 3, 3, 4, 4, 2, 3, 4, 3, 2, 4, 3, 3, 3, 3, 2, 3, 3, 3,
3, 4, 4, 3, 2, 4, 2, 2, 3, 3, 4, 2, 3, 4, 3, 3, 3, 3, 2, 3, 4, 4, 4, 4, 3 3719 0.977724 40.260

Table 9. Best solutions to problem P2 after second optimization (minimizing cost under reliability
constraint R∗).

Algorithm Optimal Allocation: k1, k2, . . . , kn Crs Rrs Ef

SEA
R* = 0.978930

3, 2, 4, 3, 3, 4, 3, 2, 3, 3, 3, 3, 4, 2, 3, 2, 2, 5, 3, 3, 2, 2, 3, 4, 3,
4, 3, 2, 4, 4, 3, 3, 4, 3, 5, 2, 3, 3, 3, 2, 4, 3, 3, 3, 2, 4, 3, 3, 3, 4 3819 0.979250 42.556

RELIVE
R* = 0.981474

3, 2, 4, 3, 3, 4, 3, 3, 3, 3, 3, 4, 4, 2, 3, 3, 2, 5, 3, 3, 4, 2, 3, 4, 3,
4, 3, 2, 4, 3, 3, 3, 4, 4, 4, 2, 2, 3, 3, 2, 4, 3, 3, 3, 2, 4, 3, 3, 3, 4 3861 0.981474 47.666

LP
R* = 0.981474

3, 2, 4, 3, 3, 4, 3, 3, 3, 3, 3, 4, 4, 2, 3, 3, 2, 5, 3, 3, 4, 2, 3, 4, 3,
4, 3, 2, 4, 3, 3, 3, 4, 4, 4, 2, 2, 3, 3, 2, 4, 3, 3, 3, 2, 4, 3, 3, 3, 4 3861 0.981474 47.666

For the second experiment, more complex reliability models corresponding to a system
with 100 subsystems are considered (problems P3 and P4). These models are presented in
Tables 10 and 11.
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Table 10. Problem P3 for n = 100 subsystems.

Structural Details: Tuples of (i: tri, ri, ci) Extended with Parameters αi, βi, γi or as Appropriate, i = 1:n.

(1: F, 0.987, 9; β = 75, γ = 38), (2: H, 0.970, 16; δ = 40), (3: F, 0.959, 20; β = 82, γ = 41), (4: C, 0.984, 40), (5: B, 0.919, 23),
(6: D, 0.953, 9; α = 0.34), (7: G, 0.985, 8; δ = 44), (8: A, 0.966, 23), (9: H, 0.978, 38; δ = 48), (10: B, 0.908, 5), (11: C, 0.919, 23),
(12: A, 0.946, 18), (13: A, 0.969, 42), (14: F, 0.970, 15; β = 94, γ = 47), (15: B, 0.921, 17), (16: B, 0.913, 32), (17: D, 0.905, 15; α = 0.41),
(18: H, 0.958, 14; δ = 58), (19: B, 0.963, 12), (20: B, 0.930, 29), (21: A, 0.954, 18), (22: C, 0.989, 27), (23: A, 0.990, 7), (24: C, 0.983, 23),
(25: D, 0.928, 10; α = 0.22), (26: E, 0.958, 13; β = 93), (27: A, 0.962, 25), (28: F, 0.967, 20; β = 53, γ = 27), (29: G, 0.970, 36; δ = 67),
(30: B, 0.972, 20), (31: C, 0.943, 23), (32: G, 0.982, 43; δ = 58), (33: H, 0.978, 45; δ = 64), (34: B, 0.952, 20), (35: A, 0.944, 7),
(36: C, 0.969, 19), (37: F, 0.953, 43; β = 57, γ = 29), (38: G, 0.953, 18; δ = 47), (39: H, 0.987, 25; δ = 54), (40: A, 0.940, 25), (41: B, 0.962, 43),
(42: H, 0.958, 31; δ = 77), (43: A, 0.947, 26), (44: E, 0.984, 48; β = 57), (45: E, 0.969, 6; β = 87), (46: A, 0.900, 46), (47: C, 0.945, 47),
(48: G, 0.967, 8; δ = 52), (49: F, 0.961, 27; β = 64, γ = 32), (50: E, 0.971, 44; β = 82), (51: B, 0.912, 47), (52: F, 0.968, 34; β = 52, γ = 26),
(53: G, 0.978, 19; δ = 51), (54: E, 0.966, 32; β = 69), (55: B, 0.946, 35), (56: C, 0.983, 32), (57: H, 0.970, 10; δ = 50),
(58: D, 0.926, 46; α = 0.61), (59: H, 0.975, 30; δ = 77), (60: D, 0.902, 10; α = 0.99), (61: D, 0.982, 33; α = 0.30), (62: A, 0.940, 38),
(63: C, 0.922, 37), (64: F, 0.986, 19; β = 78, γ = 39), (65: G, 0.975, 32; δ = 59), (66: D, 0.938, 30; α = 0.22), (67: B, 0.974, 22),
(68: H, 0.958, 22; δ = 70), (69: E, 0.951, 9; β = 75), (70: G, 0.969, 48; δ = 77), (71: D, 0.905, 38; α = 0.21), (72: E, 0.989, 47; β = 64),
(73: H, 0.962, 38; δ = 63), (74: B, 0.923, 37), (75: H, 0.976, 36; δ = 53), (76: A, 0.937, 36), (77: B, 0.942, 2), (78: C, 0.913, 8),
(79: E, 0.968, 18; β = 69), (80: C, 0.928, 14), (81: B, 0.962, 16), (82: C, 0.924, 17), (83: A, 0.913, 42), (84: A, 0.987, 41), (85: A, 0.960, 22),
(86: D, 0.902, 39; α = 0.72), (87: H, 0.953, 24; δ = 54), (88: B, 0.925, 13), (89: H, 0.953, 35; δ = 65), (90: E, 0.972, 24; β = 86),
(91: D, 0.924, 9; α = 0.48), (92: B, 0.971, 46), (93: H, 0.969, 37; δ = 66), (94: D, 0.980, 15; α = 0.11), (95: E, 0.972, 41; β = 80),
(96: B, 0.922, 6), (97: E, 0.988, 44; β = 54), (98: C, 0.955, 7), (99: F, 0.960, 16; β = 90, γ = 45), (100: A, 0.904, 25)

Cns = 2579, C∗ = 3× Cns = 7737

Table 11. Problem P4 for n = 100 subsystems.

Structural Details: Tuples of (i: tri, ri, ci) Extended with Parameters αi, βi, γi or as Appropriate, i = 1:n.

(1: D, 0.974, 45; α = 0.98), (2: B, 0.902, 13), (3: C, 0.955, 24), (4: D, 0.958, 21; α = 0.91), (5: E, 0.954, 39; β = 82), (6: A, 0.923, 46),
(7: D, 0.952, 8; α = 0.23), (8: B, 0.900, 33), (9: A, 0.926, 19), (10: D, 0.933, 3; α = 0.55), (11: D, 0.973, 4; α = 0.13), (12: E, 0.976, 2; β = 100),
(13: D, 0.912, 12; α = 0.43), (14: G, 0.963, 19; δ = 45), (15: B, 0.975, 27), (16: D, 0.985, 11; α = 0.23), (17: C, 0.984, 34), (18: B, 0.940, 47),
(19: F, 0.981, 35; β = 79, γ = 40), (20: F, 0.961, 20; β = 79, γ = 39), (21: D, 0.929, 17; α = 0.36), (22: H, 0.989, 7; δ = 63),
(23: E, 0.977, 1; β = 57), (24: A, 0.943, 44), (25: F, 0.965, 40; β = 97, γ = 48), (26: E, 0.982, 34; β = 97), (27: F, 0.974, 49; β = 79, γ = 39),
(28: H, 0.969, 12; δ = 42), (29: D, 0.949, 45; α = 0.44), (30: G, 0.977, 11; δ = 56), (31: D, 0.915, 2; α = 0.48), (32: C, 0.975, 10),
(33: A, 0.904, 10), (34: A, 0.928, 16), (35: H, 0.976, 49; δ = 65), (36: E, 0.958, 25; β = 55), (37: D, 0.962, 47; α = 0.15), (38: B, 0.909, 1),
(39: H, 0.960, 37; δ = 44), (40: B, 0.923, 49), (41: C, 0.907, 32), (42: E, 0.985, 49; β = 63), (43: B, 0.918, 4), (44: F, 0.964, 38; β = 90, γ = 45),
(45: A, 0.952, 36), (46: B, 0.945, 41), (47: C, 0.906, 16), (48: D, 0.915, 24; α = 0.70), (49: B, 0.905, 21), (50: A, 0.902, 20), (51: C, 0.969, 15),
(52: H, 0.964, 24; δ = 51), (53: D, 0.916, 44; α = 0.68), (54: E, 0.973, 37; β = 53), (55: C, 0.945, 13), (56: D, 0.976,38; α = 0.23),
(57: D, 0.931, 13; α = 0.09), (58: B, 0.912, 30), (59: F, 0.960, 31; β = 71, γ = 35), (60: A, 0.925, 5), (61: B, 0.958, 46), (62: E, 0.954, 46; β = 57),
(63: F, 0.968, 38; β = 85, γ = 43), (64: B, 0.955, 8), (65: H, 0.958, 1; δ = 59), (66: B, 0.988, 44), (67: D, 0.954, 42; α = 0.19), (68: C, 0.974, 46),
(69: G, 0.977, 19; δ = 47), (70: D, 0.958, 3; α = 0.04), (71: A, 0.922, 13), (72: A, 0.975, 33), (73: C, 0.918, 10), (74: D, 0.946, 36; α = 0.42),
(75: C, 0.918, 38), (76: H, 0.968, 18; δ = 70), (77: F, 0.981, 3; β = 93, γ = 46), (78: H, 0.963, 12; δ = 78), (79: A, 0.981, 8),
(80: D, 0.980, 48; α = 0.97), (81: B, 0.967, 19), (82: C, 0.939, 26), (83: F, 0.967, 40; β = 55, γ = 27), (84: C, 0.947, 25),
(85: D, 0.982, 46; α = 0.07), (86: E, 0.982, 28; β = 84), (87: G, 0.976, 15; δ = 66), (88: D, 0.941, 22; α = 0.44), (89: F, 0.983, 3; β = 97, γ = 49),
(90: C, 0.972, 12), (91: A, 0.976, 13), (92: B, 0.950, 18), (93: D, 0.976, 20; α = 0.07), (94: G, 0.989, 32; δ = 42), (95: H, 0.974, 3; δ = 66),
(96: E, 0.989, 36; β = 93), (97: G, 0.967, 11; δ = 45), (98: H, 0.974, 46; δ = 68), (99: G, 0.956, 38; δ = 74), (100: G, 0.974, 42; δ = 73)

Cns = 2506, C∗ = 3× Cns = 7518

The numerical results after the two optimization processes described above are pre-
sented in Tables 12–15.
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Table 12. Best solutions to problem P3 after first optimization (maximizing reliability under cost
constraint: C∗ = 7737).

Algorithm Optimal Allocation: k1, k2, . . . , kn Crs Rrs Ef

SEA

5, 3, 3, 2, 4, 3, 5, 3, 3, 7, 4, 4, 2, 3, 3, 3, 4, 3, 3, 3, 2, 4, 7, 2, 3,
4, 3, 3, 3, 5, 2, 3, 4, 3, 2, 3, 3, 5, 3, 2, 2, 3, 2, 3, 3, 3, 2, 4, 3, 3,
3, 3, 3, 4, 2, 2, 4, 3, 4, 4, 3, 2, 4, 3, 3, 2, 2, 4, 5, 3, 3, 3, 3, 3, 3,
3, 5, 3, 3, 5, 2, 3, 3, 2, 2, 3, 4, 2, 3, 3, 4, 2, 3, 3, 3, 4, 3, 5, 3, 3

7722 0.894261 9.375

RELIVE

3, 4, 3, 2, 3, 3, 4, 2, 3, 4, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 2, 2, 2, 3,
5, 2, 3, 3, 2, 3, 3, 4, 3, 2, 3, 3, 3, 3, 3, 2, 4, 3, 3, 5, 3, 2, 4, 3, 3,
3, 3, 4, 3, 3, 2, 4, 2, 3, 4, 2, 3, 2, 3, 3, 2, 2, 4, 5, 4, 3, 3, 4, 2, 4,
3, 8, 4, 4, 4, 2, 3, 3, 2, 3, 3, 4, 3, 4, 4, 3, 2, 4, 2, 4, 3, 3, 3, 3, 4

7737 0.927214 13.619

LP

3, 4, 3, 2, 3, 3, 4, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 4, 2, 3, 3, 2, 2, 2, 3,
4, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 4, 3, 3, 2, 4, 3, 3, 4, 3, 3, 4, 3, 4,
3, 3, 3, 4, 2, 2, 4, 3, 4, 4, 2, 3, 3, 3, 3, 3, 2, 4, 4, 3, 3, 3, 4, 3, 3,
3, 3, 4, 4, 3, 2, 3, 3, 2, 3, 3, 4, 3, 4, 4, 3, 2, 4, 2, 4, 3, 3, 3, 3, 3

7737 0.947769 18.979

Table 13. Best solutions to problem P4 after first optimization (maximizing reliability under cost
constraint: C∗ = 7518).

Algorithm Optimal Allocation: k1, k2, . . . , kn Crs Rrs Ef

SEA

2, 3, 3, 3, 4, 3, 4, 4, 3, 3, 4, 4, 4, 3, 3, 3, 2, 2, 3, 3, 4, 3, 4, 2, 3,
4, 3, 4, 2, 4, 4, 4, 4, 5, 3, 4, 2, 5, 4, 3, 3, 3, 8, 3, 3, 2, 3, 3, 4, 4,
3, 3, 3, 3, 3, 2, 4, 2, 3, 3, 2, 3, 3, 2, 5, 2, 2, 2, 5, 3, 3, 4, 5, 2, 3,
5, 3, 5, 3, 2, 3, 5, 3, 3, 3, 3, 3, 2, 3, 2, 3, 3, 2, 4, 5, 3, 5, 4, 3, 3

7499 0.930610 14.281

RELIVE

3, 3, 2, 3, 4, 3, 3, 3, 4, 4, 2, 5, 4, 4, 2, 2, 2, 2, 3, 3, 3, 4, 3, 2, 3,
3, 3, 5, 3, 4, 4, 3, 5, 4, 3, 4, 2, 6, 4, 3, 4, 3, 4, 3, 3, 2, 4, 3, 3, 4,
3, 4, 3, 3, 3, 2, 3, 3, 3, 4, 3, 4, 3, 2, 5, 2, 3, 2, 4, 4, 4, 2, 4, 3, 3,
4, 5, 5, 3, 2, 2, 3, 3, 3, 2, 4, 4, 3, 3, 3, 3, 3, 2, 3, 5, 3, 4, 3, 4, 3

7518 0.952116 20.695

LP

2, 3, 3, 3, 4, 3, 3, 3, 3, 4, 3, 5, 3, 4, 2, 2, 2, 3, 3, 3, 3, 4, 5, 3, 3,
3, 3, 4, 3, 4, 4, 3, 4, 3, 4, 4, 2, 4, 4, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4,
3, 4, 3, 4, 3, 2, 3, 3, 3, 4, 2, 4, 3, 3, 5, 2, 2, 2, 4, 3, 4, 2, 3, 3, 3,
4, 3, 4, 3, 2, 2, 3, 3, 3, 2, 3, 4, 3, 3, 3, 3, 3, 2, 3, 4, 3, 4, 4, 4, 3

7518 0.962884 26.699

Table 14. Best solutions to problem P3 after second optimization (minimizing cost under the constraint
of reliability R∗).

Algorithm Optimal Allocation: k1, k2, . . . , kn Crs Rrs Ef

SEA
R∗ = 0.894261

3, 5, 3, 2, 2, 2, 3, 3, 4, 2, 2, 3, 2, 5, 3, 3, 4, 4, 2, 2, 3, 2, 3, 2, 4,
5, 4, 5, 3, 2, 2, 3, 3, 2, 7, 2, 3, 5, 3, 4, 2, 5, 3, 3, 4, 3, 2, 5, 3, 3,
3, 3, 3, 3, 2, 2, 3, 2, 3, 3, 3, 4, 3, 3, 3, 4, 2, 3, 5, 3, 3, 3, 4, 2, 3,
2, 8, 3, 4, 5, 3, 3, 3, 2, 2, 3, 5, 4, 4, 3, 4, 2, 3, 3, 3, 6, 3, 5, 3, 3

7735 0.896609 9.588

RELIVE
R∗ = 0.927214

3, 4, 3, 2, 3, 4, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 4, 4, 3, 3, 3, 2, 2, 2, 3,
5, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 4, 3, 3, 2, 4, 3, 3, 5, 3, 2, 5, 3, 5,
2, 3, 3, 4, 2, 2, 5, 3, 4, 4, 2, 2, 3, 3, 3, 2, 2, 4, 4, 3, 3, 3, 4, 2, 3,
2, 3, 5, 5, 3, 3, 3, 3, 2, 3, 3, 4, 3, 4, 5, 4, 2, 3, 2, 3, 3, 3, 5, 3, 3

7622 0.927251 13.626

LP
R∗ = 0.947769

3, 4, 3, 2, 3, 3, 4, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 4, 2, 3, 3, 2, 2, 2, 3,
4, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 4, 3, 3, 2, 4, 3, 3, 4, 3, 3, 4, 3, 4,
3, 3, 3, 4, 2, 2, 4, 3, 4, 4, 2, 3, 3, 3, 3, 3, 2, 4, 4, 3, 3, 3, 4, 3, 3,
3, 3, 4, 4, 3, 2, 3, 3, 2, 3, 3, 4, 3, 4, 4, 3, 2, 4, 2, 4, 3, 3, 3, 3, 3

7737 0.947769 18.979
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Table 15. Best solutions to problem P4 after second optimization (minimizing cost under the constraint
of reliability R∗).

Algorithm Optimal Allocation: k1, k2, . . . , kn Crs Rrs Ef

SEA
R∗ = 0.930610

2, 3, 5, 2, 4, 3, 4, 4, 2, 4, 2, 5, 3, 4, 4, 3, 3, 3, 5, 3, 3, 5, 4, 3, 3,
3, 3, 3, 3, 5, 4, 5, 6, 5, 5, 5, 2, 8, 3, 3, 3, 3, 8, 3, 3, 2, 5, 4, 4, 4,
5, 4, 3, 3, 4, 3, 2, 4, 3, 4, 2, 3, 3, 5, 5, 2, 2, 3, 5, 3, 4, 2, 4, 2, 3,
4, 5, 5, 3, 4, 2, 5, 3, 4, 2, 5, 3, 2, 5, 4, 2, 5, 2, 4, 3, 3, 5, 4, 3, 3

8213 0.932688 14.722

RELIVE
R∗ = 0.952116

2, 3, 3, 3, 4, 3, 4, 3, 3, 4, 4, 4, 3, 4, 2, 2, 2, 2, 3, 3, 3, 5, 5, 3, 3,
3, 3, 5, 3, 5, 4, 3, 4, 4, 3, 4, 2, 3, 4, 2, 3, 3, 3, 3, 3, 2, 3, 3, 4, 3,
3, 4, 3, 4, 3, 2, 3, 3, 3, 3, 2, 4, 3, 3, 4, 2, 2, 2, 4, 3, 4, 2, 3, 3, 3,
5, 5, 4, 3, 2, 3, 3, 3, 3, 2, 3, 5, 3, 5, 3, 3, 3, 2, 3, 4, 3, 4, 3, 4, 3

7384 0.952135 20.703

LP
R∗ = 0.962884

2, 3, 3, 3, 4, 3, 3, 3, 3, 4, 3, 5, 3, 4, 2, 2, 2, 3, 3, 3, 3, 4, 5, 3, 3,
3, 3, 4, 3, 4, 4, 3, 4, 3, 4, 4, 2, 4, 4, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 4,
3, 4, 3, 4, 3, 2, 3, 3, 3, 4, 2, 4, 3, 3, 5, 2, 2, 2, 4, 3, 3, 2, 4, 3, 3,
4, 3, 4, 3, 2, 2, 3, 3, 3, 2, 3, 4, 3, 3, 3, 3, 3, 2, 3, 4, 3, 4, 4, 4, 3

7518 0.962884 26.699

For each algorithm, the reliability found by maximization was set as the threshold for
the minimization problem. The goal is to find systems with a lower total cost for the same
reliability. During maximization, if there are more candidates with the same reliability
but different costs, the choice between them is indifferent from the point of view of the
objective function. Therefore, a solution with a higher cost but still less or equal to the cost
threshold can be selected. The second optimization can identify better solutions from both
points of view. This is often the case for SEA, which usually gives suboptimal results for
the first optimization. On the contrary, LP likely finds the optimal solution every time, and
therefore, the results of the second optimization are the same as for the first.

The three optimization algorithms considered in our study generate different solutions.
The following three examples illustrate how we can determine whether one is superior to
the other:

• Consider problem P1 for which the best solutions generated by the three optimization
algorithms are shown in Table 6. All three solutions require 3719 cost units, but the
solution given by SEA achieves lower reliability (0.973398) compared to that given by
RELIVE and LP (0.977724);

• Consider problem P3 for which the best solutions generated by the three optimization
algorithms are shown in Table 12. The solutions given by RELIVE and LP both require
7737 cost units, but the solution generated by LP achieves higher reliability (0.947769)
compared to that given by RELIVE (0.927214);

• Consider problem P4 for which the best solutions generated by the three optimization
algorithms are shown in Table 15. Please note that the solution given by SEA requires
the highest cost and offers the lowest reliability compared to the solutions given by
RELIVE and LP.

For a better comparison of the three proposed optimization algorithms, 1000 randomly
generated problems were considered for both n = 50 and n = 100. The corresponding
results are presented in Figures 8–11. Each graph presents the mean values as the height of
the bars, with the standard deviations represented as two sigmas (one up from the mean,
and one down from the mean).

First, the reliability maximization case for n = 50 was considered. Figure 8 shows some
statistics of the final system reliability obtained by the algorithms. Since the performance
of the evolutionary algorithm greatly depends on the number of generations, two versions
were considered: 1000 and 10,000 generations for SEA, and 100 and 500 generations for
RELIVE.

It must be mentioned that RELIVE performs additional function evaluations during
the hill climbing procedure, therefore it is normal that its number of generations be less
than for SEA. Figure 8a presents the actual efficiency values obtained by the algorithms.
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Figure 8b includes a comparison relative to LP, where in each of the 1000 trials the efficiency
found by LP was considered to correspond to 100% and the efficiency found by the other
algorithms is represented as a percentage of that found by LP. It can be seen that the results
of LP and RELIVE are very close, with LP being slightly better, while those of SEA are of a
lower quality.

It can also be seen that there is no significant difference between the results of SEA
and RELIVE with different numbers of generations: most likely, 1000 and 100 generations,
respectively, are sufficient for such problems.

Similar statistics are displayed in Figure 9 for systems with n = 100. In this case,
since the problems are more difficult, there are greater differences between algorithms. LP
remains the best, while the relative average efficiency of RELIVE solutions is around 75%,
and that of SEA is around 45%.

Figures 10 and 11 show the results obtained for the cost minimization problems. Since
an increase in the number of generations does not seem to be a decisive factor, only 100
and 500 generations were considered for SEA and RELIVE, respectively. The relative
performance of algorithms is similar: LP provides the best results, RELIVE results are
comparable, slightly worse especially for n = 100, while SEA gives an average minimum
cost around 120–130% higher than the optimal solution.

In addition, in order to better verify the effectiveness of the proposed algorithms,
for the 2000 problems studied, the results obtained for the initial variant were compared
with those for two other variants in which the order of the subsystems changed, being
sorted by reliability. The LP algorithm provided the same results for all 2000 problems
checked, which highlights its stability for this type of stress. This is not the case with the
two evolutionary algorithms, RELIVE and SEA, but the differences that occurred were not
statistically significant.
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9. Discussion

In the mathematical model, we assume that the time to failure of a component follows
a negative-exponential distribution. For electronic components or electronic modules,
especially for integrated circuits, the time to failure is usually considered to have such
a distribution. This means that, for a given operating regime, the average failure rate
is constant (and not a function of time). But for mechanical elements, for example, this
assumption must be accepted with caution because of the physical wear and tear that
can occur during system operation. In this case, a Weibull distribution may be more
appropriate.

This assumption is important only for specifying the reliability of the redundant
system. Only under this assumption the reliability function for most of the redundant
structures we considered can be determined analytically, using Markov models, as pre-
sented in Section 3. For other distributions, the evaluation of subsystem reliability is more
complicated and can be done in other ways, e.g., by using a Monte Carlo simulation.

The optimization methods used in this study are not fundamentally affected by this
simplifying assumption. The only change concerns the calculation of the objective function,
which otherwise should be done in a different way. Thus, we appreciate that the compara-
tive performance results of the three optimization methods presented in this article are not
significantly affected by this simplifying assumption.

The systems discussed in this paper are all series-aligned subsystems. Our study does
not cover cases where a system component may have a redundant structure composed of
elements other than the base component, as shown in Figure 12.
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In this situation, the optimization problem must be formulated differently, and it
involves the inclusion of more types of components than those that form the non-redundant
system.

Such cases are encountered in complex systems, e.g., with a network structure. Unfor-
tunately, the conclusions regarding the performance of the three optimization algorithms
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compared in this paper cannot be extended to these more general cases. There is no
evidence to support this.

Another point of discussion is needed about the number of generations used by the two
evolutionary algorithms. The specific number of generations used in the study are powers
of ten so that the reader can have an intuitive view about the results. A fairer comparison
would need to assess their performance, e.g., with the same number of objective function
evaluations, a common setting in the area of biologically-inspired optimization algorithms.
The number of function evaluations is easy to determine in case of SEA. If the population
consists of 50 chromosomes and 10,000 generations are used, then 500,000 evaluations are
needed. However, RELIVE does not have a constant population size. Additional function
evaluations are performed in the hill climbing step, although at most one of these solutions
will be actually used subsequently in the next generation, i.e., the best local improvement.
It was empirically estimated that RELIVE with 100 generations needs about 27 times more
function evaluations than SEA with 1000 generations. Thus, a comparison could be made
with SEA with about 27,000 generations. Still, from the statistical analysis presented above,
we hypothesize that the poorer results of SEA are not caused by a smaller number of
generations than required. The performance in both cases with 1000 and 10,000 generations
is quite similar. Also, the main issue is not execution time, because this is not a real-time
application, but the fact that SEA usually gets stuck into a local optimum because, e.g.,
at the “top” part of the allocation, one cannot include any more components without
exceeding the cost limit. It would require one to add one component to a subsystem and
remove one component from another subsystem in order to improve the optimization.
SEA lacks any mechanisms to do so, and such improvements can come only from “lucky”
mutations and removals of components during the chromosome repairing procedure. On
the other hand, RELIVE has an especially designed mutation for this situation, based on
exchanging a unit between a pair of genes. Because of this, we eventually chose to use the
lower number of generations, i.e., 1000 for SEA and 100 for RELIVE, because in this case
the optimization is faster and it seems to show the hierarchy of the used methods quite
well.

Since evolutionary algorithms are stochastic, more runs may be necessary to obtain a
good solution. In the case studies presented above, we used the following methodology:

• For the results presented in Figures 8–11, each algorithm was run a single time for
a problem and 2000 problems were used, i.e., 1000 problems for n = 50 and another
1000 problems for n = 100. Due to the high number of problems, the results are
statistically significant to assess the performance of the algorithms. These figures show
this statistical analysis in terms of mean and standard deviation;

• For the results presented in Tables 6–9 and 12–15, the best out of ten runs was selected
for SEA and RELIVE, because we were interested in the best solution. The LP algorithm
was run only once.

10. Conclusions

Extensive experimental studies on the allocation of redundancy in large binary systems
with a hybrid structure, which include a number of optimization problems of the order
of thousands, highlight the difficulty of these optimization problems as the number of
subsystems increases. Three algorithms were used for optimization: zero-one integer
programming, a classic evolutionary algorithm and an original evolutionary algorithm,
RELIVE, which combines global search with local fine tuning and includes a number of
mutation strategies in order to escape from local optima.

The proposed algorithms are compared, but their effectiveness was also verified by
solving two optimization problems, properly correlated. Specifically, a converse problem
of minimizing cost for the reliability threshold found in the first case was also attempted as
a means to verify the optimality of the solution and when the solution was not optimal,
to attempt to improve it from either the cost or reliability perspectives, and possibly both.
Experimental results demonstrate that for large instances of the reliability maximization
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problem, zero-one integer programming yields the best results, followed by RELIVE. The
differences become apparent when the number of subsystems is large, e.g., when n = 100.

As future research, the authors intend to extend the study on the optimal allocation of
reliability in hybrid structure binary systems in several directions, as shown below.

For the optimization issues considered in this paper, the type of redundancy is pre-
determined for all subsystems, as shown in Table 4, Table 5, Table 10 or Table 11. But for
certain reliability models this condition may be relaxed. For example, if a redundancy
technique based on majority logic is appropriate for a subsystem, then one of the following
solutions can be adopted: TMR, TMR/Simplex or 5MR, with or without cold-maintained
spare components. The same is true for dynamic redundancy, where active redundancy
or hybrid standby redundancy with a hot component and other passive spare ones can be
adopted. Therefore, the optimization process can be extended to find an optimal solution
that refers to both the type of redundancy and the number of components for each of the n
subsystems.

On the other hand, some redundant structures often adopt the technical solution in
which the components are functionally compatible but different in design to avoid common
errors. For example, this idea applies to majority logic structures (TMR, TMR/Simplex and
5MR) or duplex structure. A future direction of research also refers to these redundant
subsystems with heterogeneous structure.

In reliability engineering the problem of system reliability maximization under two or
more constraints often arises; for example, under cost constraints, but also under weight
and/or volume constraints. We intend to extend the research to also cover this important
problem of maximizing system reliability under two or more constraints.

We also plan to study the transformation of the problem into a multi-objective opti-
mization problem, e.g., maximize the system’s reliability while minimizing the associated
cost. The solutions to be considered would be the solutions around the imposed threshold
for cost or reliability. Previously we saw that an increase in the cost limit of only 5% can lead
to a larger increase in system reliability. By using a multi-objective optimization approach,
such analysis could be more principled.

Another direction of investigation would be to assess the effect of integer-based
representation for the evolutionary algorithms instead of the real-valued representation
used so far.
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Nomenclature

Reliability
The probability that a component or a system works successfully within
a given period of time

Binary system A system in which each component can be either operational or failed

Series-redundant model
A reliability model that reflects a redundant system composed of
subsystems consisting of basic components or redundant structures, and
possibly other spare components
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Notations

n
The number of components in the non-redundant system or the number
of subsystems in the redundant system, as appropriate

T A certain period of time for which reliability is assessed

ri
The reliability of a component of type i, i ∈ {1, . . . , n}, for a given
period of time T

ci The cost of a component of type i
λi The failure rate for a component of type i
ki The number of components that make up the redundant subsystem i
Ri The reliability of subsystem i (subsystem with redundant structure)
Ci The cost of subsystem i
tri The type of redundancy for subsystem i

α, 0 < α < 1
The coefficient of reduction of the failure rate for a warm-maintained
reserve compared to the failure rate of the component in operation

β, β > 1
The reduction factor used to express the failure rate of the decision and
control logic of a TMR structure based on the failure rate of the basic
components

γ, γ > 1
The reduction factor used to express the failure rate of the decision and
control logic of a 5MR structure based on the failure rate of the basic
components

δ, δ > 1
The reduction factor used to express the failure rate of the decision,
control and reconfiguration logic of a TMR/Simplex or a TMR/Duplex
structure based on the failure rate of the basic components

Rns
The reliability of the non-redundant system (system with series
reliability model)

Cns The cost of the non-redundant system

Rrs
The reliability of the redundant system (system with series-redundant
reliability model)

Rrs
The reliability of the redundant system (system with series-redundant
reliability model)

Crs The cost of the redundant system
R∗ The required level of reliability of the system
C∗ The maximum allowable cost of the system
CO A component in operation (active component)
WSC A warm-maintained spare component
CSC A cold-maintained spare component
Note: For notations ri to tri, when the subsystem is not indicated the index is not necessary,
therefore the notations used are r, c, λ and so on.
Assumptions

• For any redundant subsystem, the spare components are considered identical to the basic
one/ones.

• For the components in operating mode or for the spare components maintained in warm
conditions, the time to failure has a negative-exponential distribution.

• The events of failure that may affect the components of the system are stochastically
independent.
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