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Abstract: For analyzing multiple events data, the illness death model is often used to investigate
the covariate–response association for its easy and direct interpretation as well as the flexibility to
accommodate the within-subject dependence. The resulting estimation and inferential procedures
often depend on the subjective specification of the parametric frailty distribution. For certain frailty
distributions, the computation can be challenging as the estimation involves both the nonparametric
component and the parametric component. In this paper, we develop efficient computational methods
for analyzing semi-competing risks data in the illness death model with the general frailty, where
the Minorization–Maximization (MM) principle is employed for yielding accurate estimation and
inferential procedures. Simulation studies are conducted to assess the finite-sample performance of
the proposed method. An application to a real data is also provided for illustration.

Keywords: semi-competing risk gamma frailty model; MM algorithm; marginal likelihood; surrogate
function; colon cancer data
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1. Introduction

In biomedical studies, one subject may experience multiple types of event times. For
example, a subject can experience a terminal event such as death and a non-terminal
event such as disease recurrence where the terminal event can censor the non-terminal
event but not vice versa. The two event times are usually dependent. This gives rise
to semi-competing risks data in which the follow-up of a non-terminal event could be
stopped by a terminal event [1]. Such dependency can be modeled by copula; for instance,
Ref. [1] investigated the degree of association between the two events under the Clayton
copula model, and [2] extended their works to a class of more general copula models
and established the asymptotic normality of this estimator. In addition, the Archimedean
copula was applied by [3] to model such dependency.

In addition to the copula approach, the semi-competing risk data can be modeled by
illness–death model by using the shared frailty to describe the dependence of two events’
time. Many researchers ([4–8]) have developed semi-parametric frailty models to analyze
the semi-competing risks data, and semi-parametric regression analyses ([9,10]) were also
discussed by many researchers. In particular, Ref. [4] proposed a marginal-likelihood
approach under the semi-parametric gamma frailty model. Ref. [11] proposed a joint
frailty–copula model in the meta-analysis of individual patient data with semi-competing
risks. Moreover, Refs. [5,6] proposed semi-parametric Bayesian approaches for the semi-
competing risks data. Unlike the classical likelihood, which only involves fixed parameters,
the hierarchical likelihood is constructed for both fixed parameters and unobserved frailties
at the same time for the semi-parametric shared frailty model by [7]. In addition, Ref. [12]
proposed a broad class of semi-parametric transformation models with random effects for
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the joint analysis of recurrent events and a terminal event. Ref. [8] developed a novel semi-
parametric transformation model for the analysis of semi-competing risks data. In general,
the computation involved in the semi-parametric frailty models is usually intensive, and the
essential cause comes from the calculation of multiple non-parametric baseline cumulative
hazard functions and intractable integrals over the frailty distributions.

Inferences for such semi-competing risks data are generally focused on the covariate
treatment effects on the rates of terminal and non-terminal events and the association
between the two types of events ([9,13–15]). Some recent research also focused on the
parameter estimation procedure of semi-competing risk models.

Ref. [16] provided R packages with many algorithms to deal with independent and
cluster-correlated semi-competing risk data. Ref. [17] applied the Bayesian approach to their
proposed algorithm to conduct variable selection along with the parameter estimation, but
their method is computationally intensive. Similarly, a penalized approach has been applied
to this model by [18], and they applied a more efficient proximal gradient method which
requires a proper warm start. In addition, Ref. [19] proposed an MCEM scheme to update
the parameter estimates. The drawback of this method is that the performance of estimation
is highly reliant on the MCMC sample approximates in the E-step, which also requires an
accurate starting value. Different from their methods, for the parameter estimation part,
we propose applying the MM algorithm in order to achieve better computational efficiency.

The MM algorithm is an important and powerful tool for optimization problems
because it can simplify a difficult optimization problem by decomposing a high-dimensional
objective function into separable low-dimensional functions. So far, the MM algorithm has a
broad range of applications in the field of statistics, such as proportional odds model ([20]),
the shared frailty model ([21]), the quantile regression ([22]), and so on. In this paper, we
used the MM principle and proposed a profile MM algorithm for the semi-competing risk
shared frailty model, which facilitates its pertinent use in high-dimensional situations.

The rest of the paper is organized as follows. In Section 2, we introduce the semi-
competing risk shared frailty model. Section 3 presents the estimation procedures based on
the MM method. In Section 4, we provide two simulation studies to assess their practical
performance. Section 5 illustrates the method by a real data analysis. Some concluding
remarks and discussions are given in Section 6.

2. The Semi-Competing Risk Model with Gamma Frailty

Let Ci, Ti1, and Ti2 be the censoring, non-terminal, and terminal event times for the i-th
subject, respectively, i = 1, . . . , n. Denote by xi a p-dimensional vector of covariates of the
i-th subject. Assume that the censoring time Ci is independent of Ti1 and Ti2 given xi. The
observations can be summarized as Yobs = {Yi1 = Ti1

∧
Yi2, Yi2 = Ti2

∧
Ci, δi1 = I(Ti1 ≤

Yi2), δi2 = I(Ti2 ≤ Ci), xi; i = 1 . . . , n}. If the subject fails before the non-terminal event
occurs, then we define Ti1 = ∞. The illness–death multi-state model for semi-competing
risks data has three states, which are characterized by three intensity or hazard functions:

λ1(t1) = lim
∆→0

P[T1 ∈ [t1, t1 + ∆)|T1 ≥ t1, T2 ≥ t1]/∆, t1 > 0, (2.1)

λ2(t2) = lim
∆→0

P[T2 ∈ [t2, t2 + ∆)|T1 ≥ t2, T2 ≥ t2]/∆, t2 > 0, (2.2)

λ12(t2|t1) = lim
∆→0

P[T2 ∈ [t2, t2 + ∆)|T1 = t1, T2 ≥ t2]/∆, 0 < t1 < t2. (2.3)

Equations (2.1) and (2.2) are the usual rough hazard functions for the competing
risk portion of the model where a non-terminal or terminal event occurs first. Then,
Equation (2.3) defines the hazard rate of the terminal event following the occurrence of
the non-terminal event. Usually, λ12(t2|t1) depend on both t1 and t2. Followed by [4],
since the dependence between non-terminal and terminal event times will be modeled
by shared frailty later, here we assume a Markov process where the transition probability
from the non-terminal event to the terminal event does not depend on the duration of the
non-terminal event, i.e., λ12(t2|t1) = λ12(t2) only depends on t2.
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In practice, Ref. [4] extended the classical semi-competing risk model by incorporating
a common frailty (random effect) to model the dependency between non-terminal and
terminal event times. That is, given the random effect ω and covariates x, the Cox-type
multiplicative models can be expressed in the following form:

λ1(t1|x, ω) = ωλ01(t1) exp{β1x}, t1 > 0, (2.4)

λ2(t2|x, ω) = ωλ02(t2) exp{β2x}, t2 > 0, (2.5)

λ12(t2|t1, x, ω) = ωλ03(t2) exp{β3x}, 0 < t1 < t2, (2.6)

where λ01(t1), λ02(t2), and λ03(t2) are three baseline hazard functions and ω is a subject-
specific random effect or frailty. Usually, the frailties ωi(i = 1, . . . , n) are assumed to be
independent and identically distributed with a density function with a frailty parameter
θ. The common distributions assumed for ω are Gamma(1/θ, 1/θ), Inverse Gaussian (θ,
θ2), and Log-normal(0, θ). Since the likelihood of semi-competing risk model with Gamma
frailty has the explicit form of expression, we assume that the frailty ω has a Gamma
distribution with mean 1, variance θ in the following section, and only show the estimation
procedures for the semi-competing risk models (2.4)–(2.6) with ω ∼ Gamma(1/θ, 1/θ), i.e.,

g(ω) =
ω(1/θ−1) exp(−ω/θ)

Γ(1/θ)θ1/θ
, θ > 0.

Note that θ measures the dependence between non-terminal and terminal event times and
a larger θ indicates a stronger dependence.

For simplicity of expression, we sum up the regression parameters by β = (β1, β2, β3)
and summarize the three baseline hazard by Λ0 = (Λ01, Λ02, Λ03). Then, the parameters of
the semi-competing risk model consists of three parts, and we sum up all parameters by
α = (θ, β, Λ0).

3. The Estimation via MM Method
3.1. Philosophy of the MM Principle

Assume arg maxα∈Θ `(α|Yobs) is our maximization problem, where `(α|Yobs) is the
objective log-likelihood function, α = (α1, . . . , αq)T ∈ Θ are the vector of parameters to be
estimated, and Θ is the parameter space.

For such maximization problems, the MM principle provides a general frame for
constructing iterative algorithms with monotone convergence which involves two M steps.
The first M step aims to construct a surrogate function Q(α|α(k)) by a series of algebraic
inequalities under the following conditions:

Q(α|α(k)) ≤ `(α|Yobs), ∀α, α(k) ∈ Θ, Q(α(k)|α(k)) = `(α(k)|Yobs),

where α(k) denotes the current estimate of α in the k-th iteration. Once the surrogate
function is constructed, the second M step is to maximize the surrogate function Q(·|α(k))
instead of the objective log-likelihood function `(α|Yobs). Then, we update α(k) by α(k+1)

as follows:
α(k+1) = arg max

α∈Θ
Q(α|α(k)).
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3.2. The Estimation Procedure

From Equations (2.4)–(2.6), the observed likelihood function of the semi-competing
risk Gamma frailty model can be written as the form of

L(θ, β, Λ0|Yobs)

=
n

∏
i=1

(
λ01(Yi1)

δi1 λ02(Yi2)
δi2(1−δi1)λ03(Yi2)

δi1δi2(1 + θ)δi1δi2

× exp[δi1β1xi + δi2(1− δi1)β2xi + δi1δi2β3xi]

×{1 + θ[Λ01(Yi1)eβ1xi + Λ02(Yi2)eβ2xi + Λ03(Yi1, Yi2)eβ3xi ]}−
1
θ−δi1−δi2

)
,

then, we have the objective log-likelihood function as follows:

l(θ, β, Λ0|Yobs)

=
n

∑
i=1

(
δi1 log λ01(Yi1) + δi2(1− δi1) log λ02(Yi2) + δi1δi2 log λ03(Yi2)

+ δi1β1xi + δi2(1− δi1)β2xi + δi1δi2β3xi + δi1δi2 log(1 + θ)

− (
1
θ
+ δi1 + δi2) log{1 + θ[Λ01(Yi1)eβ1xi + Λ02(Yi2)eβ2xi + Λ03(Yi1, Yi2)eβ3xi ]}

)
.

(3.1)

Based on the MM principle, it is necessary to find a surrogate function for the objective
log-likelihood function l(θ, β, Λ0|Yobs) in (3.1). We first denote:

A(k)
i = 1 + θk[Λ(k)

01 (Yi1)eβ
(k)
1 xi + Λ(k)

02 (Yi2)eβ
(k)
2 xi + Λ(k)

01 (Yi1, Yi2)eβ
(k)
3 xi
]

and utilize the supporting hyperplane inequality − log(x) ≥ − log(x0)− x−x0
x0

to deal with
the last term of (3.1), then we have the temporary surrogate function as follows:

Q1(θ, β, Λ0|θ(k), β(k), Λ(k)
0 )

=
n

∑
i=1

{
δi1 log λ01(Yi1) + δi2(1− δi1) log λ02(Yi2) + δi1δi2 log λ03(Yi2) + δi1β1xi

+ δi2(1− δi1)β2xi + δi1δi2β3xi + δi1δi2 log(1 + θ)− 1
θ

(
log A(k)

i +
1

A(k)
i

− 1
)

− Λ01(Yi1)eβ1xi + Λ02(Yi2)eβ2xi + Λ03(Yi1, Yi2)eβ3xi

A(k)
i

− (δi1 + δi2)θ[Λ01(Yi1)eβ1xi + Λ02(Yi2)eβ2xi + Λ03(Yi1, Yi2)eβ3xi ]

A(k)
i

+ c1

}
.

where c1 is a constant. Following [23,24], we use the profile estimation method and first
profile out Λ01, Λ02 and Λ03 from Q1(θ, β, Λ0|θ(k), β(k), Λ(k)

0 ) for any given θ and β, this
provides the estimate of Λ01, Λ02, and Λ03 given θ and β as:

dΛ̂01(Yi1) =
δi1

∑n
j=1 I(Yj1 > Yi1)θ(

1
θ + δi1 + δi2)e

β1xj /A(k)
j

, (3.2)

dΛ̂02(Yi2) =
δi2(1− δi1)

∑n
j=1 I(Yj2 > Yi2)θ(

1
θ + δi1 + δi2)e

β2xj /A(k)
j

(3.3)

dΛ̂03(Yi2) =
δi2δi1

∑n
j=1 I(Yj2 > Yi2 > Yj1)θ(

1
θ + δi1 + δi2)e

β3xj /A(k)
j

(3.4)
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Substituting (3.2)–(3.4) into Q1(θ, β, Λ0|θ(k), β(k), Λ(k)
0 ), we have:

Q2(θ, β|θ(k), β(k), Λ(k)
0 )

=
n

∑
i=1

{
− δi1 log

[ n

∑
j=1

I(Yj1 > Yi1)θ(
1
θ
+ δi1 + δi2)e

β1xj /A(k)
j

]

− δi2(1− δi1) log
[ n

∑
j=1

I(Yj2 > Yi2)θ(
1
θ
+ δi1 + δi2)e

β2xj /A(k)
j

]

− δi1δi2 log
[ n

∑
j=1

I(Yj2 > Yi2 > Yj1)θ(
1
θ
+ δi1 + δi2)e

β3xj /A(k)
j

]
+ δi1β1xi + δi2(1− δi1)β2xi + δi1δi2β3xi + δi1δi2 log(1 + θ)

− 1
θ

(
log A(k)

i + 1/A(k)
i − 1

)
+ c2

}
,

(3.5)

where c2 is a constant. For ease of expression, we further denote:

B(k)
1i =

n

∑
j=1

I(Yj1 > Yi1)θ
(k)(

1
θ(k)

+ δi1 + δi2)e
β1xj /A(k)

j ,

B(k)
2i =

n

∑
j=1

I(Yj2 > Yi2)θ
(k)(

1
θ(k)

+ δi1 + δi2)e
β2xj /A(k)

j ,

B(k)
2i =

n

∑
j=1

I(Yj2 > Yi2 > Yj1)θ
(k)(

1
θ(k)

+ δi1 + δi2)e
β3xj /A(k)

j .

and also use the supporting hyperplane inequality to deal with the first three terms of
Q2(θ, β|θ(k), β(k), Λ(k)

0 ) in Equation (3.5), we obtain the surrogate function:

Q3(θ, β|θ(k), β(k), Λ(k)
0 )

=
n

∑
i=1

{
− δi1

B(k)
1i

n

∑
j=1

I(Yj1 > Yi1)

[
eβ1xj

A(k)
j

+
(δj1 + δj2)

A(k)
j

θeβ1xj

]

− δi1(1− δi1)

B(k)
2i

n

∑
j=1

I(Yj2 > Yi2)

[
eβ2xj

A(k)
j

+
(δj1 + δj2)

A(k)
j

θeβ2xj

]

− δi1δi2

B(k)
3i

n

∑
j=1

I(Yj2 > Yi2 > Yj1)

[
eβ3xj

A(k)
j

+
(δj1 + δj2)

A(k)
j

θeβ3xj

]
+ δi1β1xi + δi2(1− δi1)β2xi + δi1δi2β3xi

+ δi1δi2 log(1 + θ)− 1
θ

(
log A(k)

i +
1

A(k)
i

− 1
)}

.

(3.6)

To separate the parameters θ with each β1, β2, and β3, we further minorize the components
θ exp(β1xj), θ exp(β2xj) and θ exp(β3xj) in Q3(θ, β|θ(k), β(k), Λ(k)

0 ) by the inequality:

−
θ exp(β1xj)

θ(k) exp(β
(k)
1 xj)

> −1
2

(
θ

θ(k)

)2

− 1
2

exp(2β1xj)

exp(2β
(k)
1 xj)

,
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then we obtain the final surrogate function:

Q4(θ, β|θ(k), β(k), Λ(k)
0 )

=
n

∑
i=1

{
− δi1

B(k)
1i

n

∑
j=1

I(Yj1 > Yi1)
eβ1xj

A(k)
j

− δi2(1− δi1)

B(k)
2i

n

∑
j=1

I(Yj2 > Yi2)
eβ2xj

A(k)
j

− δi1δi2

B(k)
3i

n

∑
j=1

I(Yj2 > Yi2 > Yj1)
eβ3xj

A(k)
j

− δi1

B(k)
1i

n

∑
j=1

I(Yj1 > Yi1)
δj1 + δj2

A(k)
j

[
exp(β

(k)
1 xj)

2θ(k)
θ2 +

θ(k)

2 exp(β
(k)
1 xj)

exp(2β1xj)

]

− δi2(1− δi1)

B(k)
2i

n

∑
j=1

I(Yj2 > Yi2)
δj1 + δj2

A(k)
j

[
exp(β

(k)
2 xj)

2θ(k)
θ2 +

θ(k)

2 exp(β
(k)
2 xj)

exp(2β2xj)

]

− δi1δi2

B(k)
3i

n

∑
j=1

I(Yj2 > Yi2 > Yj1)
δj1 + δj2

A(k)
j

[
exp(β

(k)
3 xj)

2θ(k)
θ2 +

θ(k)

2 exp(β
(k)
3 xj)

exp(2β3xj)

]

+ δi1β1xi + δi2(1− δi1)β2xi + δi1δi2β3xi + δi1δi2 log(1 + θ)− 1
θ

(
log A(k)

i +
1

A(k)
i

− 1
)}

=̂ Q4(θ|α(k)) + Q4(β1|α(k)) + Q4(β2|α(k)) + Q4(β3|α(k)),

where

Q4(θ|α(k))

=
n

∑
i=1

{
δi1δi2 log(1 + θ)− 1

θ

(
log A(k)

i +
1

A(k)
i

− 1
)

− θ2

2θ(k)

[
δi1

B(l)
1i

n

∑
j=1

I(Yj1 > Yi1)
(δj1 + δj2) exp(β

(k)
1 xj)

A(k)
j

+
δi2(1− δi1)

B(k)
2i

n

∑
j=1

I(Yj2 > Yi2)
(δj1 + δj2) exp(β

(k)
2 xj)

A(k)
j

+
δi1δi2

B(k)
3i

n

∑
j=1

I(Yj2 > Yi2 > Yj1)
(δj1 + δj2) exp(β

(k)
3 xj)

A(k)
j

]}
,

Q4(β1|α(k))

=
n

∑
i=1

{
δi1β1xi −

δi1

Bk
1i

n

∑
j=1

I(Yj1 > Yi1)

[
eβ1xj

A(k)
J

+
θ(k)(δj1 + δj2) exp(2β1xj)

2A(k)
j exp(β

(k)
1 )

]}
,

Q4(β2|α(k))

=
n

∑
i=1

{
δi2(1− δi1)β2xi −

δi2(1− δi1)

Bk
2i

n

∑
j=1

I(Yj2 > Yi2)

[
eβ2xj

A(k)
J

+
θ(k)(δj1 + δj2) exp(2β2xj)

2A(k)
j exp(β

(k)
2 )

]}
,

Q4(β3|α(k))

=
n

∑
i=1

{
δi1δi2β3xi −

δi1δi2

Bk
3i

n

∑
j=1

I(Yj2 > Yi2 > Yj1)

[
eβ3xj

A(k)
j

+
θ(k)(δj1 + δj2) exp(2β3xj)

2A(k)
j exp(β

(k)
3 )

]}
.

From (3.6), it can be seen that the frailty parameter θ and the regression parameters β1, β2,
and β3 are separated from each other. Accordingly, the resulting MM algorithm only
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involves a series of separated univariate optimizations in the next maximization step and
matrix inversion is not needed. The Algorithm 1 is stated as follows.

Algorithm 1 The estimation procedures via MM method.

Input: (θ(0), β(0), Λ(0)
0 )

k← 1
while εk > 1e− 7 do

S1. Update θ(k) and β(k) via Equation (3.6) given (θ(k−1), β(k−1), Λ(k−1)
0 )

S2. Estimate Λ(k)
0 using (3.2)–(3.4) given θ(k) and β(k)

S3. εk = l(θ(k), β(k), Λ(k)
0 |Yobs)− l(θ(k−1), β(k−1), Λ(k−1)

0 |Yobs)
k← k + 1

end while
Output: (θ(k), β(k), Λ(k)

0 )

The variance for the estimates in the model involves three non-parametric baseline
transition functions, frailty variance, and regression coefficients as shown in [4]. Hence,
there is no readily available plug-in formula for estimating it. However, the resampling
method such as the bootstrap can be employed to calibrate it and construct confidence
interval and the associate inferential procedures.

4. Simulation Study

To evaluate the finite sample performance of the proposed methods, we conducted the
following simulation studies. As emphasized in the Section 2, the purpose of incorporating
subject specific frailty terms is to account for dependence, which is not taken into account
by the measured covariates.

Scenario 1: We first independently simulate n observations from the semi-competing
risk models (2.4) and (2.6) with ω ∼ Gamma(1/θ, 1/θ). We consider one covariate X in the
model which follows a standard normal distribution. The censoring times were generated
from independent uniform distribution to yield censoring proportions of both a terminal
and non-terminal event at around 30% or 50%. Let λ01(t1) = λ02(t2) = 1, λ03(t2) = 2,
and β1 = β2 = β3 = 0.5. We choose the true value of θ from Ωθ = {0.5, 1, 2} and pick the
sample size n from Ωn = {250, 500}.

Based on 500 replications, the average values of the biases (Bias) for estimated frailty
and regression parameters, their empirical standard deviations (SD), and the average
computation times (T) are summarized in Tables 1 and 2. From the results of Tables 1 and 2,
we find that the SD of each parameter is relatively small which indicating the effectiveness
of MM algorithm for the illness–death model with gamma frailty. It can also be found that
most the SDs of θ are larger than that of β1, β2, β3 and Λ01, Λ02, Λ03. With the increase in
the true values of θ, the SD of θ will increase accordingly, while the SD of θ will decrease
with the increase in sample size. When the censoring proportion increases from 30% to
50%, the SD of θ is increased accordingly, but the SDs of other parameters, i.e., β1, β2, β3
and Λ01, Λ02, Λ03, do not show a clear trend of change. A larger value of theta requires
longer computation time.

Furthermore, we plot the estimated cumulative baseline hazard function Λ01(t) and
Λ03(t) by the proposed method based on 20 replications (with red color) together with the
true cumulative baseline hazard function Λ01(t) = t and Λ03(t) = 2t (with black color)
under the model with gamma frailty in Figures 1 and 2 with sample size 500. Since both
cumulative baseline hazard functions Λ01(t) and Λ02(t) have the same expression, here,
we only plot the estimated cumulative baseline hazard function Λ01(t).
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Table 1. The simulation results of the illness–death model with gamma frailty at 30% censoring proportion.

θtrue Parameter
n = 250

Parameter
n = 500

Bias SD Bias SD

0.5

T = 0.1957 T = 0.6736
θ −0.088 0.128 θ −0.072 0.091

β1 0.045 0.173 β1 −0.032 0.066
β2 0.032 0.196 β2 −0.021 0.077
β3 0.044 0.118 β3 −0.023 0.087

Λ01(1) −0.036 0.080 Λ01(1) −0.024 0.063
Λ02(1) 0.023 0.061 Λ02(1) −0.013 0.044
Λ03(1) 0.045 0.302 Λ03(1) −0.038 0.227

1

T = 0.2576 T = 0.8667
θ 0.098 0.173 θ 0.088 0.135

β1 −0.058 0.096 β1 −0.032 0.089
β2 0.045 0.094 β2 0.025 0.073
β3 −0.043 0.133 β3 −0.022 0.084

Λ01(1) −0.031 0.067 Λ01(1) −0.022 0.045
Λ02(1) 0.029 0.058 Λ02(1) −0.021 0.034
Λ03(1) 0.051 0.336 Λ03(1) 0.031 0.284

2

T = 0.3157 T = 1.1273
θ 0.101 0.184 θ 0.098 0.171

β1 0.075 0.097 β1 −0.045 0.073
β2 0.056 0.107 β2 −0.042 0.069
β3 0.061 0.137 β3 0.051 0.086

Λ01(1) −0.033 0.062 Λ01(1) −0.029 0.05
Λ02(1) −0.028 0.055 Λ02(1) −0.024 0.04
Λ03(1) −0.054 0.341 Λ03(1) −0.045 0.246

Table 2. The simulation results of the illness–death model with gamma frailty at 50% censoring proportion.

θtrue Parameter
n = 250

Parameter
n = 500

Bias SD Bias SD

0.5

T = 0.2250 T = 0.7070
θ −0.148 0.132 θ −0.114 0.104

β1 −0.029 0.107 β1 −0.024 0.078
β2 −0.036 0.116 β2 −0.031 0.083
β3 −0.016 0.175 β3 −0.014 0.113

Λ01(1) −0.031 0.08 Λ01(1) 0.029 0.055
Λ02(1) 0.021 0.055 Λ02(1) 0.022 0.039
Λ03(1) 0.053 0.232 Λ03(1) −0.048 0.173

1

T = 0.2966 T = 1.0153
θ −0.161 0.176 θ −0.143 0.147

β1 −0.032 0.120 β1 −0.028 0.083
β2 0.033 0.129 β2 −0.027 0.088
β3 0.02 0.187 β3 0.018 0.126

Λ01(1) −0.037 0.066 Λ01(1) −0.034 0.048
Λ02(1) 0.028 0.051 Λ02(1) −0.025 0.035
Λ03(1) 0.061 0.297 Λ03(1) −0.055 0.201

2

T = 0.3883 T = 1.2907
θ 0.173 0.194 θ −0.161 0.172

β1 0.041 0.119 β1 −0.034 0.083
β2 −0.036 0.119 β2 −0.031 0.086
β3 0.025 0.184 β3 0.022 0.138

Λ01(1) −0.041 0.063 Λ01(1) −0.038 0.044
Λ02(1) −0.032 0.047 Λ02(1) −0.029 0.038
Λ03(1) −0.068 0.293 Λ03(1) −0.060 0.232
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Figure 1. Simulation results for estimated cumulative baseline hazard function Λ01(t) by the proposed
method based on 20 replications (with red color) together with the true cumulative baseline hazard
function Λ01(t) = t (with black color) under the model with gamma frailty in Scenario 1 with sample
size 500.

Figure 2. Simulation results for estimated cumulative baseline hazard function Λ03(t) by the proposed
method based on 20 replications (with red color) together with the true cumulative baseline hazard
function Λ03(t) = 2t (with black color) under the model with gamma frailty in Scenario 1 with
sample size 500.

Scenario 2: We then independently simulate n observations from the semi-competing
risk models (2.4)–(2.6) with ω ∼ Log-normal(0, θ). Similarly, we consider one covariate X
with standard normal distribution in the model. The censoring times were generated from
independent uniform distribution to yield censoring proportions of non-terminal event at
around 65% and terminal event at around 30%. Let λ01(t1) = 0.5, λ02(t2) = 1, λ03(t2) = 3
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and β1 = β2 = 0.5, β3 = 1. We choose the true value of θ from Ωθ = {0.1, 0.5, 1} and pick
the sample size n from Ωn = {250, 500}.

Based on 500 replications, the average values of the biases (Bias) of estimated frailty
and regression parameters, their empirical standard deviations (SD), and the average
computation times (T) are summarized in Table 3. From the results of Table 3, we find that
the SDs of parameters β1, β2, β3 and Λ01, Λ02, Λ03 are relatively small, especially when the
sample size is large. It can also be found that the SDs of θ are larger than that of other
parameters. With the increase in the true values of θ, the SD of θ will increase accordingly,
while the SD of θ will decrease with the increase in sample size. Compared to the model
in Scenario 1, some parameters such as the frailty parameter in the semi-competing risk
model with log-normal frailty are more difficult to estimate. Similar with Scenario 1, a
larger value of θ requires longer computation time.

Table 3. The simulation results of the illness–death model with log-normal frailty.

θtrue Parameter
n = 250

Parameter
n = 500

Bias SD Bias SD

0.1

T = 0.4923 T = 1.3003
θ −0.139 0.106 θ −0.131 0.098

β1 0.030 0.114 β1 0.030 0.088
β2 0.035 0.084 β2 0.024 0.064
β3 0.075 0.143 β3 0.075 0.120

Λ01(1) 0.004 0.067 Λ01(1) 0.015 0.054
Λ02(1) −0.104 0.084 Λ02(1) −0.112 0.066
Λ03(1) −0.050 0.489 Λ03(1) −0.043 0.350

0.5

T = 0.9377 T = 2.6653
θ −0.163 0.147 θ −0.159 0.144

β1 −0.050 0.110 β1 −0.038 0.091
β2 −0.049 0.076 β2 −0.026 0.062
β3 −0.157 0.142 β3 −0.101 0.107

Λ01(1) −0.028 0.058 Λ01(1) −0.024 0.050
Λ02(1) −0.155 0.071 Λ02(1) −0.151 0.054
Λ03(1) 0.262 0.569 Λ03(1) 0.262 0.382

1

T = 1.2817 T = 3.6046
θ −0.178 0.145 θ −0.160 0.145

β1 −0.072 0.109 β1 −0.064 0.088
β2 −0.065 0.081 β2 −0.063 0.064
β3 −0.225 0.136 β3 −0.179 0.105

Λ01(1) −0.072 0.060 Λ01(1) −0.050 0.046
Λ02(1) −0.227 0.072 Λ02(1) −0.166 0.056
Λ03(1) 0.619 0.694 Λ03(1) 0.484 0.514

5. Real Data Analysis

Colon cancer is a serious type of cancer and has a high mortality rate. This type of
cancer is not easy to cure since even if all the apparent diseased tissue can be surgically
removed, there still exists other residual tumor parts which are not observable. Therefore,
the cancer-recurrence event is commonly observed in clinical trials. For those patients who
experience a recurrence, they will be subject to a higher risk of mortality. Thus, it is crucial to
find the therapy which can significantly reduce the cancer-recurrence rate. In the following
illustration, the colon cancer data provided by [25] are applied to our model. A total of
929 patients with Stage C disease are included for the modeling. Among them, 304 patients
received levamisole plus fluorouracil, which is the covariate where the effect will be tested.
A total of 468 patients developed recurrence, and 414 of them died. There are three stages
recorded: State 1 stands for the stage that the patient is alive and disease-free. Stage 2
represents the condition that the patient is alive but with a recurrent diagnosis of cancer,
while stage 3 denotes death. A general therapy for this type of cancer is the combination of
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levamisole and fluorouracil, which is denoted by the treatment Lev+5-FU [26]. Previous
research has proven the effectiveness of this therapy on reducing the cancer-recurrence rate.
We will show the significance of this covariate on increasing the state transition hazard rate
under our model framework.

Similar to the simulation study, we report the estimate of β1, β2, and β3 along with
the corresponding baseline hazard. The observations (Xi, Ci, Ti) from the original dataset
are re-sampled with replacement in non-parametric way, where α̂(k) = (θ̂(k), β̂

(k)
1 , β̂

(k)
2 , β̂

(k)
3 )

is the parameter estimation result under kth bootstrap. Let ¯̂α be the mean of estimated
parameters with the number of resamples equals to r. The estimated standard error is:

SE =
( 1

r− 1

r

∑
k=1

(α̂(k) − ¯̂α)2) 1
2 .

In addition, the 95% bootstrap CI from Table 4 is constructed using 2.5% and 97.5%
quantiles of {α̂(k)}r

k=1 with r = 1000. As shown in Table 4, the treatment with therapy
Lev+5-FU can significantly reduce the probability of occurrence of recurrent event. How-
ever, we can observe that this therapy has little effect to the decrease in mortality. Both β̂2
and β̂3 have a p-value around 0.4, which indicates the insignificance of these two parame-
ters. The cumulative hazard rate for different transitions are presented by Figure 3 and it
indicates that a patient who experiences the recurrence of this disease will have very high
mortality rate in the following years. In addition, we also observe the high hazard rate for
the recurrence of colon cancer, which shows the importance of therapies such as Lev+5-FU,
which can significantly reduce the occurrence of such event.

Table 4. The fitting results of colon cancer data.

Parameter Est. SE p-Value 95% Bootstrap
CI

θ 71.56 3.50 <0.001 [66.97, 75.62]
β1 −0.735 0.180 <0.001 [−1.038, −0.473]
β2 −0.036 0.373 0.397 [−0.696, 0.532]
β3 0.054 0.167 0.378 [−0.220, 0.313]

Figure 3. Cumulative hazard for different transitions in terms of days.
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6. Discussion

In this paper, we proposed an efficient MM algorithm for the non-parametric maxi-
mum likelihood estimation of the illness–death model with a gamma frailty. The paper is
motivated by the feature of colon cancer data while the existing method proposed by [4] has
a high computational cost on the parameter estimation process. The proposed MM method
can decompose the high-dimensional optimization problem into a sum of univariate op-
timization problems by the construction of a simple surrogate function which provides
accurate and efficient simulation results. This MM approach avoids matrix inversion and
can provide a toolkit for developing more efficient algorithms in a broad range of statistical
optimization problems. Therefore, the proposed MM algorithm can help to estimate the
parameters from the semi-competing risk model more efficiently.

In this paper, the explicit form of the marginal likelihood for the illness–death model
can be derived. Therefore, the iteration steps do not involve integration calculation. How-
ever, in general, the marginal likelihood of the illness–death model with shared frailty is
usually hard to obtain as an explicit form of the marginal likelihood is not available. For
example, if the illness–death model involves a log-normal frailty or with correlated frailties,
the intractable integral of the shared frailty will lead to a more complicated marginal likeli-
hood. Even in the case of gamma frailty, the complicated model setup with three covariates
and three non-parametric baseline hazard causes difficulties in parameter estimation. The
inclusion of intractable integrals given general shared frailty will lead to a much higher
computational cost and lower estimation accuracy. Therefore, even though our method can
be extended to handling the illness–death model with general frailty, further modifications
should be made to the algorithm to improve the estimation efficiency.
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