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Abstract: The present paper deals with two of the most significant behaviors in the theory of
dynamical systems: the uniform exponential dichotomy and the uniform polynomial dichotomy for
evolution operators in Banach spaces. Assuming that the evolution operator has uniform exponential
growth, respectively uniform polynomial growth, we give some characterizations for the uniform
exponential dichotomy, respectively for the uniform polynomial dichotomy. The proof techniques that
we use for the polynomial case are new. In addition, connections between the concepts approached
are established.
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1. Introduction

The qualitative theory of evolution equations in Banach spaces represents a topic of
great interest in the last few years. One of the most important behaviors in the theory of
dynamical systems is the exponential dichotomy. For an evolution equation on a Banach
space, the exponential dichotomy refers to the existence of a projections family denoted by
{P(t)} that leads to a decomposition of the space, at every moment, into a direct sum of a
stable subspace where the norms decay exponentially as t→ ∞ and an unstable subspace
where the norms grow exponentially as t→ ∞.

The exponential dichotomy was studied by Perron [1] and which has gained promi-
nence since the appearance of two fundamental monographs of J. L. Massera and J. J.
Schäffer [2] , J. L. Daleckii and M. G. Krein [3]. These were followed by the important books
of Coppel [4], Chicone and Latushkin [5], who obtained significant results in the infinite
dimensional spaces.

In recent years, according to Sacker and Sell [6] research, the theory of exponential
dichotomy has proven to be a useful method for studying the stable, unstable and center
manifolds, perturbation theories, bifurcation theory, linearization theories, homoclinic
behavior and many other domains. This asymptotic property was intensively studied
in both finite and infinite dimensional cases, and it was generalized in many papers
(see [7–13] and the references therein).

Another direction of studying the dichotomic behavior refers to the situation when
the asymptotic behaviors are of a polynomial type. In this case, we stress the concepts of
nonuniform polynomial dichotomy, which were introduced independently by Barreira and
Valls in [14] for the continuous case of evolution operators and respectively by Bento and
Silva in [15] for discrete time systems.

Another line of research regarding the topics on dichotomies is represented by the
relationship between dichotomy and admissibility. There are many papers which present
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different input—output techniques used in order to characterize both exponential and
polynomial dichotomy. The most recent results in this direction were obtained by Drag-
icevic, Sasu and Sasu ([16,17]) who gave some new admissibility criteria for polynomial
dichotomies of discrete nonautonomous systems on the half-line.

Our work is motivated by the great number of domains that are based on the theory
of exponential and polynomial dichotomy: impulsive equations [18], delay evolution equa-
tions [19], discrete dynamical systems [20], and dynamical equations on time scales [21].

The main aim of this paper is to give some necessary and sufficient conditions for the
uniform exponential dichotomy and for the uniform polynomial dichotomy of evolution
operators in Banach spaces. More precisely, considering an evolution operator with uniform
exponential growth respectively uniform polynomial growth and a family of projections
invariant to the evolution operator, we obtain different characterizations of Datko type for
both concepts, as well as characterizations that use Lyapunov function in order to describe a
dichotomic behavior. Moreover, we give a new method of proving the polynomial behavior,
and we establish connections between concepts.

2. Notations and Definitions

Let X be a real or complex Banach space and B(X) the Banach algebra of all bounded
linear operators acting on X. The norms on X and on B(X) will be denoted by ‖.‖ .
The identity operator on X is denoted by I. We also denote by

∆ = {(t, s) ∈ R2
+ : t ≥ s} and T = {(t, s, t0) ∈ R3

+ : t ≥ s ≥ t0}.

Definition 1. An application U : ∆→ B(X) is said to be an evolution operator on X if

(e1) U(t, t) = I for every t ≥ 0

(e2) U(t, s)U(s, t0) = U(t, t0) for all (t, s, t0) ∈ T.

Definition 2. An evolution operator U : ∆→ B(X) is said to be strongly measurable if, for all
(s, x) ∈ R+ × X, the mapping t 7→ ‖U(t, s)x‖ is measurable on [s, ∞).

Definition 3. An application P : R+ → B(X) is said to be a projection family on X if P2(t) =
P(t), for all t ≥ 0.

Remark 1. If P : R+ → B(X) is a projection family on X, then the mapping Q : R+ →
B(X), Q(t) = I − P(t) is also a projection family on X, which is called the complementary
projection of P.

Definition 4. A projection family P : R+ → B(X) is said to be invariant to the evolution operator
U : ∆→ B(X) if

U(t, s)P(s) = P(t)U(t, s),

for all (t, s) ∈ ∆.

In what follows, if P : R+ → B(X) is an invariant projection family to the evolution
operator U : ∆→ B(X), we will say that (U, P) is a dichotomic pair.

Definition 5. The pair (U, P) is called uniformly exponentially dichotomic (u.e.d.) if there are
N ≥ 1 and ν > 0 such that:

(ued1) ‖U(t, s)P(s)x‖ ≤ Ne−ν(t−s)‖P(s)x‖,
(ued2) eν(t−s)‖Q(s)x‖ ≤ N‖U(t, s)Q(s)x‖,

for all (t, s, x) ∈ ∆× X.

Remark 2. Let (U, P) be a dichotomic pair. Then, (U, P) is uniformly exponentially dichotomic if
and only if there are N ≥ 1 and ν > 0 such that:
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(ued′1) ‖U(t, t0)P(t0)x0‖ ≤ Ne−ν(t−s)‖U(s, t0)P(t0)x0‖

(ued′2) eν(t−s)‖U(s, t0)Q(t0)x0‖ ≤ N‖U(t, t0)Q(t0)x0‖,

for all (t, s, t0, x0) ∈ T × X.

Definition 6. We say that the dichotomic pair (U, P) has uniform exponential growth (u.e.g.) if
there are M ≥ 1 and ω > 0 such that:

(ueg1) ‖U(t, s)P(s)x‖ ≤ Meω(t−s)‖P(s)x‖,
(ueg2) e−ω(t−s)‖Q(s)x‖ ≤ M‖U(t, s)Q(s)x‖,

for all (t, s, x) ∈ ∆× X.

Remark 3. The dichotomic pair (U, P) has uniform exponential growth if and only if there are
M ≥ 1 and ω > 0 such that:

(ueg′1) ‖U(t, t0)P(t0)x0‖ ≤ Meω(t−s)‖U(s, t0)P(t0)x0‖

(ueg′2) e−ω(t−s)‖U(s, t0)Q(t0)x0‖ ≤ M‖U(t, t0)Q(t0)x0‖,

for all (t, s, t0, x0) ∈ T × X.

Definition 7. The pair (U, P) is called uniformly polynomially dichotomic (u.p.d.) if there are
N ≥ 1 and ν > 0 such that:

(upd1) (t + 1)ν‖U(t, s)P(s)x‖ ≤ N(s + 1)ν‖P(s)x‖
(upd2) (t + 1)ν‖Q(s)x‖ ≤ N(s + 1)ν‖U(t, s)Q(s)x‖,

for all (t, s, x) ∈ ∆× X.

Remark 4. Let (U, P) be a dichotomic pair. Then, (U, P) is uniformly polynomially dichotomic if
and only if there are N ≥ 1 and ν > 0 such that:

(upd′1) (t + 1)ν‖U(t, t0)P(t0)x0‖ ≤ N(s + 1)ν‖U(s, t0)P(t0)x0‖
(upd′2) (t + 1)ν‖U(s, t0)Q(t0)x0‖ ≤ N(s + 1)ν‖U(t, t0)Q(t0)x0‖,

for all (t, s, t0, x0) ∈ T × X.

Definition 8. We say that the dichotomic pair (U, P) has uniform polynomial growth (u.p.g.) if
there are M ≥ 1 and ω > 0 such that:

(upg1) (s + 1)ω‖U(t, s)P(s)x‖ ≤ M(t + 1)ω‖P(s)x‖
(upg2) (s + 1)ω‖Q(s)x‖ ≤ M(t + 1)ω‖U(t, s)Q(s)x‖,

for all (t, s, x) ∈ ∆× X.

Remark 5. The dichotomic pair (U, P) has uniform polynomial growth if and only if there are
M ≥ 1 and ω > 0 such that:

(upg′1) (s + 1)ω‖U(t, t0)P(t0)x0‖ ≤ M(t + 1)ω‖U(s, t0)P(t0)x0‖
(upg′2) (s + 1)ω‖U(s, t0)Q(t0)x0‖ ≤ M(t + 1)ω‖U(t, t0)Q(t0)x0‖,

for all (t, s, t0, x0) ∈ T × X.

Definition 9. The pair (U, P) is called uniformly dichotomic (u.d.) if there exists N ≥ 1 such
that:

(ud1) ‖U(t, s)P(s)x‖ ≤ N‖P(s)x‖
(ud2) ‖Q(s)x‖ ≤ N‖U(t, s)Q(s)x‖,
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for all (t, s, x) ∈ ∆× X.

Remark 6. The connections between the concepts defined above are given by the following diagram:

u.p.g. ⇒ u.e.g
⇑ ⇑

u.p.d. ⇐ u.e.d.

In general, the converse implications are not true, as it can be seen in the examples described below.
We consider X = R2 and the projections families P : R+ → B(X) defined by P(t)x = (x1, 0) and
Q(t)x = (0, x2), for all t ≥ 0 and (x1, x2) ∈ X.

Example 1. Let us consider the evolution operator

U : ∆→ B(X), U(t, s)x =

(
u(s)
u(t)

x1,
u(t)
u(s)

x2

)
,

where u : R+ → [1, ∞), u(t) = t + 1.
Then, (U, P) has u.p.g., but it is not u.p.d.

Proof. It is easy to see that the pair (U, P) has u.p.g. for M = ω = 1. In addition, if we
suppose that (U, P) is u.p.d., it results that there exist N ≥ 1 and ν > 0 such that (upd1)
and (upd2) are satisfied for all t ≥ s ≥ 0. In particular, for s = 0 and t → ∞, we obtain
∞ ≤ N, absurd.

Example 2. We consider the application u : R+ → [1, ∞), u(t) = et and the evolution operator

U : ∆→ B(X), U(t, s)x =

(
u(t)
u(s)

x1,
u(s)
u(t)

x2

)
.

Then, the pair (U, P) has u.e.g., but it does not have u.p.g., and it is not u.e.d.

Proof. It is similar to the proof of Example 1.

Remark 7. An example of a dichotomic pair which is u.p.d., but it is not u.e.d. can be found in [22].

3. Uniform Exponential Dichotomy

In this section, we give some characterizations for the uniform exponential dichotomy
behavior. The first theorem includes a logarithmic criterion, a majorization criterion and a
criterion of Hai ([23]) type. Then, we give three integral characterizations of the Datko ([24])
type and three necessary and sufficient conditions which use Lyapunov functions.

Theorem 1. Let (U, P) be a dichotomic pair with uniform exponential growth. Then, the following
assertions are equivalent:

(1) (U, P) is uniformly exponentially dichotomic.

(2) there exists L > 1 such that:

(uled1) (t− s)‖U(t, s)P(s)x‖ ≤ L‖P(s)x‖
(uled2) (t− s)‖Q(s)x‖ ≤ L‖U(t, s)Q(s)x‖,

for all (t, s, x) ∈ ∆× X.

(3) there are L > 1 and ϕ : R+ → R+ a nondecreasing application, with lim
t→∞

ϕ(t) = ∞ and

ϕ(1) = 1 such that:

(umed1) ϕ(t− s)‖U(t, s)P(s)x‖ ≤ L‖P(s)x‖
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(umed2) ϕ(t− s)‖Q(s)x‖ ≤ L‖U(t, s)Q(s)x‖,

for all (t, s, x) ∈ ∆× X.

(4) there are r > 1 and c ∈ (0, 1) such that:

(uHed1) ‖U(r + s, s)P(s)x‖ ≤ c‖P(s)x‖
(uHed2) ‖Q(s)x‖ ≤ c‖U(r + s, s)Q(s)x‖,

for all (s, x) ∈ R+ × X.

Proof. (1)⇒ (2) For (uled1) see [8].
Moreover,

(t− s)‖Q(s)x‖ ≤ N(t− s)e−ν(t−s)‖U(t, s)Q(s)x‖ = N · t− s
eν(t−s)

‖U(t, s)Q(s)x‖ ≤

≤ N
νe
‖U(t, s)Q(s)x‖ ≤ L‖U(t, s)Q(s)x‖.

We obtain
(t− s)‖Q(s)x‖ ≤ L‖U(t, s)Q(s)x‖, so (uled2) also holds .

(2)⇒ (3) It is immediate by taking ϕ(t) = t.
(3)⇒ (4) We suppose that there are L > 1 and ϕ : R+ → R+, a strictly nondecreasing and
bijective application with ϕ(1) = 1 such that the relations (umed1) and (umed2) are satisfied
for all (t, s, x) ∈ ∆× X.

Let r > 1 with ϕ(r) > L and c =
L

ϕ(r)
< 1.

Then, we have

‖U(r + s, s)P(s)x‖ ≤ L
ϕ(r)
‖P(s)x‖ = c‖P(s)x‖, for all (s, x) ∈ R+ × X,

so (uHed1) is satisfied, respectively

‖Q(s)x‖ ≤ L
ϕ(r)
‖U(r + s, s)Q(s)x‖ = c‖U(r + s, s)Q(s)x‖, for all (s, x) ∈ R+ × X,

so (uHed2) is also proved.
(4)⇒ (1) We suppose that there are r > 1 and c ∈ (0, 1) such that (uHed1) and (uHed2) are
satisfied for all (s, x) ∈ R+ × X.
For (ued1), see [8].
Now, let (t, s) ∈ ∆. Then, there are n ∈ N and δ ∈ [0, r) with t− s = nr + δ.
We obtain

‖U(t, s)Q(s)x‖ = ‖U(t, s + nr)Q(s + nr)U(s + nr, s)Q(s)x‖ ≥

≥ 1
M

e−ωδ‖Q(s + nr)U(s + nr, s)Q(s)x‖ ≥

≥ 1
M
· e−ωr‖U(s + nr, s)Q(s)x‖ =

=
1
M
· e−ωr‖U(s + nr, s + (n− 1)r)Q(s + (n− 1)r)U(s + (n− 1)r, s)Q(s)x‖ ≥

≥ 1
M · c · eωr ‖Q(s + (n− 1)r)U(s + (n− 1)r, s)Q(s)x‖ ≥ · · · ≥ 1

M · cn · eωr ‖Q(s)x‖ =

=
1
M
· 1

eωren ln c ‖Q(s)x‖ = 1
M
· 1

eωr · e t−s−δ
r ln c

‖Q(s)x‖ =

=
1
M
· 1

eωr− δ ln c
r
· 1

e(t−s) ln c
r
‖Q(s)x‖ = 1

M
· 1

eωr

c
δ
r

· eν(t−s)‖Q(s)x‖ = 1
N

eν(t−s)‖Q(s)x‖,
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where N =
Meωr

c
δ
r

> 1 and ν = − ln c
r

> 0, so (ued2) is also proved.

It follows that (U, P) is uniformly exponentially dichotomic, so the proof is complete.

Remark 8. Another version of a majorizarion criterion for the uniform exponential dichotomy can
be found in [25].

Theorem 2. Let U : ∆ → B(X) be a strongly measurable evolution operator and (U, P) a
dichotomic pair with uniform exponential growth. Then, the following statements are equivalent:

(1) (U, P) is uniformly exponentially dichotomic.

(2) there are D > 1 and d > 0 with

(ueD1)

∞∫
s

ed(t−s)‖U(t, t0)P(t0)x0‖dt ≤ D‖U(s, t0)P(t0)x0‖,

for all (s, t0, x0) ∈ ∆× X.

(ueD2)

t∫
t0

ed(t−s)‖U(s, t0)Q(t0)x0‖ds ≤ D‖U(t, t0)Q(t0)x0‖,

for all (t, t0, x0) ∈ ∆× X.

(3) there exists D > 1 with

(ueD′1)
∞∫

s

‖U(t, t0)P(t0)x0‖dt ≤ D‖U(s, t0)P(t0)x0‖,

for all (s, t0, x0) ∈ ∆× X.

(ueD′2)
t∫

t0

‖U(s, t0)Q(t0)x0‖ds ≤ D‖U(t, t0)Q(t0)x0‖,

for all (t, t0, x0) ∈ ∆× X.

Proof. (1)⇒ (2). It is a simple verification.

(2)⇒ (3). It is immediate.

(3)⇒ (1). See [11].

Corollary 1. Let U : ∆ → B(X) be a strongly measurable evolution operator and (U, P) a di-
chotomic pair with uniform exponential growth. Then, (U, P) is uniformly exponentially dichotomic
if and only if there are D > 1 and d ≥ 0 such that:

(ueD1)

∞∫
s

ed(t−s)‖U(t, t0)P(t0)x0‖dt ≤ D‖U(s, t0)P(t0)x0‖,

for all (s, t0, x0) ∈ ∆× X.

(ueD2)

t∫
t0

ed(t−s)‖U(s, t0)Q(t0)x0‖ds ≤ D‖U(t, t0)Q(t0)x0‖,

for all (t, t0, x0) ∈ ∆× X.

Proof. It follows immediately from Theorem 2.

Theorem 3. Let U : ∆ → B(X) be a strongly measurable evolution operator and (U, P) a di-
chotomic pair with uniform exponential growth. Then, (U, P) is uniformly exponentially dichotomic
if and only if there are D > 1 and L : ∆× X → R+ with the following properties:
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(ueL1) L(t, t0, x0) ≤ D(‖U(s, t0)P(t0)x0‖+ ‖U(t, t0)Q(t0)x0‖),
for all (t, t0, x0) ∈ ∆× X.

(ueL2) L(t, t0, P(t0)x0) +

t∫
s

ed(τ−s)‖U(τ, t0)P(t0)x0‖dτ = L(s, t0, P(t0)x0),

for all (t, s, t0, x0) ∈ T × X.

(ueL3) L(s, t0, Q(t0)x0) +

t∫
s

ed(t−s)‖U(s, t0)Q(t0)x0‖ds = L(t, t0, Q(t0)x0),

for all (t, s, t0, x0) ∈ T × X.

Proof. Necessity. It follows from Theorem 2 by taking the function L : ∆ × X → R+

defined by

L(t, t0, x0) =

∞∫
t

ed(τ−s)‖U(τ, t0)P(t0)x0‖dτ +

t∫
t0

ed(t−s)‖U(s, t0)Q(t0)x0‖ds.

Sufficiency. If there exists a function L : ∆× X → R+ with the properties (ueL1)− (ueL3),
then

t∫
s

ed(τ−s)‖U(τ, t0)P(t0)x0‖dτ = L(s, t0, P(t0)x0)− L(t, t0, P(t0)x0) ≤

≤ L(s, t0, P(t0)x0) ≤ D‖U(s, t0)P(t0)x0‖,

for all (t, s, t0, x0) ∈ T × X. For t→ ∞, we obtain

∞∫
s

ed(τ−s)‖U(τ, t0)P(t0)x0‖dτ ≤ D‖U(s, t0)P(t0)x0‖,

for all (s, t0, x0) ∈ ∆× X. In addition,

t∫
s

ed(t−s)‖U(s, t0)Q(t0)x0‖ds = L(t, t0, Q(t0)x0)− L(s, t0, Q(t0)x0) ≤

≤ L(t, t0, Q(t0)x0) ≤ D‖U(t, t0)Q(t0)x0‖

for all (t, s, t0, x0) ∈ T × X. For s→ t0, we obtain

t∫
t0

ed(t−s)‖U(s, t0)Q(t0)x0‖ds ≤ D‖U(t, t0)Q(t0)x0‖

for all (t, t0, x0) ∈ ∆× X.

Another characterization of Datko type is given by

Theorem 4. Let U : ∆ → B(X) be a strongly measurable evolution operator and (U, P) a
dichotomic pair with uniform exponential growth. The following assertions are equivalent:

(1) (U, P) is uniformly exponentially dichotomic;

(2) there are D > 1 and d > 0 with
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(ueD1
1)

t∫
t0

ed(t−s)

‖U(s, t0)P(t0)x0‖
ds ≤ D

‖U(t, t0)P(t0)x0‖
,

for all (t, t0, x0) ∈ ∆× X, U(t, t0)P(t0)x0 6= 0.

(ueD1
2)

∞∫
s

ed(t−s)

‖U(t, t0)Q(t0)x0‖
dt ≤ D

‖U(s, t0)Q(t0)x0‖
,

for all (s, t0, x0) ∈ ∆× X, Q(t0)x0 6= 0.

(3) there exists D > 1 with

(ueD2
1)

t∫
t0

ds
‖U(s, t0)P(t0)x0‖

≤ D
‖U(t, t0)P(t0)x0‖

,

for all (t, t0, x0) ∈ ∆× X, U(t, t0)P(t0)x0 6= 0.

(ueD2
2)

∞∫
s

dt
‖U(t, t0)Q(t0)x0‖

≤ D
‖U(s, t0)Q(t0)x0‖

,

for all (s, t0, x0) ∈ ∆× X, Q(t0)x0 6= 0.

Proof. (1)⇒ (2). It follows after a simple computation, by taking D = 1 +
N

ν− d
.

(2)⇒ (3). It is trivial.
(3)⇒ (1). Step 1. We prove that (U, P) is uniformly dichotomic.
Let (t, s, t0) ∈ T with t ≥ s + 1. Then,

1
‖U(s, t0)P(t0)x0‖

=

s+1∫
s

1
‖U(s, t0)P(t0)x0‖

dτ ≤ M
s+1∫
s

eω(τ−s)

‖U(τ, t0)P(t0)x0‖
dτ ≤

≤ Meω

s+1∫
s

dτ

‖U(τ, t0)P(t0)x0‖
≤ Meω

t∫
t0

dτ

‖U(τ, t0)P(t0)x0‖
≤

≤ MDeω · 1
‖U(t, t0)P(t0)x0‖

≤ N1

‖U(t, t0)P(t0)x0‖
,

where N1 = MDeω > 1.
We obtain

‖U(t, t0)P(t0)x0‖ ≤ N1‖U(s, t0)P(t0)x0‖, ∀ (t, s, t0, x0) ∈ T × X, t ≥ s + 1. (1)

Let (t, s, t0) ∈ T, t ∈ [s, s + 1). Then,

‖U(t, t0)P(t0)x0‖ ≤ Meω(t−s)‖U(s, t0)P(t0)x0‖ ≤ Meω‖U(s, t0)P(t0)x0‖
≤ N1‖U(s, t0)P(t0)x0‖.

Thus, we have

‖U(t, t0)P(t0)x0‖ ≤ N1‖U(s, t0)P(t0)x0‖, ∀ (t, s, t0, x0) ∈ T × X, t ∈ [s, s + 1). (2)

From (1) and (2), it follows that (ud1) is satisfied for all (t, s, t0, x0) ∈ T × X.
Now, we prove that (ud2) holds.
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Let (t, s, t0) ∈ T, t ≥ s + 1. We compute

1
‖U(t, t0)Q(t0)x0‖

=

s+1∫
s

dτ

‖U(t, t0)Q(t0)x0‖
≤ M

s+1∫
s

eω(t−τ)

‖U(τ, t0)Q(t0)x0‖
dτ ≤

≤ Meω

∞∫
s

dτ

‖U(τ, t0)Q(t0)x0‖
≤ MDeω

‖U(s, t0)Q(t0)x0‖
≤

≤ N1

‖U(s, t0)Q(t0)x0‖
.

We obtain

‖U(s, t0)Q(t0)x0‖ ≤ N1‖U(t, t0)Q(t0)x0‖, ∀ (t, s, t0, x0) ∈ T × X, t ≥ s + 1. (3)

Let (t, s, t0) ∈ T, t ∈ [s, s + 1). Then,

‖U(s, t0)Q(t0)x0‖ ≤ Meω(t−s)‖U(t, t0)Q(t0)x0‖ ≤ Meω‖U(t, t0)Q(t0)x0‖
≤ N1‖U(t, t0)Q(t0)x0‖.

Thus, we have

‖U(s, t0)Q(t0)x0‖ ≤ N1‖U(t, t0)Q(t0)x0‖, ∀ (t, s, t0, x0) ∈ T × X, t ∈ [s, s + 1). (4)

From (3) and (4), it follows that (ud2) holds for all (t, s, t0, x0) ∈ T × X, which means
that (U, P) is uniformly dichotomic.
Step 2. We prove that (U, P) is uniformly exponentially dichotomic:

(t− s)
‖U(t, t0)P(t0)x0‖

=

t∫
s

dτ

‖U(s, t0)P(t0)x0
≤ N1

t∫
s

dτ

‖U(τ, t0)P(t0)x0‖
≤

≤ N1

t∫
t0

dτ

‖U(τ, t0)P(t0)x0‖
≤ N1D
‖U(t, t0)P(t0)x0‖

.

We obtain

(t− s)‖U(t, t0)P(t0)x0‖ ≤ N1D‖U(s, t0)P(t0)x0‖, ∀(t, s, t0, x0) ∈ T × X. (5)

(t− s)
‖U(t, t0)Q(t0)x0‖

=

t∫
s

dτ

‖U(t, t0)Q(t0)x0‖
≤ N1

t∫
s

dτ

‖U(τ, t0)Q(t0)x0‖
≤

≤ N1

∞∫
s

dτ

‖U(τ, t0)Q(t0)x0‖
≤ N1D
‖U(s, t0)Q(t0)x0‖

.

We obtain In my opinion, it is not redundant.

(t− s)‖U(s, t0)Q(t0)x0‖ ≤ N1D‖U(t, t0)Q(t0)x0‖, ∀(t, s, t0, x0) ∈ T × X. (6)

From (5) and (6) using the logarithmic criterion from Theorem 1, it follows that (U, P)
is uniformly exponentially dichotomic.

Corollary 2. Let U : ∆ → B(X) be a strongly measurable evolution operator and (U, P) a di-
chotomic pair with uniform exponential growth. Then, (U, P) is uniformly exponentially dichotomic
if and only if there are D > 1 and d ≥ 0 such that:
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(ueD1
1)

t∫
t0

ed(t−s)

‖U(s, t0)P(t0)x0‖
ds ≤ D

‖U(t, t0)P(t0)x0‖
,

for all (t, t0, x0) ∈ ∆× X, U(t, t0)P(t0)x0 6= 0.

(ueD1
2)

∞∫
s

ed(t−s)

‖U(t, t0)Q(t0)x0‖
dt ≤ D

‖U(s, t0)Q(t0)x0‖
,

for all (s, t0, x0) ∈ ∆× X, Q(t0)x0 6= 0.

Proof. It is immediate using Theorem 4.

Theorem 5. Let U : ∆ → B(X) be a strongly measurable evolution operator and (U, P) a di-
chotomic pair with uniform exponential growth. Then, (U, P) is uniformly exponentially dichotomic
if and only if there are D > 1 and L : ∆× X → R+ with the following properties:

(ueL′1) L(t, t0, x0) ≤ D
(

1
‖U(t, t0)P(t0)x0‖

+
1

‖U(s, t0)Q(t0)x0‖

)
,

for all (t, t0, x0) ∈ ∆× X, U(t, t0)P(t0)x0 6= 0, Q(t0)x0 6= 0.

(ueL′2) L(s, t0, P(t0)x0) +

t∫
s

ed(t−τ)

‖U(τ, t0)P(t0)x0‖
dτ = L(t, t0, P(t0)x0),

for all (t, s, t0, x0) ∈ T × X, U(t, t0)P(t0)x0 6= 0.

(ueL′3) L(t, t0, Q(t0)x0) +

t∫
s

ed(t−τ)

‖U(τ, t0)Q(t0)x0‖
dτ = L(s, t0, Q(t0)x0),

for all (t, s, t0, x0) ∈ T × X, Q(t0)x0 6= 0.

Proof. Necessity. It follows from Theorem 4 by taking the function L : ∆ × X → R+

defined by

L(s, t0, x0) =

s∫
t0

ed(t−τ)

‖U(τ, t0)P(t0)x0‖
dτ +

∞∫
s

ed(τ−t)

‖U(τ, t0)Q(t0)x0‖
dτ.

Sufficiency. It follows in a similar manner as the sufficiency proved in Theorem 3.

Theorem 6. Let U : ∆ → B(X) be a strongly measurable evolution operator and (U, P) a di-
chotomic pair with uniform exponential growth. Then, (U, P) is uniformly exponentially dichotomic
if and only if there are D > 1 and d ∈ (0, 1) with

(ueD3
1)

∞∫
s

e(d−1)t‖U(t, t0)P(t0)x0‖dt ≤ Deds‖U(s, t0)P(t0)x0‖,

for all (s, t0, x0) ∈ ∆× X.

(ueD3
2)

∞∫
s

e(d−1)t

‖U(t, t0)Q(t0)x0‖
dt ≤ Deds

‖U(s, t0)Q(t0)x0‖
,

for all (s, t0, x0) ∈ ∆× X, Q(t0)x0 6= 0.

Proof. Necessity. It is a simple verification.

Sufficiency. We suppose that there are D > 1 and d ∈ (0, 1) such that (ueD3
1) and

(ueD3
2) are satisfied. We have to prove that (U, P) is uniformly exponentially dichotomic,

which means, according to Remark 2, that (ued′1) and (ued′2) hold. For (ueD3
1) implies

(ued′1)—see [7].
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In order to prove the second relation, we firstly consider (t, s, t0) ∈ T, et ≥ 2s. Then,

edt

‖U(t, t0)Q(t0)x0‖
=

2
et

et∫
et
2

edt

‖U(t, t0)Q(t0)x0‖
dτ =

2
et

et∫
et
2

edt

‖U(t, s)U(s, t0)Q(t0)x0‖
dτ ≤

≤ 2M
et

et∫
et
2

edteω(t−τ)

‖U(τ, s)U(s, t0)Q(t0)x0‖
dτ =

2M
et

et∫
et
2

edteω(t−τ)

‖U(τ, t0)Q(t0)x0‖
dτ =

=
2M
et

et∫
et
2

edteω(t−τ)e(d−1)(t−τ)e(1−d)(t−τ)

‖U(τ, t0)Q(t0)x0‖
dτ ≤ 2M

et∫
et
2

e(d−1)τ

‖U(τ, t0)Q(t0)x0‖
dτ ≤

≤ 2M
∞∫

s

e(d−1)τ

‖U(τ, t0)Q(t0)x0‖
dτ ≤ 2MDeds

‖U(s, t0)Q(t0)x0‖
≤ Neds

‖U(s, t0)Q(t0)x0‖
,

where N = 2MD > 1.
We obtain

‖U(s, t0)Q(t0)x0‖ ≤ Ne−d(t−s)‖U(t, t0)Q(t0)x0‖, ∀(t, s, t0, x0) ∈ T × X, et ≥ 2s. (7)

Now, let (t, s, t0) ∈ T, et < 2s. Then,

edt

‖U(t, t0)Q(t0)x0‖
≤ Medteω(t−s)

‖U(s, t0)Q(t0)x0‖
=

Me(d+ω)(t−s)eds

‖U(s, t0)Q(t0)x0‖
≤

≤ M ·
(

2
e

)d+ω

· eds

‖U(s, t0)Q(t0)x0‖
≤ Neds

‖U(s, t0)Q(t0)x0‖
.

We obtain

‖U(s, t0)Q(t0)x0‖ ≤ Ne−d(t−s)‖U(t, t0)Q(t0)x0‖, ∀(t, s, t0, x0) ∈ T × X, et < 2s. (8)

From (7) and (8), it follows that (ued′2) is satisfied for all (t, s, t0, x0) ∈ T × X.
In conclusion, from Remark 2, it follows that (U, P) is uniformly exponentially di-

chotomic, so the proof is completed.

Theorem 7. Let U : ∆ → B(X) be a strongly measurable evolution operator and (U, P) a di-
chotomic pair with uniform exponential growth. Then, (U, P) is uniformly exponentially dichotomic
if and only if there are D > 1 and L : ∆× X → R+ with the following properties:

(ueL′′1 ) L(t, t0, x0) ≤ D
(
‖U(s, t0)P(t0)x0‖+

1
‖U(s, t0)Q(t0)x0‖

)
,

for all (t, t0, x0) ∈ ∆× X, Q(t0)x0 6= 0.

(ueL′′2 ) L(t, t0, P(t0)x0) +

t∫
s

e(d−1)τ

eds ‖U(τ, t0)P(t0)x0‖dτ = L(s, t0, P(t0)x0),

for all (t, s, t0, x0) ∈ T × X.

(ueL′′3 ) L(t, t0, Q(t0)x0) +

t∫
s

e(d−1)τ

eds · 1
‖U(τ, t0)Q(t0)x0‖

= L(s, t0, Q(t0)x0),

for all (t, s, t0, x0) ∈ T × X, Q(t0)x0 6= 0.
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Proof. Necessity. It follows from Theorem 6 by taking the function L : ∆ × X → R+

defined by

L(t, t0, x0) =

∞∫
t

e(d−1)τ

eds ‖U(τ, t0)P(t0)x0‖dτ +

∞∫
t

e(d−1)t

eds · dτ

‖U(τ, t0)Q(t0)x0‖
dτ.

Sufficiency. It follows by using similar arguments as in the sufficiency of Theorem 3.

4. Uniform Polynomial Dichotomy

In this section, we focus on the uniform polynomial dichotomy. In fact, we obtain
similar results as in the exponential case and we use the characterizations obtained in
the exponential behavior in order to prove the theorems for the polynomial behavior. All
the proofs from this section are based on the connection between the exponential and
the polynomial case, a connection which is established through two evolution operators
defined as follows:

U1 : ∆→ B(X), U1(t, s) = U(et − 1, es − 1)

and
U2 : ∆→ B(X), U2(t, s) = U(ln(t + 1), ln(s + 1)).

In addition, we define the projections’ families associated with this operators

P1 : R+ → B(X), P1(t) = P(et − 1)

and
P2 : R+ → B(X), P2(t) = P(ln(t + 1)).

Proposition 1. The pair (U, P) is uniformly polynomially dichotomic if and only if the pair
(U1, P1) is uniformly exponentially dichotomic.

Proof. Necessity. We suppose that (U, P) is u.p.d., which means that the relations (upd1)
and (upd2) are satisfied. A simple computation shows us that (ued1) and (ued2) are true
for the pair (U1, P1).
Sufficiency. We suppose that the pair (U1, P1) is u.e.d. Then,

‖U1(t, s)P1(s)x‖ = ‖U(et − 1, es − 1)P1(es − 1)x‖.

If we denote by et − 1 = u and es − 1 = v, we obtain

‖U(u, v)P(v)x‖ = ‖U(et − 1, es − 1)P(es − 1)x‖ = ‖U1(t, s)P1(s)x‖ ≤

≤ Ne−ν(t−s)‖P1(s)x‖ = Ne−ν(ln(1+u)−ln(1+v))‖P(es − 1)x‖ =

= N
(

v + 1
u + 1

)ν

‖P(v)x‖.

In addition,

N‖U(u, v)Q(v)x‖ = N‖U(et − 1, es − 1)Q(es − 1)x‖ =

= N‖U1(t, s)Q1(s)x‖ ≥ eν(t−s)‖Q1(s)x‖ = eν(ln(1+u)−ln(1+v))‖Q1(s)x‖ =

=

(
1 + u
1 + v

)ν

‖Q(es − 1)x‖ =
(

1 + u
1 + v

)ν

‖Q(v)x‖.
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Proposition 2. The dichotomic pair (U2, P2) is uniformly polynomially dichotomic if and only if
the dichotomic pair (U, P) is uniformly exponentially dichotomic.

Proof. The relation (ued1) is equivalent to:

‖U2(t, s)P2(s)x‖ = ‖U(ln(t + 1), ln(s + 1))P(ln(s + 1))x‖ ≤

≤ Ne−ν(ln(t+1)−ln(s+1))‖P(ln(s + 1))x‖

= N
(

t + 1
s + 1

)−ν

‖P(ln(s + 1))x‖ = N
(

t + 1
s + 1

)−ν

‖P2(s)x‖.

The relation (ued2) is equivalent to:

N‖U2(t, s)Q2(s)x‖ = N‖U(ln(t + 1), ln(s + 1))Q(ln(s + 1))x‖ ≥

≥ eν(ln(t+1)−ln(s+1))‖Q(ln(s + 1))x‖

=

(
t + 1
s + 1

)ν

‖Q(ln(s + 1))x‖ =
(

t + 1
s + 1

)ν

‖Q2(s)x‖.

Next, we give a majorization criterion for the uniform polynomial dichotomy.

Theorem 8. Let U : ∆ → B(X) be a strongly measurable evolution operator and (U, P) a di-
chotomic pair with uniform polynomial growth. Then, (U, P) is uniformly polynomially dichotomic
if and only if there exists a nondecreasing function

ϕ : [1, ∞)→ R+ with lim
t→∞

ϕ(t) = ∞ such that

(cm1) ϕ

(
t + 1
s + 1

)
‖U(t, t0)P(t0)x0‖ ≤ ‖U(s, t0)P(t0)x0‖

(cm2) ϕ

(
t + 1
s + 1

)
‖U(s, t0)Q(t0)x0‖ ≤ ‖U(t, t0)Q(t0)x0‖,

for all (t, s, t0, x0) ∈ T × X.

Proof. Necessity. We suppose that (U, P) is u.p.d., which implies from Remark 6 and
from Proposition 1 that (U, P) has u.p.g. and (U1, P1) is u.e.d., so (U1, P1) has u.e.g. Then,
from the majorization criterion for the exponential dichotomy, we have that there exists a
nondecreasing function ϕ1 : R+ → R+, with lim

t→∞
ϕ1(t) = ∞ and

(i) ϕ1(u− v)‖U1(u, w)P1(w)x0‖ ≤ ‖U1(v, w)P1(w)x0‖ (∗)
(ii) ϕ1(u− v)‖U1(v, w)Q1(w)x0‖ ≤ ‖U1(u, w)Q1(w)x0‖ (∗∗)

for all (u, v, w, x0) ∈ T × X.
Moreover, for all (u, v, w) ∈ R3

+, there are (t, s, t0) ∈ R3
+ such that u = ln(t + 1), v =

ln(s + 1), w = ln(t0 + 1).
Since u ≥ v ≥ w, then t ≥ s ≥ t0. We compute the left side of the inequalities (∗) and
(∗∗), and the necessity is proved. Sufficiency. We suppose that there exists a nondecreasing
function ϕ : [1, ∞)→ R+ with lim

t→∞
ϕ(t) = ∞ such that the relations (cm1) and (cm2) hold.

We have to prove that (U, P) is u.p.d, which is equivalent from Proposition 1 with (U1, P1)
being u.e.d.
Let (t, s, t0) ∈ T, which implies that there are (u, v, w) ∈ T with u = ln(t + 1), v =
ln(s + 1), w = ln(t0 + 1).

Then, we have

ϕ

(
t + 1
s + 1

)
= ϕ

(
eln t+1

s+1

)
= ϕ(eln(t+1)−ln(s+1)) = ϕ(eu−v) = ϕ1(u− v),
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where ϕ1 = ϕ(ex).

‖U(t, t0)P(t0)x0‖ = ‖U(eu − 1, ew − 1)P(ew − 1)x0‖ = ‖U1(u, w)P1(w)‖.
‖U(s, t0)P(t0)x0‖ = ‖U(ev − 1, ew − 1)P(ew − 1)x0‖ = ‖U1(v, w)P1(w)‖.
‖U(t, t0)Q(t0)x0‖ = ‖U(eu − 1, ew − 1)Q(ew − 1)x0‖ = ‖U1(u, w)Q1(w)‖.
‖U(s, t0)Q(t0)x0‖ = ‖U(ev − 1, ew − 1)Q(ew − 1)x0‖ = ‖U1(u, w)Q1(w)‖.

Using the relations (cm1) and (cm2), it follows that:

ϕ1(u− v)‖U1(u, w)P1(w)x0‖ ≤ ‖U1(v, w)P1(w)x0‖.
ϕ1(u− v)‖U1(v, w)Q1(w)x0‖ ≤ ‖U1(u, w)Q1(w)x0‖.

Using the majorization criterion for u.e.d., it follows that the pair (U1, P1) is u.e.d, and, from
Proposition 1, we obtain that (U, P) is u.p.d., so the proof is complete.

Theorem 9. Let U : ∆ → B(X) be a strongly measurable evolution operator and (U, P) a
dichotomic pair with uniform polynomial growth. The following assertions are equivalent:

(1) (U, P) is uniformly polynomially dichotomic.

(2) there are D > 1 and d > 0 with

(upD1)

∞∫
s

(
τ + 1
s + 1

)d ‖U(τ, t0)P(t0)x0‖
τ + 1

dτ ≤ D‖U(s, t0)P(t0)x0‖,

for all (s, t0, x0) ∈ ∆× X.

(upD2)

t∫
t0

(
t + 1
τ + 1

)d ‖U(τ, t0)Q(t0)x0‖
τ + 1

dτ ≤ D‖U(t, t0)Q(t0)x0‖,

for all (t, t0, x0) ∈ ∆× X.

(3) there exists D > 1 with

(upD′1)
∞∫

s

‖U(τ, t0)P(t0)x0‖
τ + 1

dτ ≤ D‖U(s, t0)P(t0)x0‖,

for all (s, t0, x0) ∈ ∆× X.

(upD′2)
t∫

t0

‖U(τ, t0)Q(t0)x0‖
τ + 1

dτ ≤ D‖U(t, t0)Q(t0)x0‖,

for all (t, t0, x0) ∈ ∆× X.

Proof. (1)⇒ (2).
We suppose that (U, P) is uniformly polynomially dichotomic, which is equivalent

from Proposition 1 with (U1, P1) being uniformly exponentially dichotomic. Then, using
Theorem 2, it results that there are D > 1 and d > 0 such that

(i)
∞∫

s

ed(t−s)‖U1(t, t0)P1(t0)x0‖dt ≤ D‖U1(s, t0)P1(t0)x0‖,

for all (s, t0, x0) ∈ ∆× X.

(ii)
t∫

t0

ed(t−s)‖U1(s, t0)Q1(t0)x0‖ds ≤ D‖U1(t, t0)Q1(t0)x0‖,

for all (t, t0, x0) ∈ ∆× X.

Then, we have

∞∫
s

ed(t−s)‖U(et − 1, et0 − 1)P(et0 − 1)x0‖dt ≤ D‖U(es − 1, et0 − 1)P(et0 − 1)x0‖.
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We do the change of variable et − 1 = u, and we obtain

∞∫
es−1

ed(ln(u+1)−s)‖U(u, et0 − 1)P(et0 − 1)x0‖
du

u + 1
≤ D‖U(es − 1, et0 − 1)P(et0 − 1)x0‖.

We denote es − 1 = v and et0 − 1 = u0, and we have

∞∫
v

(
u + 1
v + 1

)d ‖U(u, u0)P(u0)x0‖
u + 1

du ≤ D‖U(v, u0)P(u0)x0‖,

which is equivalent to (upD1).
On the other hand, the inequality (ii) is equivalent to

t∫
t0

ed(t−s)‖U(es − 1, et0 − 1)Q(et0 − 1)x0‖ds ≤ D‖U(et − 1, et0 − 1)Q(et0 − 1)x0‖.

We do the change of variable es − 1 = v, we denote by et − 1 = u, et0 − 1 = u0 and
we obtain

u∫
u0

(
u + 1
v + 1

)d ‖U(v, u0)Q(u0)x0‖
v + 1

dv ≤ D‖U(u, u0)Q(u0)x0‖,

which is equivalent to (upD2).
(2)⇒ (3). It is immediate.
(3)⇒ (1). We suppose that there exists D > 1 such that (upD′1) şi (upD′2) hold. We have
to prove that (U, P) is uniformly polynomially dichotomic. In order to do this, according
to Proposition 1, it is enough to prove that the pair (U1, P1) is uniformly exponentially
dichotomic. We have

∞∫
s

‖U1(t, t0)P1(t0)x0‖dt =
∞∫

s

‖U(et − 1, et0 − 1)P(et0 − 1)x0‖dt.

We do the change of variable et − 1 = u, we denote by es − 1 = v, et0 − 1 = u0 and
we obtain

∞∫
v

‖U(u, u0)P(u0)x0‖
u + 1

du ≤ D‖U(v, u0)P(u0)x0‖ = D‖U(es − 1, et0 − 1)P(et0 − 1)x0‖ =

= D‖U1(s, t0)P1(t0)x0‖.

Thus,
∞∫

s

‖U1(t, t0)P1(t0)x0‖dt ≤ D‖U1(s, t0)P1(t0)x0‖,

which means that (ueD′1) holds for (U1, P1). (∗)
In addition,

t∫
t0

‖U1(s, t0)Q1(t0)x0‖ds =
t∫

t0

‖U(es − 1, et0 − 1)Q(et0 − 1)x0‖ds.
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We do the change of variable es − 1 = v, we denote by et − 1 = u, et0 − 1 = u0, and
we obtain

u∫
u0

‖U(v, u0)Q(u0)x0‖
v + 1

dv ≤ D‖U(u, u0)Q(u0)x0‖ = D‖U(et − 1, et0 − 1)Q(et0 − 1)x0‖ =

= D‖U1(t, t0)Q1(t0)x0‖.

We obtain
t∫

t0

‖U1(s, t0)Q1(t0)x0‖ds ≤ D‖U1(t, t0)Q1(t0)x0‖,

which means that (ueD′2) holds for (U1, P1). (∗∗)
From (∗) and (∗∗), it follows that the relation (3) from Theorem 2 is satisfied for

the pair (U1, P1). Thus, (U1, P1) is uniformly exponentially dichotomic, which implies,
using Proposition 1, that (U, P) is uniformly polynomially dichotomic, so the proof is
complete.

Corollary 3. Let U : ∆ → B(X) be a strongly measurable evolution operator and (U, P) a di-
chotomic pair with uniform polynomial growth. Then, (U, P) is uniformly polynomially dichotomic
if and only if there are D > 1 and d ≥ 0 such that

(upD′′1 )
∞∫

s

(
τ + 1
s + 1

)d ‖U(τ, t0)P(t0)x0‖
τ + 1

dτ ≤ D‖U(s, t0)P(t0)x0‖,

for all (s, t0, x0) ∈ ∆× X.

(upD′′2 )
t∫

t0

(
t + 1
τ + 1

)d ‖U(τ, t0)Q(t0)x0‖
τ + 1

dτ ≤ D‖U(t, t0)Q(t0)x0‖,

for all (t, t0, x0) ∈ ∆× X.

Proof. It is follows immediately from Theorem 9.

Remark 9. Another variant of Theorem 9 was proved using a distinct technique by Rămneanţu
and Ceauşu in [22].

In addition, a different proof of the above theorem for the particular case d = 0 can be found
in [26].

Theorem 10. Let U : ∆ → B(X) be a strongly measurable evolution operator and (U, P) a di-
chotomic pair with uniform polynomial growth. Then, (U, P) is uniformly polynomially dichotomic
if and only if there are D > 1 and L : ∆× X → R+ with the following properties:

(upL1) L(t, t0, x0) ≤ D(‖U(s, t0)P(t0)x0‖+ ‖U(t, t0)Q(t0)x0‖),
for all (t, t0, x0) ∈ ∆× X.

(upL2) L(t, t0, P(t0)x0) +

t∫
s

(τ + 1)d−1

(s + 1)d ‖U(τ, t0)P(t0)x0‖dτ = L(s, t0, P(t0)x0),

for all (t, s, t0, x0) ∈ T × X.

(upL3) L(s, t0, Q(t0)x0) +

t∫
s

(t + 1)d

(τ + 1)d+1 ‖U(τ, t0)Q(t0)x0‖dτ = L(t, t0, Q(t0)x0),

for all (t, s, t0, x0) ∈ T × X.

Proof. It is similar to the proof of Theorem 3.2 from [22].
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Theorem 11. Let U : ∆ → B(X) be a strongly measurable evolution operator and (U, P) a
dichotomic pair with uniform polynomial growth. The following assertions are equivalent:

(1) (U, P) is uniformly polynomially dichotomic.

(2) there are D > 1 and d > 0 with

(upD1
1)

t∫
t0

(
t + 1
τ + 1

)d dτ

(τ + 1)‖U(τ, t0)P(t0)x0‖
≤ D
‖U(t, t0)P(t0)x0‖

,

for all (t, t0, x0) ∈ ∆× X, U(t, t0)P(t0)x0 6= 0.

(upD1
2)

∞∫
s

(
t + 1
s + 1

)d dt
(t + 1)‖U(t, t0)Q(t0)x0‖

≤ D
‖U(s, t0)Q(t0)x0‖

,

for all (s, t0, x0) ∈ ∆× X, Q(t0)x0 6= 0.

(3) there exists D > 1 with

(upD2
1)

t∫
t0

dτ

(τ + 1)‖U(τ, t0)P(t0)x0‖
≤ D
‖U(t, t0)P(t0)x0‖

,

for all (t, t0, x0) ∈ ∆× X, U(t, t0)P(t0)x0 6= 0.

(upD2
2)

∞∫
s

dt
(t + 1)‖U(t, t0)Q(t0)x0‖

≤ D
‖U(s, t0)Q(t0)x0‖

,

for all (s, t0, x0) ∈ ∆× X, Q(t0)x0 6= 0.

Proof. (1) ⇒ (2). We suppose that (U, P) is uniformly polynomially dichotomic, which
is equivalent from Proposition 1 to (U1, P1) uniformly exponentially dichotomic. Then,
using Theorem 4, it follows that there are D > 1 and d > 0 such that (ueD1

1) and (ueD1
2)

are satisfied for the pair (U1, P1), i.e.,

(i)
t∫

t0

ed(t−s)

‖U1(s, t0)P1(t0)x0‖
ds ≤ D

‖U1(t, t0)P1(t0)x0‖

for all (t, t0, x0) ∈ ∆× X, U1(t, t0)P1(t0)x0 6= 0.

(ii)
∞∫

s

ed(t−s)

‖U1(t, t0)Q1(t0)x0‖
dt ≤ D

‖U1(s, t0)Q1(t0)x0‖
for all (s, t0, x0) ∈ ∆× X, Q1(t0)x0 6= 0.

The relation (i) is equivalent to

t∫
t0

ed(t−s)

‖U(es − 1, et0 − 1)P(et0 − 1)x0‖
ds ≤ D

‖U(et − 1, et0 − 1)P(et0 − 1)x0‖
.

We do the change of variable es − 1 = v, and we obtain

et−1∫
et0−1

ed(t−ln(v+1))

‖U(v, et0 − 1)P(et0 − 1)x0‖
ds ≤ D

‖U(et − 1, et0 − 1)P(et0 − 1)x0‖
.

We denote by et0 − 1 = u0 şi et − 1 = u, and we obtain

u∫
u0

(
u + 1
v + 1

)d dv
(v + 1)‖U(v, u0)P(u0)x0‖

≤ D
‖U(v, u0)P(u0)x0‖

,

which is equivalent to (upD1
1).
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In addition, (ii) is equivalent to

∞∫
s

ed(t−s)

‖U(et − 1, et0 − 1)Q(et0 − 1)x0‖
dt ≤ D

‖U(es − 1, et0 − 1)Q(et0 − 1)x0‖
.

We do the change of variable et − 1 = u, we denote by es − 1 = v, et0 − 1 = u0 and
we obtain

∞∫
v

(
u + 1
v + 1

)d du
(u + 1)‖U(u, u0)Q(u0)x0‖

≤ D
‖U(v, u0)Q(u0)x0‖

,

which is equivalent to (upD1
2).

(2)⇒ (3). It is immediate.
(3)⇒ (1). We suppose that there exists D > 1 such that (upD2

1) and (upD2
2) hold. We have

to prove that (U, P) is uniformly polynomially dichotomic. According to Proposition 1, it
is enough to prove that (U1, P1) is uniformly exponentially dichotomic. We compute

t∫
t0

ds
‖U1(s, t0)P1(t0)x0‖

=

t∫
t0

ds
‖U(es − 1, et0 − 1)P(et0 − 1)x0‖

.

We do the change of variable es − 1 = v, we denote by et − 1 = u, et0 − 1 = u0 and
we obtain

u∫
u0

dv
(v + 1)‖U(v, u0)P(u0)x0‖

≤ D
‖U(u, u0)P(u0)x0‖

=
D

‖U(et − 1, et0 − 1)P(et0 − 1)x0‖
=

=
D

‖U1(t, t0)P1(t0)x0‖
.

Thus,
t∫

t0

ds
‖U1(s, t0)P1(t0)x0‖

≤ D
‖U1(t, t0)P1(t0)x0‖

,

which means that (ueD2
1) holds for (U1, P1). (�)

Similarly,
∞∫

s

dt
‖U1(t, t0)Q1(t0)x0‖

=

∞∫
s

dt
‖U(et − 1, et0 − 1)Q(et0 − 1)x0‖

.

We do the change of variable et − 1 = u, we denote by et0 − 1 = u0, es − 1 = v and
we obtain

∞∫
v

du
(u + 1)‖U(u, u0)Q(u0)x0‖

≤ D
‖U(v, u0)Q(u0)x0‖

=
D

‖U(es − 1, et0 − 1)Q(et0 − 1)x0‖
=

=
D

‖U1(s, t0)Q1(t0)x0‖
.

We obtain
∞∫

s

dt
‖U1(t, t0)Q1(t0)x0‖

≤ D
‖U1(s, t0)Q1(t0)x0‖

,

which means that (ueD2
2) holds for (U1, P1). (��)

From (�) and (��), it results that the inequality (3) from Theorem 2 is satisfied for
the dichotomic pair (U1, P1). Thus, (U1, P1) is uniformly exponentially dichotomic, which
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implies from Proposition 1 that (U, P) is uniformly polynomially dichotomic and the proof
is complete.

Corollary 4. Let U : ∆ → B(X) be a strongly measurable evolution operator and (U, P) a
dichotomic pair which has uniform polynomial growth. Then, (U, P) is uniformly polynomially
dichotomic if and only if there are D > 1 and d ≥ 0 such that

(upD1
1)

t∫
t0

(
t + 1
τ + 1

)d dτ

(τ + 1)‖U(τ, t0)P(t0)x0‖
≤ D
‖U(t, t0)P(t0)x0‖

,

for all (t, t0, x0) ∈ ∆× X, U(t, t0)P(t0)x0 6= 0.

(upD1
2)

∞∫
s

(
t + 1
s + 1

)d dt
(t + 1)‖U(t, t0)Q(t0)x0‖

≤ D
‖U(s, t0)Q(t0)x0‖

,

for all (s, t0, x0) ∈ ∆× X, Q(t0)x0 6= 0.

Proof. It follows immediately from Theorem 11.

Theorem 12. Let U : ∆ → B(X) be a strongly measurable evolution operator and (U, P) a di-
chotomic pair with uniform polynomial growth. Then, (U, P) is uniformly polynomially dichotomic
if and only if there are D > 1 and L : ∆× X → R+ with the following properties:

(upL′1) L(t, t0, x0) ≤ D
(

1
‖U(t, t0)P(t0)x0‖

+
1

‖U(t, t0)Q(t0)x0‖

)
,

for all (t, t0, x0) ∈ ∆× X, U(t, t0)P(t0)x0 6= 0, Q(t0)x0 6= 0.

(upL′2) L(s, t0, P(t0)x0) +

t∫
s

(t + 1)d

(τ + 1)d+1 ·
dτ

‖U(τ, t0)P(t0)x0‖
= L(t, t0, P(t0)x0),

for all (t, s, t0, x0) ∈ T × X, U(t, t0)P(t0)x0 6= 0.

(upL′3) L(t, t0, Q(t0)x0) +

t∫
s

(τ + 1)d−1

(t + 1)d · dτ

‖U(τ, t0)Q(t0)x0‖
= L(s, t0, Q(t0)x0),

for all (t, s, t0, x0) ∈ T × X, Q(t0)x0 6= 0.

Proof. Necessity. It follows from Theorem 11 by taking the function L : ∆ × X → R+

defined by

L(s, t0, x0) =

s∫
t0

(t + 1)d

(τ + 1)d+1 ·
dτ

‖U(τ, t0)P(t0)x0‖
+

∞∫
s

(τ + 1)d−1

(t + 1)d · dτ

‖U(τ, t0)Q(t0)x0‖dτ
.

Sufficiency. It follows in a similar manner as the sufficiency proved in Theorem 10.

5. Discussion

The results obtained in this work contribute to the development of the theory in the
field of dynamical systems. More specifically, we prove some characterizations for two of
the most studied asymptotic properties of evolution operators in Banach spaces, namely
the uniform exponential dichotomy and the uniform polynomial dichotomy.

We give necessary and sufficient conditions that extend Datko’s theorem, which has
become one of the most famous theorems of the modern control theory. In addition,
we characterize these concepts using Lyapunov functions, and we establish connections
between the concepts mentioned in the paper. The method that we use in order to prove
the polynomial part is new, and it is much simpler than the one that exists in the literature.

For the future, we intend to generalize all these results to the nonuniform case in order
to study the robustness property, a notion that has a long history and was discussed for
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the first time in the context of the nonuniform exponential behavior by Barreira and Valls
in [27].

In addition, having [28] as a start point, we would like to investigate if it is possible to
analyze the behaviors described in this paper in order to obtain some numerical results.
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19–21 May 2021.

9. Megan M.; Sasu B.; Sasu, A.L. On nonuniform exponential dichotomy of evolution operators in Banach spaces. Integral Equ. Oper.
Theory 2002, 44, 71–78. [CrossRef]
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17. Dragičević, D.; Sasu, A.L.; Sasu, B. Admissibility and polynomial dichotomy of discrete nonautonomous systems. Carpathian J.

Math. 2022, 38, 737–762. [CrossRef]
18. Bainov, D.D.; Kostadinov, S.I.; Zabreiko, P.P. Exponential dichotomy of linear impulsive equations in a Banach space. Internat. J.

Theoret. Phys. 1989, 28, 797–814. [CrossRef]
19. Caraballo, T.; Real, J.; Shaikhet, L. Method of Lyapunov functionals construction in stability of delay evolution equations. J. Math.

Anal. Appl. 2007, 334, 1130–1145. [CrossRef]
20. Pötzsche, C. Geometric Theory of Discrete Nonautonomous Dynamical Systems; Lecture Notes in Math; Springer: Berlin/Heidelberg,

Germany, 2010; Volume 2002.
21. Zhang, J.; Fan, M.; Zhu, H. Existence and roughness of exponential dichotomies of linear dynamic equations on time scales.

Comput. Math. Appl. 2010, 59, 2658–2675. [CrossRef]

http://doi.org/10.1007/BF01194662
http://dx.doi.org/10.1006/jdeq.1994.1113
http://dx.doi.org/10.3390/axioms10030235
http://dx.doi.org/10.1007/BF01197861
http://dx.doi.org/10.21136/CMJ.1985.102019
http://dx.doi.org/10.1007/s00020-009-1735-5
http://dx.doi.org/10.1016/j.jde.2016.09.035
http://dx.doi.org/10.1016/j.na.2009.04.005
http://dx.doi.org/10.1016/j.jfa.2009.01.032
http://dx.doi.org/10.37193/CJM.2022.03.12
http://dx.doi.org/10.37193/CJM.2022.03.18
http://dx.doi.org/10.1007/BF00669823
http://dx.doi.org/10.1016/j.jmaa.2007.01.038
http://dx.doi.org/10.1016/j.camwa.2010.01.035


Mathematics 2022, 10, 3704 21 of 21
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