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Abstract: The traditional radial basis function collocation method (RBFCM) has poor stability when
solving two-dimensional elastic problems, and the numerical results are very sensitive to shape
parameters, especially in solving elastic problems. In this paper, a novel radial basis function
collocation method (RBFCM) using fictitious centre nodes is applied to the elastic problem. The
proposed RBFCM employs fictitious centre nodes to interpolate the unknown coefficients, and is
much less sensitive to the shape parameter compared with the traditional RBFCM. The details of the
shape parameters are discussed for the novel RBFCM in elastic problems. Elastic problems with and
without analytical solutions are given to show the effectiveness of the improved RBFCM.

Keywords: fictitious centre nodes; radial basis function; elasticity problems; shape parameter; modi-
fied Franke formula

MSC: 35Q68

1. Introduction

Over the past few decades, one type of the popular numerical methods that have been
used for solving scientific and engineering problems has been the mesh-based methods,
such as the finite element method (FEM) [1,2], finite difference method [3], finite volume
method [4], and so on [5]. However, mesh-based methods face huge challenges and
difficulties when dealing with large deformations. In recent years, meshless methods have
been developed for their simplicity and effectiveness. Without grid division, the meshless
methods have obvious advantages in solving complex domains, moving boundaries, and
high-dimensional problems.

The Kansa method or RBFCM is one type of meshless method based on the collocation
technique [6]. The uniqueness and convergence of the RBFCM have been investigated [7,8].
However, in the RBFCM simulation process, an asymmetric and fully populated matrix of
a system of the linear equations is generated, which may cause a high condition number
and affect the stability of the method. In order to deal with the asymmetric matrix, some
methods have been proposed and developed to avoid the difficulties associated with the
asymmetric matrix, such as the RBF Hermite collocation method [9] and the modified
Kansa’s method (MKM) [10]. In the traditional RBFCM, the centre and collocation nodes
are the same. The matrix formulated in the RBFCM is ill-conditioned, and the traditional
RBFCM is not stable, especially in dealing with Neumann boundary conditions [11]. The
boundary conditions should be treated properly by using the weighted RBFCM and other
numerical techniques [12,13].

The shape parameter of the traditional RBFCM should really be taken care of, and the
accuracy of the traditional RBFCM is related to the shape parameters. Many numerical
algorithms have been put forward to pick out the optimal shape parameters, such as the
leave-one-out cross-validation (LOOCV) algorithm [14], the genetic algorithm [15], and
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the golden section search algorithm [16]. Thus, the RBFCM is not easy to apply to elastic
problems, especially when the solution is not smooth [17,18].

Recently, a novel RBFCM using fictitious centre nodes has been proposed with high
stability and accuracy [19]. Unlike the traditional RBFCM, the idea employs fictitious
nodes as the centre nodes, and the fictitious nodes are distributed in a larger area covering
the original domain. This process greatly improves the performance of the RBFCM. To
some extent, this idea is similar to using an imaginary source node outside the domain in
the method of fundamental solutions [20]. However, the proposed method has not been
applied to the elastic problems since the field quantity of the elastic problems is generally
not smooth. In this work, the improved RBFCM has firstly been employed on the elastic
problems with the multi-quartic (MQ) RBF. Here, the modified Franke formula [21] and
the sample solution approach [22,23] are considered in the proposed RBFCM for the elastic
problems [24–27]. This paper is organized as follows:

In Section 2, the basic equations of the elastic problem are introduced. In Section 3, the
numerical formulation of the traditional RBFCM and the improved method with fictitious
centres are elaborated on with details. Section 4 presents several approaches to choosing
shape parameters. In Section 5, four different numerical examples are given to demonstrate
the effectiveness of the proposed method. Finally, some remarks and future research works
are provided in the last section.

2. Elastic Problem
2.1. Two-Dimensional Cases

The governing equations of the plane stress elasticity problem [28] can be expressed as

E
1− µ2 (

∂2u1

∂x2 +
1− µ

2
∂2u1

∂y2 +
1 + µ

2
∂2u2

∂x∂y
) + f1(x, y) = 0, (x, y) ∈ Ω, (1)

E
1− µ2 (

∂2u2

∂y2 +
1− µ

2
∂2u2

∂x2 +
1 + µ

2
∂2u1

∂x∂y
) + f2(x, y) = 0, (x, y) ∈ Ω, (2)

where µ is Poisson’s ratio and E is the elasticity modulus, ui(x, y), i = 1, 2 are the displace-
ments, and fi(x, y), i = 1, 2 are the forcing terms. Ω is a domain bounded by a segmented
smooth surface. The traction boundary conditions can be expressed as follows

E
1− µ2

[
n1(

∂u1

∂x
+ µ

∂u2

∂y
)s + n2

1− µ

2
(

∂u1

∂y
+

∂u2

∂x
)s

]
= f 1(x, y), (x, y) ∈ ∂ΩN , (3)

E
1− µ2

[
n2(

∂u2

∂y
+ µ

∂u1

∂x
)s + n1

1− µ

2
(

∂u2

∂x
+

∂u1

∂y
)s

]
= f 2(x, y), (x, y) ∈ ∂ΩN , (4)

where ni(x, y), i = 1, 2 are the unit normal vectors at the boundary node. ∂ΩN is the
boundary that satisfies traction boundary conditions, f i(x, y), i = 1, 2 are the tractions.
The displacement boundary conditions can be given as

u1(x, y) = g1(x, y), (x, y) ∈ ∂ΩD, (5)

u2(x, y) = g2(x, y), (x, y) ∈ ∂ΩD, (6)

gi(x, y), i = 1, 2 represent the displacement at boundary nodes. ∂ΩD is the boundary
that satisfies Dirichlet boundary conditions. For the plane strain problem, the governing
equation and boundary conditions can be obtained only by changing E to E/

(
1− µ2) and

µ to µ/(1− µ) in the Equations (1)–(6).
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2.2. Three-Dimensional Cases

The governing equations of the three-dimensional elasticity problem [28] can be
expressed as

σ11 = E
1+µ (

µ
1−2µ θ + ∂u1

∂x ),

σ22 = E
1+µ (

µ
1−2µ θ + ∂u2

∂y ),

σ33 = E
1+µ (

µ
1−2µ θ + ∂u3

∂z ),

σ23 = E
2(1+µ)

( ∂u3
∂y + ∂u2

∂z ),

σ31 = E
2(1+µ)

( ∂u1
∂z + ∂u3

∂x ),

σ12 = E
2(1+µ)

( ∂u1
∂y + ∂u2

∂x ),


(7)

where θ = ∂u1
∂x + ∂u2

∂y + ∂u3
∂z . µ is Poisson’s ratio and E is the elasticity modulus. ui, i = 1, 2, 3

are the displacements. σij, i, j = 1, 2, 3 are the stresses. The governing equations of the 3D
elasticity problem can be expressed as

∂σ11
∂x + ∂σ21

∂y + ∂σ31
∂z + f1 = 0, (x, y, z) ∈ Ω,

∂σ22
∂y + ∂σ32

∂z + ∂σ12
∂x + f2 = 0, (x, y, z) ∈ Ω,

∂σ33
∂z + ∂σ13

∂x + ∂σ23
∂y + f3 = 0, (x, y, z) ∈ Ω,

(8)

where fi, i = 1, 2, 3 are the forcing terms, Ω is a 3D computational domain. The traction
boundary conditions can be expressed as follows

n1(σ11)s + n2(σ21)s + n3(σ31)s = f 1, (x, y, z) ∈ ∂ΩN ,
n2(σ22)s + n3(σ32)s + n1(σ12)s = f 2, (x, y, z) ∈ ∂ΩN ,
n3(σ33)s + n1(σ13)s + n2(σ23)s = f 3, (x, y, z) ∈ ∂ΩN ,

(9)

where ni, i = 1, 2, 3 are the unit normal vectors at the boundary node. ∂ΩN is the
boundary that satisfies traction boundary conditions, f i(x, y), i = 1, 2, 3 are the tractions.
The displacement boundary conditions can be given as

u1 = g1, (x, y, z) ∈ ∂ΩD,
u2 = g2, (x, y, z) ∈ ∂ΩD,
u3 = g3, (x, y, z) ∈ ∂ΩD,

(10)

gi, i = 1, 2, 3 represent the displacement at boundary nodes. ∂ΩD is the boundary that
satisfies Dirichlet boundary conditions.

3. Numerical Methods and Discretization
3.1. The RBFCM

Here we take the 2D elastic problem as an example. In the RBFCM [6], the displace-
ments of the 2D elastic problem can be approximated as

un
1 (x, y) =

N

∑
j=1

ξ1,jφj(x, y), (11)

un
2 (x, y) =

N

∑
j=1

ξ2,jφj(x, y), (12)
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where N is the number of centre nodes, ξ1,j and ξ2,j are the unknown coefficients related to
the numerical solutions un

1 and un
2 , respectively; φj is the RBF, in this work the multi-quadric

(MQ) RBF is given as follows

φj(x, y) =

√(
x− xj

)2
+
(

y− yj

)2
+ c2, (13)

The RBF is associated with centre nodes (xj, yj), which are the same as the collocation
nodes (xk, yk) in the traditional RBFCM, as shown in Figure 1. c is the shape parameter.
Ki is the number of collocation nodes {(xk, yk)}

Ki
k=1 in Ω, Kb1 is the number of boundary

nodes {xk, yk }
Ki+Kb1
k=Ki+1 on ∂ΩN , Kb2 is the number of boundary nodes {xk, yk }

Ki+Kb1+Kb2
k=Ki+Kb1+1

on ∂ΩD, and K = Ki + Kb1 + Kb2 is the number of total nodes. In the traditional RBFCM
K = N.

Mathematics 2022, 10, x FOR PEER REVIEW 5 of 17 
 

 

 

Figure 1. The node distribution of the traditional RBFCM (boundary nodes “●”, interior nodes “●

”). 

By substituting Equations (7) and (8) back to the governing equations in Equations 

(1) and (2), the following discretized form can be obtained 

(1) (2)

1, , 2, , 12
1 1

0,
1

N N

j j k j j k

j j

E
h h f 

 = =

 
+ + = 

−  
   (14) 

(2) (3)

1, , 2, , 22
1 1

0,
1

N N

j j k j j k

j j

E
h h f 

 = =

 
+ + = 

−  
   (15) 

where 

2 2

(1)

, 2 2

2

(2)

,

2 2

(3)

, 2 2

( , ) ( , )1

2

( , )1

2

( , ) ( , )1

2

j k k j k k

j k

j k k

j k

j k k j k k

j k

x y x y
h

x y

x y
h

x y

x y x y
h

y x

 



 

  −
= +

 
 +

=
 

  −
 = +

 

，

，

，

 (16) 

where 1,..., ik K= , is the index of the number of the inner nodes. Equations (13) and (14) 

can be obtained by substituting Equations (7) and (8) back to traction boundary conditions 

in Equations (3) and (4). 

(1) (2)

1, , 2, , 12
1 1

,
1

N N

j j k j j k

j j

E
s s f 

 = =

 
+ = 

−  
   (17) 

(3) (4)

1, , 2, , 22
1 1

,
1

N N

j j k j j k

j j

E
s s f 

 = =

 
+ = 

−  
   (18) 

where 

Figure 1. The node distribution of the traditional RBFCM (boundary nodes “•”, interior nodes “•”).

By substituting Equations (7) and (8) back to the governing equations in Equations (1)
and (2), the following discretized form can be obtained

E
1− µ2

(
N

∑
j=1

ξ1,jh
(1)
j,k +

N

∑
j=1

ξ2,jh
(2)
j,k

)
+ f1 = 0, (14)

E
1− µ2

(
N

∑
j=1

ξ1,jh
(2)
j,k +

N

∑
j=1

ξ2,jh
(3)
j,k

)
+ f2 = 0, (15)

where 
h(1)j,k =

∂2φj(xk ,yk)

∂x2 + 1−µ
2

∂2φj(xk ,yk)

∂y2 ,

h(2)j,k = 1+µ
2

∂2φj(xk ,yk)

∂x∂y ,

h(3)j,k =
∂2φj(xk ,yk)

∂y2 + 1−µ
2

∂2φj(xk ,yk)

∂x2 ,

(16)

where k = 1, . . . , Ki, is the index of the number of the inner nodes. Equations (13) and (14)
can be obtained by substituting Equations (7) and (8) back to traction boundary conditions
in Equations (3) and (4).

E
1− µ2

[
N

∑
j=1

ξ1,js
(1)
j,k +

N

∑
j=1

ξ2,js
(2)
j,k

]
= f 1, (17)

E
1− µ2

[
N

∑
j=1

ξ1,js
(3)
j,k +

N

∑
j=1

ξ2,js
(4)
j,k

]
= f 2, (18)
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where 

s(1)j,k = n1
∂φj(xk ,yk)

∂x + n2
1−µ

2
∂φj(xk ,yk)

∂y ,

s(2)j,k = n1µ
∂φj(xk ,yk)

∂y + n2
1−µ

2
∂φj(xk ,yk)

∂x ,

s(3)j,k = n2µ
∂φj(xk ,yk)

∂x + n1
1−µ

2
∂φj(xk ,yk)

∂y ,

s(4)j,k = n2
∂φj(xk ,yk)

∂y + n1
1−µ

2
∂φj(xk ,yk)

∂x ,

(19)

k = Ki + 1, . . . , Ki + Kb1 is the index of the number of the boundary nodes that satisfy
the traction boundary conditions. Equations (16) and (17) can be obtained by substituting
Equations (7) and (8) back to the displacement boundary conditions in Equations (5) and (6).

N

∑
j=1

ξ1,jφj(xk, yk) = g1, (20)

N

∑
j=1

ξ2,jφj(xk, yk) = g2, (21)

k = Ki + Kb1 + 1, . . . , Ki + Kb1 + Kb2 is the index of the number of the boundary nodes
that satisfy the Dirichlet boundary conditions. Generally, we choose K ≥ N. The unknown
coefficients

{
ξ1,n
}N

n=1 and
{

ξ2,n
}N

n=1 can be calculated from the linear system obtained
from Equations (10)–(17). Then, the displacements of Equations (1)–(6) can be approximated
by Equations (7) and (8). The collocation and the centre nodes are the same in the RBFCM,
and the size of the system matrix is 2K× 2N, where K = N here.

3.2. The Improved RBFCM with Fictitious Centre Nodes

In the improved RBFCM, the collocation nodes and centre nodes are different. A set of
ghost nodes are taken as fictitious centres, as the red nodes shown in Figure 2. The number
of the fictitious nodes is defined as K. The fictitious centre nodes can be placed inside and
outside the domain, as shown in Figure 2. The size of the fictitious centre nodes can be
controlled by a radius of R. The relationship of the distance in the RBFCM is changed with
such a simple adjustment. To study the performance of the improved RBFCM, the shape
parameters and the values of radius R require further study.
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4. Shape Parameters

Over the past two decades, various algorithms have been proposed to predict the
optimal shape parameter in the RBFCM. The shape parameter is vital for the performance
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of the RBFCM in different problems. In this work, three different approaches are considered
for choosing shape parameters in the improved RBFCM for the elastic problem.

Approach 1: Brute force (BF)
A typical method to find an optimal c is the “brute force” method, in which the value

of the shape parameter starts from c = 0.01, increasing by 0.01 each time until c arrives
at a certain value. Then an optimal shape parameter can be decided by using the trial
errors obtained from different shape parameters. The BF costs a lot of time in the repeating
process, and it is not an efficient way to find the optimal shape parameter. The time costs
of the “brute force” method can be dramatically reduced by using the modified Franke
formula.

Approach 2: The modified Franke formula (MFF)
In 1982, an experimental formula based on the density of the interpolation nodes

was proposed by Franke to estimate the optimal shape parameter [21]. Recently, owing
to the popularity of double precision arithmetic, the Franke formula has been revised to
c = D/

(
0.8 4
√

N
)

, where D is the diameter of the smallest circle containing all fictitious
centre nodes and N is the number of the collocation nodes. The modified Franke formula has
been demonstrated to be a satisfactory prediction for a reasonably good shape parameter
of the multi-quadric (MQ) radial basis function.

Approach 3: The sample solution approach (SSA)
When the analytical solutions are unavailable, the sample solution approach (SSA)

is employed to validate the numerical results [23]. In the procedure of the SSA, an exact
solution to the pseudo-problem is set up as the sample solution. The pseudo-problem has
the same geometry and the same number of degrees of freedom as the current problem.
The optimal shape parameters of the pseudo-problem can be found with the help of the
exact solutions. Then the optimal shape parameters obtained from the pseudo-problem are
used to solve the problem where the exact solution is not available.

5. Numerical Results

In this section, an example with an exact solution is presented to illustrate the effective-
ness of an improved RBFCM, and then two other numerical examples of two-dimensional
elastic problems without exact solutions are presented by comparing them with the nu-
merical results of the finite element method. The fictitious centre nodes are distributed by
using the Halton quasi-random number generator, which is available via the MATLAB
command haltonset. The relative error is defined as follows

RE =

√
∑ (un − u)2/

√
∑ (u)2, (22)

where un and u are the numerical and analytical solutions of the displacement, respectively.

Example 1. In this example, the plan strain problem described in Equations (1)–(6) is considered,
where E is replaced with E/

(
1− µ2) and µ is replaced with µ/(1− µ). The modulus of elasticity is

taken to be E = 2.1 × 105 Mpa, and µ = 0.2. The computational domain with node distributions is
shown in Figure 3, where a 2 m × 2 m square elastic plate with 100 circular holes (radius = 0.05 m)
is presented. The traction boundary conditions are applied to the four boundaries of the square
domain, and the displacement boundary conditions are imposed on the inner boundaries of 100
circular holes. The analytical solutions are given as

u1 = xy/[2(1 + µ)G],u2 = −
(

y2 − x2
)

/[4(1 + µ)G]
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Figure 3. Computational domain with node distributions of the traditional RBFCM (boundary nodes
“•”, interior nodes “•”).

The node distribution of the improved RBFCM is shown in Figure 4, where 1296 fictitious
centre nodes (red circle “#”) are given to evaluate the numerical results. Unlike the traditional
RBFCM, the fictitious centre nodes are placed in a larger circular area with R = 3. The numerical
results of the improved RBFCM are compared with the results obtained with the traditional RBFCM
in Figure 5.
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fictitious centre nodes “#”).

In Figure 5, the relative errors of the displacements computed by the traditional and the
improved RBFCM are shown with the red and blue colors, respectively. Different shape parameters
are used to evaluate the relative errors of both traditional and improved RBFCM. The numerical
results show that the numerical results of the improved RBFCM are always much better than the
traditional RBFCM. Moreover, when the shape parameter changes, the relative errors of the improved
RBFCM are much smaller than 10−5, which indicates that the improved RBFCM is not sensitive to
the variations in the shape parameters.

In Figure 5, the three different approaches to choosing shape parameters are tested for the
improved RBFCM. The cBF, cSSA, and cMFF are the optimal shape parameters calculated by the BF,
SSA, and MFF, respectively. The relative errors of cBF, cSSA, and cMFF in Figure 5 are less than
10−9. The BF, SSA, and MFF can also be applied to obtain the optimal shape parameter in the
improved RBFCM.
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Figure 6 displays the convergence rate of both the improved and traditional RBFCMs by
considering the cBF, cSSA, and cMFF. The relative errors of the displacements converge rapidly as the
number of collocation nodes increases for both the improved and traditional RBFCMs. However,
the relative errors of the improved RBFCM are much better than the traditional RBFCM. Again,
the improved RBFCM is not sensitive to the shape parameters compared with the results of the
traditional RBFCM.
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As the improved RBFCM is influenced by the fictitious centre nodes, the influence of R is
studied in Table 1.
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Table 1. The relative errors of the improved RBFCM with different R.

R cMFF RE cSSA RE cBF RE

2 1.291 1.30(−09) 1.146 7.94(−10) 0.929 2.62(−10)
3 1.936 1.70(−10) 1.047 4.81(−11) 1.224 6.71(−12)
4 2.582 1.64(−09) 1.146 5.08(−11) 1.698 1.14(−11)
5 3.227 2.30(−09) 1.854 1.07(−11) 1.757 8.08(−12)
6 3.873 2.18(−09) 2.047 2.82(−11) 2.053 4.19(−12)
7 4.518 6.83(−10) 2.236 1.02(−11) 2.112 1.12(−11)
8 5.164 3.47(−10) 1.815 4.33(−11) 2.527 5.44(−12)

In Table 1, 700 interior nodes and 600 boundary nodes are considered, thus 1300 ghost nodes
are used to guarantee the size of the discretized matrix to be square. R changes from 2 to 8, and cBF,
cSSA, and cMFF are used to evaluate the optimal relative errors. The relative errors in Table 1 show
that, as the value of R is larger than 2, the improved RBFCM can always obtain accurate results,
which further indicate the stability of the improved RBFCM. Compared with the relative errors of
cBF, cSSA, and cMFF, the relative errors of cBF are the best results; however, the relative errors of cBF
and cSSA are also less than 10−9. The improved RBFCM is not sensitive to the shape parameter
when R changes in a certain range.

Example 2. As shown in Figure 7, a problem with the partition wall is considered. The density of
the partition wall is ρ = 7800 kg/m3, the height is H = 1 m, and the thickness L = 0.5 m. The density
of water is ρ1 = 1000 kg/m3. The plane strain problem described in Equations (1)–(6) is considered,
where E and µ are replaced with E/(1 − µ2) and µ/(1 − µ), respectively. Then E = 2.1 × 105 Mpa,
and µ = 0.3. In the numerical calculation, 361 interior nodes and 80 boundary nodes are considered,
thus, 441 fictitious centre nodes are used to guarantee the discretized matrix is square.
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The numerical error is defined as

RE =

√
∑ (un − u f )

2/

√
∑ (u f )

2 , (23)

where un =
[
un

1,1, . . . , un
1,Nt

, un
2,1, . . . , un

2,Nt

]
and u f =

[
u f

1,1, . . . , u f
1,Nt

, u f
2,1, . . . , u f

2,Nt

]
are the

numerical solutions obtained by the improved RBFCM and the FEM, respectively. Nt is the total
number of test nodes.

Firstly, the displacements obtained from the improved RBFCM by considering different R are
given in Table 2. As the trial errors in the BF are not easy to decide without exact solutions, only the
MFF and SSA are used to choose the optimal shape parameters. The numerical results are compared
with the results of FEM, where 50,530 degrees of freedom (DOF) are used.
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Table 2. Relative errors by comparing with the FEM.

MFF SSA
R c RE c RE

4 2.182 0.024 1.799 0.019
5 2.728 0.025 0.880 0.022
6 3.273 0.027 1.178 0.017
7 3.819 0.027 1.072 0.039
8 4.364 0.028 1.139 0.045

Results in Table 2 show that, as R changes from 4 to 8, the relative errors are always less than
5%. The shape parameter obtained from both SSA and MFF always leads to good numerical results
for the improved RBFCM. To show the similarity of the results, the displacements on the x-axis
and y-axis are given in Figures 8 and 9, respectively. The numerical results are obtained from the
improved RBFCM with R = 8.
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Figure 9. Displacements of u2 calculated by the FEM and improved RBFCM.

Figures 8b and 9b show the displacements obtained with the MFF. Figures 8c and 9c show the
results of SSA. Figures 8a and 9a are the results of the FEM. Although the relative errors obtained
by SSA are close to 5% in Table 2, the color maps of the displacements still show high similarity.



Mathematics 2022, 10, 3711 11 of 15

Example 3. In this case, a rectangular cross-section of a vertical column with a fixed bottom is
given in Figure 10. The density ρ = 7800 kg/m3, and a uniform shear q = 1 × 107 N is imposed on
the right side of the column. The length of the rectangular cross-section is L = 0.5 m and the height
is H = 1 m. E = 2.1 × 105 Mpa, and µ = 0.3. In the numerical calculations, 361 interior nodes and
80 boundary nodes are considered, and the number of ghost nodes is 441.
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Figure 10. Computational domain.

The results in Table 3 show that, as R changes from 4 to 7, the relative errors are always less
than 8%. The relative errors obtained from MFF lead to worse numerical results for the improved
RBFCM compared with SSA. When R = 8, the relative errors of MFF are close to 10%. The relative
errors are larger compared with example 2; this is because the stress concentrations in this case are
larger.

Table 3. Relative errors by comparing with the FEM.

MFF SSA
R c RE c RE

4 2.182 0.058 0.243 0.020
5 2.728 0.045 0.989 0.032
6 3.273 0.068 1.189 0.027
7 3.819 0.069 1.520 0.042
8 4.364 0.104 0.896 0.031

To show the similarity of the results, the displacements on the x-axis and y-axis are given in
Figures 11 and 12, respectively. The numerical results are obtained from the improved RBFCM with
R = 8.

Figures 11b and 12b show the displacements obtained with the MFF. Figures 11c and 12c
show the results of SSA. Figures 11a and 12a are the results of the FEM. Although the relative
error of the MFF in Table 3 is close to 10%, the color map of the displacements still shows a high
similarity, which further validates the effectiveness of the improved RBFCM.

Example 4. In this case, a 3D elastic problem is given as shown in Figure 13, with the length L = 1
m. Displacement boundary conditions are given to the lower bottom surface, and traction boundary
conditions are given to the other surfaces. For more details of the problem please refer to [29]. The
ghost nodes are evenly distributed inside the sphere, as shown in Figure 14.
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Figure 14. The nodes’ distributions.

The relative errors of the improved RBFCM are given and compared with the traditional
RBFCM in Figure 15; the accuracy of the improved RBFCM is much higher than that of the
traditional RBFCM, and as the number of nodes increases, the convergence rate of the improved
RBFCM is much higher.
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Figure 15. Relative errors with different numbers of collocation nodes when R = 5.

In Table 4, the errors of different R using the optimal shape parameters obtained with the MFF
and the SSA are given. In total, 729 interior nodes, 485 boundary nodes, and 1214 ghost nodes are
considered, as shown in Figure 14. As shown in Table 4, with the MFF and the SSA used in the
improved RBFCM, we can obtain an accurate solution.

Table 4. The relative errors of the improved RBFCM with different R.

R cMFF RE cSSA RE

3 1.100 2.154(−05) 2.290 2.042(−06)
4 1.467 7.664(−06) 1.402 3.933(−06)
5 1.834 2.159(−05) 1.343 1.958(−06)
6 2.201 1.512(−05) 0.573 5.394(−06)
7 2.568 1.154(−05) 0.573 4.713(−06)
8 2.934 1.872(−05) 2.171 5.564(−06)
9 3.301 1.414(−05) 2.408 3.045(−06)
10 3.669 1.506(−05) 0.988 3.898(−06)



Mathematics 2022, 10, 3711 14 of 15

The displacement contours are shown in Figure 16; the displacement contours of the improved
RBFCM are similar to the exact solution. This further validates that the improved RBFCM can be
extended to the 3D cases.
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6. Conclusions

In this work, a novel RBFCM is proposed for elastic problems with high stability and
accuracy. Elastic problems with and without analytical solutions are given to validate the
improved RBFCM. Three different approaches to choosing shape parameters are tested
in our examples. The numerical results show that the improved RBFCM has a high
convergence rate and is less sensitive to the shape parameters. Moreover, the modified
Franke formula and the sample solution approach adopted in this paper effectively settle the
difficulty of choosing ideal shape parameters for the complex problems without analytical
solutions, and further improve the accuracy, efficiency, and stability of the proposed method.
One of our future research projects is to extend the proposed ghost node method to a local
method for solving more practical real-life problems.
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