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Abstract: The traditional method of related commodity discovery mainly focuses on direct co-
occurrence association of commodities and ignores their indirect connection. Link prediction can
estimate the likelihood of links between nodes and predict the existent yet unknown future links. This
paper proposes a potentially related commodities discovery method based on link prediction (PRCD)
to predict the undiscovered association. The method first builds a network with the discovered binary
association rules among items and uses link prediction approaches to assess possible future links in
the network. The experimental results show that the accuracy of the proposed method is better than
traditional methods. In addition, it outperforms the link prediction based on graph neural network
in some datasets.
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1. Introduction

The most classic case of the related commodities discovery is the story of beer and
diapers that happened in Walmart. Staff found that beer and diapers were often bought
at the same time, so they placed them together. The case indicates that data mining
technology can find interesting patterns from transaction data to improve commodity
sales. Cross selling is a marketing method to meet customer needs and sell a variety of
related services or products [1–3], and a personalized recommendation system is used
to recommend information and goods of interest to users according to users’ interest
characteristics and purchase behavior, to realize cross sales. The most important task of
cross selling is determining which items are most likely to be purchased together, that is,
to find related commodities.

In cross selling, the most important method is association rule mining (ARM) [4–6]. ARM
is a common approach in data mining, which is used to mine the correlation between items.
The most common application is to determine association rules from transaction data to
discover the products that can be bundled together to increase sales. However, it can be de-
termined which products are now co-occurring frequently. In fact, due to the accumulation
of historical data, ARM cannot find new related goods in time, although people’s needs
have changed. We also want to know which goods will appear in the same basket in the
future. This cannot be solved by classical association rules mining.

The current studies on the items’ relationships in the shopping basket are mainly
regarding next basket recommendation [7–9] and sequential association rules [10,11]. Next
basket recommendation focuses on finding preference changes from users’ historical baskets
and purchasing sequences by creating shopper profiles and modeling a basket sequence
for every user. The sequential association rule represents that a set of items usually occurs
after a specific order sequence. Through modeling, one can find the temporal relationship
between items and which products may appear in the user’s next basket. The effectiveness
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of the method mentioned above provides evidence for the evolution of products in the
shopping basket; however, it is not easy to collect the purchase sequence of users for offline
retail. ARM searches for interesting relationships between items by finding items that often
appear at the same time in the transaction database. The purchase behavior of a small
number of customers will not have a great impact on the results; however, the number may
gradually increase over time. We need to find a way to discover these potentially related
goods in advance.

Link prediction allows us to predict the future connection of nodes in the network
in which new edges are the most likely to appear in the future [12,13]. As one of the
research directions in the field of data mining, link prediction has been deeply studied.
The initial direction of link prediction is to assist World Wide Web users to find web pages
of interest from a large number of web pages [14]. With the continuous enrichment and
development of link prediction, many researchers have applied it in many fields, such as
community detection [15], social relationships prediction [16], features fusion in dynamic
networks [17], social network [18–20], and biology [21]. In view of its great practical
application value, we want to use it to find potential associated commodities based on
current commodity associations. First, a commodity-related network is required to be
built. In the current recommendation systems, some have built bipartite networks of
users and products [22–24]. A bipartite network G(V, E) is as follows: if there exists a
partition (V1, V2) such that V1 ∪V2 = V, V1 ∩V2 = ∅, and every edge connects a node of
V1 and an node of V2. In bipartite networks of users and products, V1 and V2 represent
user set and product set, respectively. An edge indicates that a user has bought a product.
For such a recommendation system, its main task is to find a series of interested products
for every user. Collaborative filtering (CF) uses the user ratings to calculate the similarities
between users or items and make predictions or recommendations according to their
similarity values [22]. Using link prediction in bipartite graph networks requires mapping
bipartite graphs into user networks and commodity networks [25], and then calculating
the similarity of the target user with users who bought enough of the same goods. Finally,
the interest of the target user of different goods purchased by similar users is calculated.
However, for the target user, it is not easy to find similar users and determine how many
of the same products to buy. Because of the variety of goods, there are few of the same
goods between different users compared with different goods. That is, the problem of data
sparsity arises. Therefore, in this paper, the ARM is applied to find related commodities
and build a network directly without purchase records of each user.

At present, there are few applications of association rules combined with link pre-
diction, mainly graph association rule mining and multiplex link prediction [26]. They
address multiplex link prediction via mining graph association rules. In this paper, we
extend the usage of link prediction on a commodity network, and propose a potentially
related commodity discovery (PRCD) algorithm based on link prediction. Link prediction
adds new abilities to association rules mining. The motivations for our work are threefold:
(1) We want to know which goods will appear in the same basket in the future. (2) We
wish to find a way to discover potential related commodities based on the existing direct
commodity association. (3) We look to uncover, in the absence of customer information,
how to use link prediction to find related goods. This paper mainly includes three main as-
pects, as follows: (1) Construction of network. The commodity-related network is obtained
by identifying all binary association rules from transaction data. (2) Selection of the best
index. Finding the most suitable index for this network through experimental comparison.
(3) Validation of the universality and superiority of the proposed algorithm, and running
the proposed algorithm on different datasets and comparing it with other methods.

The proposed algorithm first builds a network with the discovered binary association
rules among items and uses link prediction approaches in the network to assess possible
future links. It has some advantages over the traditional methods, as follows: (1) Com-
pared with other recommended systems, our proposed algorithm does not require any
customer and commodity attribute information. This means less data processing and
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simpler algorithm design. (2) Compared with traditional link prediction, our algorithm
improves the accuracy of the link prediction algorithm. (3) Compared with other network
construction methods, our proposed method uses association rules to discover associations
between items, thus building a network that can exclude unimportant and wrong links, to
a certain extent.

The remainder of this paper is organized as follows. Section 2 introduces some related
work about the recommender system, association rules, and link prediction. Section 3
describes classical link prediction concepts. Section 4 presents a potentially related com-
modity discovery (PRCD) algorithm. Section 5 compares the prediction accuracy and finds
the best similarity index. In addition, the method in this paper is compared with other
methods to prove its superiority. Finally, Section 6 summarizes the full text and presents
the contribution, advantages, and disadvantages of this paper.

2. Related Work

This section reviews the research of the recommender system, association rules, and
link prediction in recent years, which are related to the research topic of this paper.

2.1. Recommender System

When you log into the website of an electronic shop, irrespective of whether you have
previously purchased anything on it, several products will pop up on the homepage. This
is the result of a recommendation system that operates to reduce the cost of the query time
required for users to search for products, thereby increasing the transaction rate of the
website. Surprisingly, these recommended products are often similar to the products that a
consumer has previously purchased or has been searching for. Obviously, the above system
has the advantage of providing personalized recommendations. During the operation of
the system, it will recommend products that are similar to the commodities that were previ-
ously purchased by the target customer or those purchased by other customers who have
the same purchasing behavior as the target customer. In order to enhance the recommen-
dation accuracy, the recommendation system depends on the consumption data [27–29],
opinion [30], sentiment [31], and consumption habits of the customer [32,33], even keeping
track of the dynamics of customers’ preferences [34]. These recommendation algorithms
are more suitable for personalized recommendation of long-term customers. Because there
are enough data to train the algorithm, the recommended result is also good, but it cannot
solve the problem of new users, and the cost of information collection is also high. In the
field of time series data mining [35–38], Li [39] used the techniques of sequence analysis to
obtain sales correlations. Furthermore, Chen [40] proposed a multi-kernel support tensor
machine for classification to obtain cross-selling recommendations. They found that some
commodities have sales correlation at some time points, and that sales correlation will
persist for a certain time period. Through these methods, the recommendation system can
not only know who to recommend what products to, but also know when to recommend.
However, it is a problem to determine the time period. If the time segment is too long,
effective information may be lost, but a short time segment may lead to a huge increase
in the computation of the algorithm. In addition, there are many kinds of goods, so data
processing is a big challenge. In the online retail industry, recommendation systems usually
work well. However, uncertainty regarding the origins of customers has led to the fact
that although offline retail shops store a large amount of transaction data, it is difficult to
mine adequate information regarding the appropriate products required by a consumer
from these data. Tracking the browsing trajectory of customers and collecting evaluation
data and historical purchase data cost a lot. Moreover, the trend of customers paying
increasing attention to their private data has also led to an increase in the difficulty of
collecting information. Therefore, on the one hand, a recommendation system must be
further developed that can enhance privacy without sacrificing accuracy [41,42]; and on
the other hand, maintaining the accuracy of the recommendations based on fewer data
requirements. In addition, novelty and diversity are also important for the evaluation crite-
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ria in recommendation systems [43,44], and some scholars also focus on recommending
unexpected items to users [45]. For instance, when several customers purchase products A
and B simultaneously, the system will recommend product B to the target customers who
have purchased the product A. Conversely, when there is only a small correlation between
products C and A, the system will not recommend C to target customers. For example,
with classic beer and diapers, such rules have been excavated and applied because many
users have already made such purchases, which means that this method cannot be used to
discover these behaviors before they reach a limit. In this paper, we propose a method to
try to find these frequent patterns before they can reach it.

2.2. Association Rules

Association rules reflect the interdependence and association between a thing and
other things. Association rules mining (ARM) [46] is a common approach in data mining
which is used to mine the correlation between valuable data items from a large amount
of data. Current research on ARM is not only focused on improving the efficiency of
finding more interesting patterns [6], but also applied to many fields, such as medical
science [47,48], classification [49], fault diagnosis, and anomaly detection [50–52]. The
apriori algorithm is an ARM method proposed in 1993 that was used to identify frequent
rules and patterns from baskets [53]. In the whole algorithm execution process, all frequent
itemsets can be found only by traversing the dataset twice. Many scholars have put forward
improvement methods [51,54], while others have conducted further research to identify
more meaningful patterns [6,55,56]. However, we not only want to know which products
are in the same shopping basket now, we also want to know which products may appear in
the same shopping basket in the future. The problem cannot be solved with the classical
method, so we focus on those indirect association rules.

The indirect association rule is the extension of the direct association rule. It was first
proposed in 2000 [57]. The condition for an indirect relationship between commodities a and
b is as follows: support(a, b) < minsup&support(a, c) > minsup&support(b, c) > minsup.
Figure 1 illustrates the relation of a and b. Tan found that most of the products with indirect
association rules are competing products by joining all frequent patterns. Although com-
petitive product analysis is a research direction of commodity relationships, it is not helpful
to find commodities in the same shopping basket, because competitive products generally
do not appear in the same basket. Therefore, in the follow-up experiments, it is necessary to
analyze whether there is a competing relationship for the potential related commodities dis-
covered. Wan [58] and Ouyang [59] improved Tan’s method. Wan put forward an efficient
algorithm HI-mine to mine indirect association for discovering a complete set. The main
innovation of HI-mine is that it does not need to find all frequent rules. It also was utilized
to find those pages that do not have indirect association but are often accessed together
with a common set of pages [60]. In addition, Kazienko extracted indirect relationships
between pages from historical user sessions and proved that indirect association rules can
deliver useful information for a recommender system [61]. To the best of our knowledge,
in recent years, few scholars have studied the use of indirect association rules, especially the
indirect association of goods. Moreover, the indirect association rules previously studied by
scholars have only one mediator, ignoring the case of multiple mediators. In addition, there
is a lack of further research on the mediators, including the filtering of intermediary goods.
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Figure 1. Indirect association between a and b via a mediating itemset C.

2.3. Link Prediction

Classic link prediction methods mainly include similarity-based algorithms, maximum
likelihood methods, and probabilistic models [12]. The first is based on node similarity
and network structure. Despite its simplicity, it works very well on some networks. Maxi-
mum likelihood methods have good accuracy when dealing with networks with obvious
hierarchical organization (such as terrorist attack networks). However, its computational
complexity is very high, and it is not suitable for large networks. Probabilistic models not
only use the network structure information, but also involve the node attribute information.
They need to establish a set of adjustable parameters, and then use optimization strategies
to find the optimal parameter values, so that the obtained model can better reproduce
the structure and relationship characteristics of the real network. A probabilistic model
can achieve high prediction accuracy. However, the disadvantages of this method are
also obvious. Parameter adjustment is complex and time-consuming. The computational
complexity and nonuniversal parameters limit its application. These methods that assume
when two nodes are likely to link in advance are also called heuristic methods. When
assumptions fail, the results will be very poor. In view of this, many scholars put forward
that learning a suitable method from a network is a reasonable way, instead of using
predefined ones. SEAL [62] achieved state-of-the-art link prediction performance. It trains
a graph neural network (GNN) on enclosing subgraphs around links to learn a heuristic.
This can avoid inaccurate prediction caused by wrong assumptions, and even find new
heuristics. Besides links in simple networks that describe pairwise interactions between
nodes, hyperlink prediction aims to address interactions of arbitrary size in hypernetworks.
HPLSF [63] is the first hyperlink prediction method for a hypernetwork. It copes with
association between multiple (more than three) homogeneous nodes by using latent social
features. Later, many scholars put forward their improved methods, such as CMM [64] and
TF-DHP [65], and Xiao [66] considered hyperlink’s direction and the features of all entities.
Since a hypergraph describes the complex relationship between multiple entities, it takes
time to build a hypergraph and hence is expensive. Therefore, the shortage of training data
becomes a big challenge for hyperlink prediction. In addition, traditional link prediction
and evaluation methods cannot be directly used for hypergraphs. Determining how to
generalize these methods to hypergraphs is also an urgent problem.

3. Link Prediction Based on Similarity

A link prediction algorithm based on similarity is the simplest and the most widely
used algorithm. The assumption of the algorithm is that the more similar the two nodes
are, the higher the possibility of creating a connection. In fact, the similarity between
nodes is mainly calculated according to the graph structure features. The link prediction
based on similarity includes local-information-, path-, and random-walk-based similarity
indexes [12].



Mathematics 2022, 10, 3713 6 of 27

An undirected network is defined as G = <V, E>, where V is the set of nodes and E
is the set of observed edges. A is the adjacency matrix of the network, where aij = 1 if
eij =< vi, vj >∈ E and aij = 0, otherwise. The total number of nodes and connected edges
in the network is denoted by K and L, and the maximum number of connected edges is
K × (K − 1)/2, denoted by Ω, where Ω = E + E. A link prediction method is chosen to
calculate the predicted value S(i, j) of each eij in E.

3.1. Local-Information-Based Similarity Index

The similarity between nodes based on local information primarily considers the
degree of nodes and common neighbors. The simplest index is CN, which only considers
the number of common neighbors. If two nodes have more common neighbors, it implies
that the nodes i and j are more similar and are more inclined to produce connected edges.
In addition, LHN-I [67], HPI, HDI [68], Jaccard [69], and PA [70] consider the degree on the
basis of common neighbors. AA [71] and RA [72] take the degree of common neighbors
into consideration.

The degree of a node i is denoted as Di, and the neighbors of a node i are denoted
as N(i); moreover, the set of CNs of nodes i and j is denoted as CN(i, j), where |CN(i, j)|
represents the number of CNs and |CN(i, j)| = |N(i) ∩ N(j)|. The definition formulas for
local-information-based similarity index are summarized in Table 1.

Table 1. Local-information-based similarity index.

Index Equation Index Equation

CN SCN(i, j) = |N(i) ∩ N(j)| HPI SHPI(i, j) = |N(i)∩N(j)|
min{Di ,Dj} .

Salton SSalton(i, j) = |N(i)∩N(j)|√
Di×Dj

HDI SHDI(i, j) = |N(i)∩N(j)|
max{Di ,Dj} .

Sorenson SSorenson(i, j) = |N(i)∩N(j)|
Di+Dj

PA SPA(i, j) = Di × Dj.

LHN-I SLHN−I(i, j) = |N(i)∩N(j)|
Di×Dj

Jaccard SJaccard(i, j) = |N(i)∩N(j)|
|N(i)∪N(j)|

AA SAA(i, j) = ∑k∈N(i)∩N(j)
1

logDk
RA SRA(i, j) = ∑k∈N(i)∩N(j)

1
Dk

3.2. Path-Based Similarity Index

The path-based similarity calculates the number of paths from node i to node j, and the
shortest path is given more weight. Pm(i, j) is denoted as the number of paths of m order
from node i to node j, and w represents the weight of the path. LP [73] index only considers
second- and third-order paths. The weight of the third-order path is w. If w is equal to 0,
then the LP index is equal to the CN index. The Katz [74] index considers all paths. λ1 is a
decreasing coefficient and it is used to perform the role of adjusting the path. The expected

number of paths of n-order between nodes i and j is denoted as E(Pn(i, j)) =
Di∗Dj

L × λn−1
2 ,

where λ2 is the maximum eigenvalue of adjacency matrix A. Table 2 shows the definition
of path-based similarity index.

Table 2. Path-based similarity index.

Index Equation

LP SLP(i, j) = P2(i, j) + wP3(i, j)
Katz SKatz(i, j) = λ1P1(i, j) + λ2

1P2(i, j) + λ3
1P3(i, j) + · · ·+ λn

1 Pn(i, j)
LHN-II SLHN−I I(i, j) = P1(i,j)

E(P1(i,j))
+

P2(i,j)
E(P2(i,j))

+
P3(i,j)

E(P3(i,j))
+ · · ·+ Pn(i,j)

E(Pn(i,j))

3.3. Random-Walk-Based Similarity Index

The similarity index of random walk calculates the average time required for different
walking modes from node i to node j or the probability of node i reaching node j. Table 3
shows the definition of path-based similarity index. ACT [75] and Cos+ [76] assume that
if the average commuting time of two nodes is smaller, the two nodes are closer. step(i, j)
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represents the average number of steps that are required to be taken from nodes i to j.
SACT(i, j) = step(i, j) + step(j, i). LM is regarded as the Laplacian matrix of the network,
and LM+ is the pseudo-inverse matrix of LM. DM is the node degree matrix. RWR
(random walk with restart) [77] believes that every forward step has a certain probability x
to return to the previous node. P is denoted as the Markov transition matrix of the network,
and Pij = aij/Di (aij is an element in the adjacency matrix) is denoted as the probability
that node i will move to node j. qi(t + 1) = (1− x)PTqi(t) + xei denotes the probability
vector that node i reaches each node at time t + 1 (ei denotes the initial state vector; only
the i-th element is 1; the remaining elements are 0). SimR [78] is an index that indirectly
conveys similarity. The primary idea is that if the neighbor of node i is similar to that of
node j, the two are also considered to be similar. σ is a parameter of decreasing similarity.
LRW (local random walk) [79] is similar to SimR index; however, it limits the number of
random walks and only calculates the probability that the node i reaches node j at the
specified time t + 1. qi(t + 1) = PTqi(t) (initial state) is defined as the probability that node
i reaches each node j at time t + 1. SRW (superimposed LRW) [79] adds the value of SSimR
obtained at all times of LRW.

Table 3. Random-walk-based similarity index.

Index Equation

ACT SACT(i, j) = 1
LM+

ii +LM+
jj−2LM+

ij

Cos+ SCos+(i, j) =
LM+

ij√
LM+

ii ∗LM+
jj

RWR SRWR(i, j) = qij + qji

SimR SSimR(i, j) = σ
∑

v1∈N(i)
∑

v2∈N(j)
SSimR(v1,v2)

Di×Dj

LRW SLRW(i, j) = D(i)
L qi(t) +

D(j)
L qj(t)

SRW SSRW(i, j) = D(i)
L ∑t

n=1 SSimR(i, j, n) + D(j)
L ∑t

n=1 SSimR(j, i, n)

3.4. Weight-Based Link Prediction Index

Edge weight is a significantly important piece of information that describes the associ-
ation between nodes in the network. The correct use of weights can improve the accuracy
of the link prediction algorithm. W is a weighted adjacency matrix (the nonzero elements
in the adjacency matrix A are changed to the value of the weight. Then, the weighted
adjacency matrix is obtained). The contents as shown in Table 4 are certain similarity
indexes based on the local information while considering weights [80].

Table 4. Weight-based link prediction index.

Index Equation

WCN SWCN(i, j) = ∑
v∈N(i)∩N(j)

wθ
iv + wθ

vj

WAA SWAA(i, j) = ∑
v∈N(i)∩N(j)

wθ
iv+wθ

vj

lg(1+o(v))

WRA SWRA(i, j) = ∑
v∈N(i)∩N(j)

wθ
iv+wθ

vj

o(v)

The parameter θ is used to adjust the weight. When θ is equal to 0, the weighted
indexes are equivalent to their respective unweighted indexes. o(i) = ∑

v∈N(i)
wθ

iv represents

the total weight of node i.

4. Potentially Related Commodity Discovery Algorithm

In order to find the potential association between commodities, this paper proposes a
PRCD algorithm based on link prediction. The algorithm assumes that as the similarity
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between commodities increases, the more likely it is that they will be appear in the same
basket. This paper studies the future relationships based on current commodity relation-
ships. Therefore, the experiment mainly includes the following two steps. (1) Find all
binary association rules from transaction data, and build a commodity-related network
according to association rules. (2) Calculate the similarity between commodities that do not
have edges in the network in different ways, and predict which commodities may appear
in the same shopping basket by comparing some indexes. Next, we will introduce them
in detail.

4.1. Network Construction

In order to study the potential relationship between commodities based on these direct
relationships, the association rule graph needs to be transformed to treat goods as nodes.
A commodity-related network is defined as G=<V,E>, where V is the set of commodities
which show in rules, and E represents the association of commodities. An adjacency matrix
A is used to represent network structure. As shown in Algorithm 1, the apriori algorithm
firstly returns the association rules. Then, an adjacency matrix A is constructed. If there is
a rule ci ⇒ cj, set aij = 1 and aji = 1. In addition, if the indexes, such as WAA, take the
weight into consideration, aij can be assigned other weight values. At last, Algorithm 1
returns adjacency matrix A.

Algorithm 1 Build commodity-related network (BCRN).
Input:

Retail transaction data: data
Parameters of association rules: sup

Output:
Adjacency matrix: A

1: rules← apriori(data, sup)
2: initialize matrix A, aij ← 0(0 < i, j <= n, n is the count of products in rules)
3: for i = 1 to i = rules.length do
4: if rules[i] == ci ⇒ cj then
5: aij ← 1
6: aji ← 1
7: end if
8: end for
9: return A

4.2. Prediction Evaluation

After the network is built successfully, it is necessary to predict which commodities
may appear in the same shopping basket in the future. Our hypothesis is that the higher the
similarity between goods, the more likely they are to appear in the same shopping basket.
It is necessary to test the correctness of this hypothesis and evaluate the prediction accuracy
of each index. To evaluate algorithms, the data are usually divided into two parts: the
training set ET and the probe set EP. In this paper, the AUC, precision, and RS [12] are used
to measure the accuracy of the link prediction. Among these methods, AUC is a metric
to measure the accuracy of the algorithm with respect to the overall network prediction;
moreover, it is also the most widely used. The RS calculates the ranking of all edges in EP.
In contrast, the precision only focuses on the prediction accuracy of the top l edges.

For example, in Figure 2, the subgraph A indicates a network that contains eight nodes
and 12 edges. E = {e12, e14, e23, e24, e26, e35, e46, e47, e58, e67, e68, e78}, |E| = 12. First, four
edges are randomly removed, as shown in subgraph B, and the network is divided into
a probe set EP = {e26, e35, e46, e78} and training set ET = {e12, e14, e23, e24, e47, e58, e67, e68}.
Then, the algorithm is executed in the training set ET , and each nonexisting edge eij (as
shown by the dotted and red edges in subgraph C) obtains a similarity value S(i, j). Second,
one dotted line and one red line in subgraph C are randomly selected, and the similarity
values of the two are compared. If the similarity value of the red line is bigger than the
dotted line, AUC + 1; if the similarity values are equal, AUC + 0.5. After comparison,
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the AUC is divided by the number of times of the comparison. Finally, the similarity
of nonexistent edges is sorted. If there are m edges out of the top l edges in EP, then
precision = m/l. RS = 1

4 ×
rank78+rank48+rank26+rank35

20 .

Figure 2. Example of a commodity network. (A) is a complete network. (B) is a network with 4 edges
randomly deleted. The dotted line in the (C) network represents the non-existent edge, and the red
line represents the randomly deleted edge.

For each index, the specific steps for calculating the AUC, precision, and RS are shown
in Algorithm 2.

(1) First, we obtain the set of edges E and set of nonexisting edges E from network G.
|E| denotes the number of edges. (2) According to a certain proportion, the sample (percent,
E) function can return a probe set EP. For example, if |E| is 100 and the percent is 10%,
then we obtain 10 randomly selected edges from E. (3) We calculate S(i, j) of each edge
from EP and E. S(i, j) = Sindex(i, j), where index = indexlist[k], indexlist = {CN, Salton,
Sorenson, LHN-I, AA, HPI, HDI, PA, Jaccard, RA, LP, Katz, LHN-I I, ACT, Cos+, RWR,
SimR, LRW, SRW, WCN, WAA, WRA }. For each index[k], we can obtain the similarity
matrix Simindexlist[k]. (4) We randomly select an edge from EP and E. If the sim of EP is
more than that of E, then 1 is added to the AUC; if the values are equal, then 0.5 is added
to the AUC. (5) We repeat step (4) n times, and finally AUC = AUC/n. (6) The function
Sort(Sim) sorts the edges according to similarity from the largest to smallest value and
returns the Rank matrix. The rank of eij is denoted by rankij(eij ∈ E||EP ). Then, the RS is
calculated as

RS =
1
|EP| ∑

eij∈EP

rankij

|E|+ |EP|
(1)

where |EP| and |E| represent the number of edges in the probe set and the nonexisting
edges set, respectively. (7) If there are m out of the top l edges in EP, then precision = m/l.
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Algorithm 2 Calculate AUC, precision, and RS.
Input:

Adjacency matrix: A
Proportion of the probe set: percent
Number of comparisons: n
l of Precision: l
Similarity index: indexlist[k]

Output:
AUC, Precision, RS

1: E← where(aij! = 0)
2: E← where(aij == 0)
3: EP ← sample(percent, E)
4: for eij ∈ EP do
5: aij ← 0
6: aji ← 0
7: end for
8: for eij ∈ E ∪ EP do
9: Simindexlist[k](i, j)← Sindexlist[k](i, j)

10: end for
11: for num← 1 to n do
12: randomly select an edge eij from EP

13: randomly select an edge epq from E
14: if Simindexlist[k](i, j) > Simindexlist[k](p, q) then
15: AUC ← AUC + 1
16: end if
17: if Simindexlist[k](i, j) == Simindexlist[k](p, q) then
18: AUC ← AUC + 0.5
19: end if
20: end for
21: AUC ← AUC/n
22: Rank← Sort(Simindexlist[k])
23: RS← 0
24: for eij ∈ EP do
25: RS← rankij + RS
26: end for
27: RS← 1

|EP | ∗
RS

|E|+|EP | .
28: m← 0
29: for eij ∈ EP do
30: if rankij <= l then
31: m← m + 1
32: end if
33: end for
34: Precision← m/l
35: return AUC, Precision and RS

The best index was denoted as indexlist[bk]. The potential related commodities algo-
rithm is shown in Algorithm 3. In this algorithm, the input is transaction data, and the
outputs are potential related commodities of each commodity in rules. (1) Association rules
are obtained by apriori algorithm. (2) The commodity-related network is built. (3) The
similarity between all goods without direct correlation are calculated. (4) For each good in
the rules, the top N items with the highest similarity are found. Simindexlist[bk](i, ) represents
a vector that contains the similarity between commodity ci and other commodities that are
not directly related. Sort(Simindexlist[bk], N) returns the top N commodities set cseti.
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Algorithm 3 Potential related commodity discovery algorithm (PRCD), cset =
PRCD(data, sup, N).
Input:

Retail transaction data: data
Parameters of association rules: sup
the top N commodity set : N

Output:
potential related commodity set : cset

1: rules← apriori(data, sup)
2: initialize matrix A, aij ← 0(0 < i, j <= n, n is the count of products in rules)
3: for i = 1 to i = rules.length do
4: if rules[i] == ci ⇒ cj then
5: aij ← 1
6: aji ← 1
7: end if
8: end for
9: E← where(aij == 0)

10: for eij ∈ E do
11: Simindexlist[bk](i, j)← Sindexlist[bk](i, j)
12: end for
13: for i = 1 to i = n do
14: cseti ← Sort(Simindexlist[bk](i, ), N)
15: end for
16: return cset

5. Experiment

The experiments are implemented with a Windows 10 system on the Intel Core i5-
4210u with 500 GB hard disk memory. Moreover, the related programs are compiled with
Rstudio 1.2.5033 and Matlab R2012b.

When a lot of transaction data are collected, as shown in Table 5, it is easy to obtain
association rules by apriori. The dataset OnlineRetail used in this pager is an open-source
retail commodity sales dataset that can be downloaded from the UC Irvine website. Quan-
tity, InvoiceDate, UnitPrice, and Country were removed. All commodities with the same
InvoiceNo are a set of commodities purchased at the same time. When parameters are
set as support = 0.01, the apriori algorithm is used to obtain 809 binomial association
rules. Table 6 lists 10 association rules. The LHS column indicates the antecedent of the
association rule; the RHS column indicates the consequent of the association rule; count
indicates the number of times the two commodities are purchased together.

Table 5. Retail sales data Online_Retail.

InvoiceNo StockCode Description CustomerID

536371 22086 PAPER CHAIN KIT 50’S CHRISTMAS 13748
536372 22632 HAND WARMER RED POLKA DOT 17850
536372 22633 HAND WARMER UNION JACK 17850
536373 85123A WHITE HANGING HEART T-LIGHT HOLDER 17850
536373 71053 WHITE METAL LANTERN 17850
536373 84406B CREAM CUPID HEARTS COAT HANGER 17850
536373 20679 EDWARDIAN PARASOL RED 17850
536373 37370 RETRO COFFEE MUGS ASSORTED 17850
536373 21871 SAVE THE PLANET MUG 17850
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Table 6. Examples of association rules (sup = 0.008).

LHS RHS Sup Conf Lift Count

1 21499⇒ 21500 0.0051 0.5982 72.7357 131
2 21500⇒ 21499 0.0051 0.6150 72.7357 131
3 23127⇒ 23126 0.0056 0.7360 64.1867 145
4 23126⇒ 23127 0.0056 0.4882 64.1867 145
5 21987⇒ 21988 0.0052 0.7803 104.7201 135
6 21988⇒ 21987 0.0052 0.6995 104.7201 135
7 22635⇒ 22634 0.0051 0.6517 68.8984 131
8 22634⇒ 22635 0.0051 0.5347 68.8984 131
9 21244⇒ 21240 0.0054 0.6965 54.6661 140
10 21240⇒ 21244 0.0054 0.4242 54.6661 140

Figure 3 shows a graph for 300 rules, and rules are represented by nodes. The size in-
creases with the increase of support, and the color of nodes deepens with the increase of lift.
From the association rule graph, it can be found that commodities are clustered together.

Graph for 300 rules
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Figure 3. Graph for 300 rules.

The accuracy of the same prediction algorithm in different networks may differ.
To learn the prediction accuracy of different similarity indexes in different commodity-
related networks, in the experiment of our study, three networks were generated. When
sup = 0.01, Algorithm 1 returns a matrix A, and the A is input into gephi to obtain the
network, as shown in Figure 4a. Connected subgraphs are distinguished by colors. Link
prediction is based on the connectivity of the network, so the maximal connected sub-
graph is retained, and the others are deleted, as shown in Figure 4b. Similarly, when
set sup = 0.008 and sup = 0.005, networks A, B, and C are commodity-related networks
obtained, shown in Figure 5. The nodes represent the commodity and the label on the node
is the StockCode. The larger the node, the greater the degree of the commodity, and more
commodities have a strong association with it. In the association rules, the lift value is used
to indicate the relevance of the two commodities and can be used to measure the strength
of the association relationship. The count value indicates the number of times two com-
modities appear at the same time. To a certain extent, the two different values can be used
as the weight of the connected edges in the commodity network. In Figure 5, the weight of
the connected edges uses the lift value. As the lift value between the commodities increases,
it indicates a stronger connection between the nodes. Table 7 lists the network topology of
commodity associations under different support conditions.
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Figure 4. Commodity-related network including all nodes (sup = 0.01). (a) shows that all nodes and
connected subgraphs are distinguished by colors, while (b) displays nodes that should be deleted.
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Figure 5. Commodity-related network.



Mathematics 2022, 10, 3713 14 of 27

Table 7. Commodity-related network topology under different degrees of support.

Network Nodes Edges Average Degree Density Average Clustering Coefficient

A 437 3606 16.5040 0.0380 0.7470
B 157 744 9.4780 0.0610 0.7070
C 95 360 7.5580 0.0400 0.6820

5.1. Comparison of Prediction Accuracy

To improve the prediction accuracy of the PRCD algorithm, it is necessary to find
the best similarity index of the commodity association network. Therefore, it is essential
to evaluate each index and determine which one will have higher prediction accuracy in
different commodity networks. Different similarity indexes may have different prediction
accuracies in networks A, B, and C. To determine the optimal similarity index and its
characteristics in different commodity networks, the prediction accuracy based on different
similarity indexes is compared in the subsequent section. Table 8 shows AUC of similarity
index in different networks, when the proportion of the probe set is 10%.

Table 8. AUC of similarity index in different networks.

Index Network A Network B Network C

CN 0.9529 0.9279 0.9259
Salton 0.9348 0.9250 0.9073
Jaccard 0.9299 0.9253 0.9093

Sorenson 0.9300 0.9229 0.9075
HPI 0.9261 0.9144 0.9225
HDI 0.9035 0.9078 0.9051

LHN-I 0.8507 0.8882 0.8757
PA 0.9057 0.8337 0.7994
AA 0.9595 0.9426 0.9181
RA 0.9601 0.9441 0.9317
LP 0.9399 0.9221 0.9088

Katz 0.9387 0.9114 0.8940
LHN-II 0.5006 0.5047 0.5042

ACT 0.9145 0.8511 0.8415
Cos+ 0.9431 0.8688 0.8806
RWR 0.9565 0.9355 0.9166
SimR 0.8637 0.8732 0.8756
LWR 0.9566 0.9480 0.9415
SRW 0.9753 0.9738 0.9657
WCN 0.9627 0.9447 0.9354
WRA 0.9630 0.9398 0.9416
WAA 0.9682 0.9528 0.9421

5.1.1. Similarity Index Based on Local Information

When calculating AUC, the partition ratio and randomness of the probe set and
training set may influence the result. For example, for each proportion of the probe set,
random divisions are conducted 50 times. Then, the changing trend of that pertaining
to the CN index is shown in Figure 6. The X-axis represents the number of times the
experiment was conducted, and the Y-axis represents the AUC. Each broken line represents
the impact of a random division on the AUC when the proportion of the probe set is
provided. It can be observed that the AUC fluctuates around a number and does not
fluctuate significantly. After conducting several experiments, it was determined that
the AUC trend of other indexes is similar to the CN index. Therefore, in the following
experiment, to avoid accidental factors, each calculated AUC was considered as the average
of 20 random divisions.
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Figure 6. Impact of random division on the area under the receiver operating characteristic curve
(AUC) of common neighbor (CN) index for varying proportions of the probe set.

Figure 7 shows the AUC changes of the similarity index based on local information
when the training and test sets are divided in different proportions. The X-axis is the
proportion of test sets and the Y-axis is the AUC. Each broken line represents the trend of
the AUC of the index corresponding to the changes in the probe set. The following aspects
can be observed in networks A, B, and C. (1) The optimal value of AUC reaches 0.9 or more;
moreover, the optimal value is not significantly different in each network. (2) The RA and
AA indexes demonstrate the best performance in each network; further, the AUC gradually
decreases as the proportion of the probe set increases. (3) The PA index is special. When
the proportion of the probe set is less than 60%, the AUC value is relatively stable and
is less than most of the other indexes. Moreover, it shows a marginal decrease when the
proportion of the probe set is greater than 60%, but this change is better than that of the
remaining indexes. This shows that the PA index still performs well under the condition
that most of the side information in the commodity network is missing. It also shows that
irrespective of when the purchase occurs, popular commodities are highly likely to be
purchased at the same time. In the recommendation system, recommending commodities
with higher popularity has a certain effect, especially when the information collection
is insufficient. However, this method is not applicable to personalized recommendation
systems. (4) In Network A, HDI is better than HPI. However, in networks B and C, this is
not obvious. (5) The AUC of each index also decreases at different rates as the proportion
of the probe set increases. The rate of decline is the slowest in Network A, followed by
Network B, and it is the fastest in Network C. Table 8 lists the AUC of each index in different
networks. In a network transformed by association rules with lower support, the optimal
AUC of each index is relatively higher. The PA index has the largest change in the optimal
AUC among the three networks, indicating that the AUC of this index is significantly
affected by the network structure.
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Figure 7. AUC trends of similarity indexes based on local information when the proportion of the
test sets increases.
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Figure 8 shows the precision of the CN index. The X-axis indicates the value of l, and
the Y-axis represents the precision. Each broken line represents the change in precision
as the value of l increases for a given proportion of the probe set. When calculating the
precision, l must be considered, because as l increases, the edge in the probe set is more
likely to be in the top l. Therefore, 10 different values of l were set for each probe set.
It can be seen that when the proportion of the test sets is low, the precision achieves its
highest point when l is the smallest, which implies that the CN index is more accurate for
predicting the top edges. However, with the increasing values of l, the precision gradually
decreases. This shows that the prediction result is not good for edges that are ranked lower.
When the proportion of test sets is high, the precision of the CN index reaches its apex
when the value of l is maximum. This shows that the ranks of the edges in the probe set are
lower. Then, we determined if the precision of all indexes have the same trend as the CN
index. Figure 9 shows the precision of the similarity indexes based on local information,
and the proportion of the probe set was set as 10%. Overall, the trend of CN, AA, PA, RA
indexes, and HPI are similar. The precisions of others are relatively low, irrespective of the
value of l. In addition, although the AUCs of HPI and HDI are not significantly different
among the three networks, the precision of HPI is higher.
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Figure 8. Precision trend of CN corresponding to the increase in l.
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Figure 9. Precision trend of different similarity indexes based on local information corresponding to
the increase in l when the proportion of test sets is 10%.

The RS considers all the edges. The smaller the RS, the higher the edge ranking in the
probe set. As Figure 10 shows, the values of the RS of the RA and CN indexes are smaller
than those of other indexes; thus, it aids in maintaining a stable state. The difference of each
index is more obvious in Network A. Although the precision of the PA index in Figure 9
is higher than several other indexes, the trend of the RS indicates that the overall ranking
predicted by the PA is low. Moreover, the RS of HPI is marginally higher than HDI in
networks A and B, but it is not obvious in Network C.



Mathematics 2022, 10, 3713 17 of 27

10 20 30 40 50 60 70 80 90
Proportion of Test Set(%)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

RS

NetworkA
AA
HDI
LHNI
PA
RA
HPI
Jaccard
Salton
Sorenson
CN

(a) Network A

10 20 30 40 50 60 70 80 90
Proportion of Test Set(%)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

RS

NetworkB
AA
HDI
LHNI
PA
RA
HPI
Jaccard
Salton
Sorenson
CN

(b) Network B

10 20 30 40 50 60 70 80 90
Proportion of Test Set(%)

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

RS

NetworkC
AA
HDI
LHNI
PA
RA
HPI
Jaccard
Salton
Sorenson
CN

(c) Network C

Figure 10. Ranking score (RS) trends of similarity indexes based on local information corresponding
to the increase in the proportion of the probe set.

5.1.2. Path-Based Similarity Index

Because the LP index considers second- and third-order paths, to determine whether
adding a third-order path can improve the prediction accuracy, different values of weight
w were considered. As shown in Figure 11, when the weight w of the third-order path
changes, the AUC value changes significantly. When w is less than 0, the AUC value
stabilizes at a lower level. However, when w is more than or equal to 0, the AUC suddenly
increases, reaching the maximum value, and then remains stable. Although the changing
trend of AUC is the same in the three networks, the change range is different. The largest
change is observed in Network A, followed by in Network B, and finally in Network C.
This shows that the weight of the third-order path has a significant impact on the network.
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Figure 11. Influence of third-order path weights on AUC of local path index.

As the CN index only considers the second-order path, to further study the role of the
third-order and longer paths in the commodity association network, the similarity indexes
based on the path were compared with CN. As shown in Figure 12, at the beginning,
the AUC values of the similarity indexes based on the path are marginally less than that of
the CN index, which shows that the second-order path performs a larger role in transmitting
similarity in the network. A longer path will weaken this effect. It can be observed that as
the proportion of the probe set increases, the AUC of the CN index decreases faster and is
lower than Katz and LP indexes, which indicates that the indexes based on the global path
perform better if there is more information missing. The AUC of LHN-II is maintained at
0.5, indicating that this index is not applicable in commodity networks.

Figures 13 and 14 show that the CN index has higher precision and lower RS than the
path-based similarity indexes. Moreover, the RS of the LP index is lower than that of the
Katz index. Table 8 shows that the maximum AUC of the CN index is 0.95, and that of the
LP index is 0.93. Therefore, the accuracy of prediction cannot be improved by considering
more or all paths.
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Figure 12. AUC trend of the path-based similarity indexes and CN index when the proportion of the
probe set increases.
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Figure 13. Precision trend of the path-based similarity indexes and CN index when l increases.
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Figure 14. RS trend of the path-based similarity indexes and CN index when the proportion of the
probe set increases.

5.1.3. Similarity Index Based on Random Walk

The RWR index assumes that every step to the next step has a certain probability x of
returning to the previous node. In a commodity association network, x can be considered
as the probability of repeated purchases after a customer purchases a certain commodity.
To study the effect of x in the commodity network on the AUC of the RWR index, x was
set to range from 0.1 to 0.9. The results are shown in Figure 15. The X-axis indicates the
proportion of the probe set, and the Y-axis indicates the AUC. Each broken line represents
the change in AUC when x is provided. For the different values of x, there is no significant
difference in the AUC of the RWR index. Therefore, the changes in x will not affect the
AUC. In Network A, RWR has the highest AUC.
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Figure 15. AUC trend of random walk with restart index in different networks corresponding to
changes in the return probability x and proportion of test sets.

Different networks may be required to set different steps to achieve the best prediction
accuracy. As shown in Figure 16, the change in the steps makes the AUC of the LRW and
SRW indexes first show an upward trend, and then it tends to stabilize. However, based
on the changes in the proportion of test sets, the steps until the AUC achieves an optimal
value are also different. When the proportion of the probe set is relatively low, the apex is
achieved in two or three steps; when the proportion of test sets is higher, the steps required
for the AUC to reach the peak value are also relatively more. This result is consistent with
the AUC change trend of the path-based similarity indexes. In addition, the AUC of indexes
based on the LRW is higher than others under the condition that the probe set occupies a
relatively high level, predominantly reaching a value of more than 0.8, indicating that the
LRW and SRW indexes are more suitable when a large amount of information is missing or
when the information collection is not sufficiently comprehensive.
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Figure 16. AUC trend of local random walk index corresponding to the changes in the number
of steps.

From the Figure 17, it can be noted that the LRW-based indexes perform better than
the global random walk indexes. Moreover, the LRW-based index time complexity is lower
than the global random walk index but higher than the similarity index, based on local
information and path. Among the indexes based on LRW, the SRW index has a higher
AUC than LRW. It can also be observed from Figure 16 that the AUC trend of SRW is more
stable. In Figure 18, the precision of the similarity index based on random walk is lower
than others. The maximum value is only 0.4. Especially for SimR, among the top l edges,
there are no edges in the probe set.

In Figure 19, the RS of LRW and SRW is maintained at approximately 0.05 and is higher
than that of the indexes based on local information. Although the AUC of the similarity
indexes based on random walk is high, the edges in the probe set are not ranked ahead
of the nonexiting edges. Therefore, when these indexes are used to calculate similarity,
the inaccurate results are easy to obtain when selecting the top N products.



Mathematics 2022, 10, 3713 20 of 27

10 20 30 40 50 60 70 80 90

Proportion of Test Set(%)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
U

C

NetworkA

ACT

Cos+

RWR

SimR

LRW(steps=3)

SRW(steps=3)

(a) Network A

10 20 30 40 50 60 70 80 90

Proportion of Test Set(%)

0.5

0.6

0.7

0.8

0.9

1

A
U

C

NetworkB

ACT

Cos+

RWR(x=0.5)

SimR

LRW(steps=3)

SRW(steps=3)

(b) Network B

10 20 30 40 50 60 70 80 90

Proportion of Test Set(%)

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

C

NetworkC

ACT

Cos+

RWR

SimR

LRW(steps=3)

SRW(steps=3)

(c) Network C

Figure 17. AUC trend of similarity index based on random walk in different networks when the
proportion of the probe set increases.
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Figure 18. Precision trend of similarity indexes based on random walk when l increases.
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Figure 19. RS trend of similarity indexes based on random walk when the proportion of the probe
set increases.

5.1.4. Weighted Similarity Index

When the association rules are converted to the network, both the lift and count can be
used as a weight to measure the strength of the association relationship of the commodities.
To determine which of the two is more suitable for similarity calculation, experiments were
conducted separately. The parameter θ is used to adjust weight. The continuous increase
in θ implies that the weight performs an increasing role in the calculation process. If the
weight is less than zero, it implies that the weight has a negative effect. If θ is greater than
zero and less than one, it implies that although the weight has a positive additive effect,
the effect is weak. If θ is greater than one, it implies that the effect is greater. Figure 20
shows the AUC changes when the adjustable parameter θ increases. The following aspects
can be noted from this figure. (1) It can be observed that the AUC in different networks all
reach more than 0.9 and there is no obvious difference between them. (2) As θ increases,
the AUC of WCN has a marginally upward trend, especially in Network A. However,
from Figure 20, it cannot be judged which parameter, i.e., lift or count, is significantly
better as a weight. (3) As Table 8 lists, the AUC of weighted index is higher, indicating that
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the effective use of weight information can improve the prediction accuracy. Moreover,
the WAA achieves the highest AUC of 0.9682.
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Figure 20. AUC trend of weighted similarity index in different networks when θ increases.

Figures 21 and 22 clearly show the impact of θ on the precision and RS. When the
proportion of the probe set is 10% and l = |E|/10, for WCN and WRA, as θ increases,
the precision increases and RS decreases. This trend is more obvious in Network A. This
indicates that the appropriate use of weight is also beneficial for precision and RS. However,
when θ increases, the precision and RS of WAA demonstrate an upward trend. Figure 23
shows that the precision trend of the weighted index is similar to that of the original index.
When θ = 2, the precision values of WRA and WCN are higher than those of RA and CN.
In Network A, based on the precision and RS, it can be considered that WRA is better than
WCN. However, in networks B and C, WCN is better than WRA. The performance of WAA
was marginally inferior to that of WRA and WCN.
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Figure 21. Precision trend of weighted similarity indexes in different networks when θ increases.
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Figure 22. RS trend of weighted similarity indexes in different networks when θ increases.

In summary, under optimal test-set-division conditions, the application of different
similarity indexes to the commodity network obtained high prediction accuracy. The SRW
index obtained the highest AUC of 0.97. The WRA and WCN indexes obtained marginally
lower AUCs than the SRW index, achieving a value of 0.96; however, the algorithm time
complexity of WRA and WCN indexes (O(N2), N is the count of node) is lower than
that using the SRW index (O(N(k)n), n is the steps, and k is average degree of network).
More importantly, the precision is higher and RS is lower. Therefore, the WRA and
WCN indexes are both suitable for commodity-related networks. The worst index is
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LHN-II, which obtained an AUC of only 0.5. Under the worse test-set-division condition,
the AUC values of LRW-based similarity indexes were 0.8 and above, which shows that
even if there are several missing edges in the network, a better prediction effect can be
achieved. Each similarity index shows the following characteristics in the commodity
network. (1) As the network edge information decreases, the prediction accuracy of
the similarity index will gradually decrease. Therefore, in actual operations, the more
complete the collected information is, the more beneficial it is to discover potentially related
commodities. (2) When the network information is relatively complete, the prediction
accuracy based on local network similarity indexes (such as LP, LRW, and SRW) is higher
than that obtained by considering the global similarity indexes (such as Katz and ACT).
However, if the network information is sparser, the accuracy is lower than that of the global
indexes. When it is difficult to collect information, choosing a suitable global similarity
measurement index can also obtain better prediction results. (3) In commodity networks
transformed by association rules with different degrees of support, the prediction accuracy
of each index is different. In Network A, the AUC was significantly higher. This also shows
that when there are more nodes and edges in the network, the prediction effect will be
better. (4) Effective use of weight information can improve prediction accuracy.
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Figure 23. Precision trend of the weighted and nonweighted similarity indexes when l increases and
θ = 2.

5.2. Potential Related Commodities

WRA was found to be an appropriate index. The details of the PRCD algorithm are
shown in Algorithm 3, in which the input is transaction data, and the outputs are potential
related commodities of each commodity in rules. Meanwhile, association rules are obtained
by the apriori algorithm, and the commodity-related network is constructed based on them.
In addition, the similarity between all goods without direct correlation is calculated, and for
each good in the rules, the top N items with the highest similarity are found. a(i, :) refers to
a vector including the similarity between commodity ci and other commodities that are
not directly related. Sort(SimWRA, N) returns top N commodities set cseti. Table 9 shows
an example of 20 commodities with the highest similarity to the target commodity 21,086
(SET/6 RED SPOTTY PAPER CUPS) predicted in Network B. These commodities have a
high probability of being potentially related to the target commodity.

To verify whether there is an association relationship between two commodities whose
predicted similarity is more than 0, the results of the three networks were tested. First, a
lower support level of 0.001 was set to obtain the commodity-related Network D. Then, we
checked whether the new connected edges (similarity more than 0) predicted in networks
A, B, and C appeared in Network D. Finally, the ratios of the new connected edges that
appear in Network D were calculated. For example, if there are 100 nonexisting edges with
a similarity more than 0 in Network A, and 80 nonexisting edges of Network A appear in
Network D, it implies that 80% of the predicted edges are actually weakly related.
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Table 9. Top 20 commodity sets with the highest similarity to the target commodity.

Target Commodity Similar Commodities Description of Similar Commodities Similarity

21086

22356 CHARLOTTE BAG PINK POLKADOT 0.1345
22384 LUNCH BAG PINK POLKADOT 0.1349
22379 RECYCLING BAG RETROSPOT 0.1358
20712 JUMBO BAG WOODLAND ANIMALS 0.1532
22720 SET OF 3 CAKE TINS PANTRY DESIGN 0.1596
22960 JAM MAKING SET WITH JARS 0.1616
22423 REGENCY CAKESTAND 3 TIER 0.1627
22457 NATURAL SLATE HEART CHALKBOARD 0.1676
22666 RECIPE BOX PANTRY YELLOW DESIGN 0.1713
20719 WOODLAND CHARLOTTE BAG 0.1714
22355 CHARLOTTE BAG SUKI DESIGN 0.1790
22411 JUMBO SHOPPER VINTAGE RED PAISLEY 0.1821
22961 JAM MAKING SET PRINTED 0.1826

85123A WHITE HANGING HEART T-LIGHT HOLDER 0.1984
22386 JUMBO BAG PINK POLKADOT 0.2006
20724 RED RETROSPOT CHARLOTTE BAG 0.2069
20727 LUNCH BAG BLACK SKULL 0.2074
21931 JUMBO STORAGE BAG SUKI 0.2086
22383 LUNCH BAG SUKI DESIGN 0.2113
47566 PARTY BUNTING 0.7013

The PRCD algorithm was executed in networks A, B, and C and returned similarity
matrices SimA, SimB, and SimC. The ratios of the new connected edges that were predicted
to appear in Network D were calculated as 0.9695, 0.9995, and 1, respectively. This indicates
that the predicted commodities with potential associations have a direct weak association
relationship, and the proportion is very high, which shows that the algorithm to discover
the potential association between commodities can identify the association relationship of
the commodities outside the association rules. At the same time, it can also be proved that
there is no competitive relationship between these commodities, because the probability of
competing products appearing in the same basket is actually very small.

At the same time, in order to prove the practicality of the method, the PRCD was
assessed on more common datasets of the recommendation system, which are shown in
Table 10. Delicious contains social networking, bookmarking, and tagging information
from a set of 2K users from the Delicious social bookmarking system. Lastfm corresponds
to music artist listening information which was obtained from the Last.fm online music
system. The BX dataset is a subset of the Book-Crossing dataset. The ML100K was collected
through the MovieLens web site and each user has rated at least 20 movies. Similarly, the
percent of the test set was set to 10%, and 10 times average AUC were obtained. The results
show that the method still performs well in other datasets. Therefore, the method proposed
can be used more widely.

Table 10. The datasets used in evaluation.

Dataset #Users #Items #Rows AUC

Delicious 1867 69,226 437,593 0.7801
Lastfm 1892 17,632 92,834 0.9646

BX 4186 7733 182,057 0.9517
ML100K 943 1682 100,000 0.9514

Note: The ”#users”, ”#items”, and ”#rows” columns show the number of users, number of items, and number of
rows, respectively, in each dataset. We accessed on 8 May 2022. 1 http://www.delicious.com. 2 http://www.last.
fm. 3 http://www.informatik.uni-freiburg.de/~cziegler/BX/. 4 http://grouplens.org/datasets/movielens.

5.3. Comparison to Other Methods

We conducted extensive experiments to evaluate PRCD. Our results show that PRCD
achieves unprecedentedly strong performance on various datasets. In order to prove
the superiority of the method, PRCD was compared with with link prediction methods
based on graph neural networks (GNNs). SEAL permits learning from not only subgraph
structures, but also latent and explicit node features, thus absorbing multiple types of
information. It outperforms heuristic methods and latent feature methods. We used the
same datasets as [62] and ran all experiments for 10 times, then recorded the following
average AUC results.

http://www.delicious.com
http://www.last.fm
http://www.last.fm
http://www.informatik.uni-freiburg.de/~cziegler/BX/
http://grouplens.org/datasets/movielens
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As shown in Table 11, the best result is bold. PRCD generally performs much better
than traditional methods. This indicates that building an associated network before link
prediction can improve the accuracy of prediction, especially the results on Router and
Power. Meanwhile, SEAL shows better performance on NS, PB, Power, and Router. It can
be seen that SEAL has outstanding learning ability for graphic features, but our method
achieves comparable performances with SEAL. In addition, PRCD outperforms on USAir,
Yeast, C. ele, and E. coil. In the real network, there will be some inessential and wrong links,
which may affect the results that SEAL learns from the local subgraph. However, the main
contribution of our proposed method lies in the construction of the network. By first
obtaining interesting association rules and then building the network, some meaningless
or unimportant links are eliminated in this process, which is beneficial to the training of
algorithms and models.

Table 11. Comparisons of average AUC of several methods.

Method
Dataset

UASir NS PB Yeast C.ele Power Router E. coil

CN 0.9380 0.9442 0.9242 0.8937 0.8513 0.5880 0.5643 0.9371
Jaccard 0.8979 0.9443 0.8741 0.8932 0.8019 0.5879 0.5640 0.8131

PA 0.8884 0.6865 0.9014 0.8220 0.7479 0.4433 0.4758 0.9182
AA 0.9506 0.9445 0.9236 0.8943 0.8695 0.5879 0.5643 0.9536
RA 0.9577 0.9445 0.9246 0.8945 0.8749 0.5879 0.5643 0.9595

Katz 0.9288 0.9485 0.9292 0.9224 0.8634 0.6539 0.3862 0.9350
SEAL 0.9662 0.9885 0.9472 0.9791 0.9030 0.8761 0.9638 0.9764
PRCD 0.9775 0.9306 0.9264 0.9899 0.9361 0.8527 0.9434 0.9894

6. Conclusions

This paper proposes a potentially related commodity discovery (PRCD) method
based on link prediction. In this method, the association rules are used to construct
the commodity association network in which the existing strong direct associations of
commodities are considered. Meanwhile, the link prediction based on similarity is applied
to the commodity association network. By comparing the influence of different similarity
indexes on prediction accuracy, the most suitable similarity measurement indexes are found.
The experimental results indicate that both WRA and WCN can effectively identify weak
correlations between commodities and can predict the set of commodities with potential
correlation with the target commodities. In addition, each index has different prediction
accuracy in different commodity-related networks, thereby showing a certain regularity.
The excellent performance of this method on other datasets proves the universality of
this method.

The primary contributions of this paper are as follows: (1) A link prediction algorithm
is applied to determine indirect association rules, which overcomes the lack of an impor-
tant model owing to unreasonable support and confidence settings of association rules.
Meanwhile, it can also reduce the screening of uninteresting association rules under low
support. (2) The best similarity measurement indexes (WRA and WCN) are found, and in
the commodity association networks, the utilization of lift and count as the weight can
effectively improve the prediction accuracy of the algorithm. (3) This paper provides a new
way to discover potential customers. By mining association rules, it can be determined that
the target commodity A has a strong direct correlation with B. The customer of commodity
B has a certain probability to become a potential customer of commodity A. Similarly,
through the mining of potentially related commodities, it is possible to predict the set of
commodities that have a potential relationship with the target commodity A, and then
determine the potential customers of the commodity A.

The method has strong practical value. First, the method used in this paper does
not have high requirements for data collection, and the collection cost is low. In addition,
the time complexity of the algorithm is not high, practice is simple, and it is easy to
popularize. Second, in actual use, it is possible to expand or reduce the collection of
similar goods according to the actual requirements of each enterprise or merchant and
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control the scale of potentially related goods. Thirdly, the discovery of potentially related
commodities results in accurate and timely predictions of customer requirements and
improves service quality.

In the process of building a network, many nodes will inevitably be lost. This will lead
to the problem of cold start. New products are often not added to the network as nodes.
If the sup is set improperly, resulting in too few association rules, the prediction results will
be inaccurate. If the sup is too small, the network structure may be too large. Determining
how to set parameters according to different data needs further research.
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