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Abstract: The large arcsine exponential dispersion model (LAEDM) is a class of three-parameter
distributions on the non-negative integers. These distributions show the specific characteristics of
being leptokurtic, zero-inflated, overdispersed, and skewed to the right. Therefore, these distributions
are well suited to fit count data with these properties. Furthermore, recent studies in actuarial sciences
argue for the consideration of such distributions in the computation of risk factors. In this paper, we
provide a thorough analysis of the LAEDM by deriving (a) the mean value parameterization of the
LAEDM; (b) exact expressions for its probability mass function at n = 0, 1, . . .; (c) a simple bound for
these probabilities that is sharp for large n; (d) a simulation algorithm for sampling from LAEDM.
We have implemented the LAEDM for statistical modeling of various real count data sets. We assess
its fitting performance by comparing it with the performances of traditional counting models. We use
a simulation algorithm for computing tail probabilities of the aggregated claim size in an insurance
risk model.

Keywords: natural exponential family; exponential dispersion model; variance function; count data;
Monte Carlo simulation
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1. Introduction

In this paper, we consider a class of parameterized probability distributions on the
non-negative integers, which are given as members of an exponential dispersion model
with specific variance functions. To clarify these concepts, we begin with the classic
technique in statistics of representing a family of probability measures (or distributions) on
the real line as a natural exponential family (NEF) [1,2] and its subsequent generalization to
an exponential dispersion model (EDM) [3]. A key feature of an NEF is that it expresses the
variances of the distributions as functions of their means. This leads not only to the mean value
parameterization of the NEF [4], but also to its unique pair of mean and variance, which is
called its variance function and denoted by V(m) [5].

Next, an interesting question arises as to what functions of V(m) do natural exponential
families of probability distributions have as their variance function. In his seminal work,
Morris [5] characterized all six NEFs with quadratic variance functions. Letac and Mora [2]
characterized all six NEFs with a cubic variance structure. Out of the latter six families,
two are absolutely continuous (relative to the Lebesgue measure) and four are discrete,
supported by the set of non-negative integers. These four are the Abel, Tacács, strict arcsine,
and large arcsine families. The probabilities of the first three families can be well expressed
both in terms of their Laplace transform and in terms of its mean value representation.
This was utilized by Bar-Lev and Ridder [6], who implemented the Abel, Takács, and
strict arcsine families for fitting Swedish car insurance claim data. These families were
used to model the counting variable N in the random sum SN = ∑N

j=1 Yj representing the
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aggregated claim distribution in an insurance risk model, in which N is the number of
claims over a time period and Yjs are the claim sizes. Bar-Lev and Ridder [6] computed the
risk measure P(SN > x) for large x and demonstrated superiority over the commonly used
counting distributions (e.g., Poisson and negative binomial).

The fourth discrete natural exponential family of probability distributions with a cubic
variance function, namely the large arcsine family, was presented by Letac and Mora [2]
in their characterization of cubic variance functions of NEFs on R. This was also obtained
by Fosam and Shanbhag [7] in their characterization of the constant regression of cubic
polynomial statistics on the sample mean. However, beyond these two characterization
results, the large arcsine family has not been studied in the literature with respect to its
probabilistic and statistical features and thus has not been analyzed as a candidate for
modeling any real count data sets. The main reason for this seems to be due to the fact that
its Laplace transform does not have an explicit form.

Our contribution in this paper aims to fill this gap. We present probabilistic and
statistical aspects of the large arcsine NEF and its associated exponential dispersion model,
which we denote by LAEDM. The kernel (or generating measure) of the probability distri-
butions of the LAEDM has a rather cumbersome analytic expression with different forms
for even and odd values. Moreover, the respective Laplace transform of its generating
measure cannot be expressed explicitly and thus cannot serve as a normalizing constant for
computing the relevant LAEDM probabilities. Fortunately, an expressible alternative to
this normalizing constant is available in terms of the mean and is obtained by utilizing the
mean value parameterization of NEFs.

Our method for determining the LAEDM distributions is based on the mean value
parameterization of NEFs and uses the Lagrange formula of Letac and Mora [2]. This
leads to exact expressions for the LAEDM probabilities which grant it the ability to run the
simulation experiments that are needed for applications such as risk model computations.
However, in many other cases, such as the ABM and LM distributions of Bar-Lev and
Ridder [8,9], the probabilities can be only computed numerically without being able to
use Monte Carlo simulations. Recently, Jørgensen and Kokonendji [10] introduced two-
and three-parameter discrete dispersion models by combining convolution with a factorial
tilting operation. The Poisson–Tweedie mixture model appears from this approach and is
implemented in our data fitting experiments in Section 6.

As opposed to the Abel, Takács, and the strict arcsine families which depend on two
parameters, the LAEDM depends on three parameters, a fact that allows more flexibility in
statistical modeling. In this paper, we thoroughly study various features of the LAEDM.
We rewrite its kernel and derive its probability mass function in terms of its mean value rep-
resentation. As the latter is rather intricate (particularly, for large positive mass probability
n), we study its asymptotic behavior as well as tail probabilities. We provide expressions
for the respective moments and show that all members of LAEDM are skewed to right and
leptokurtic. In addition, we present a scheme of Monte Carlo simulation for the LAEDM
probabilities. Such simulations are needed for many statistical, insurance risk-related, and
operational problems. Most of these problems cannot be solved analytically, a fact which
requires Monte Carlo computations.

We also consider the effectiveness of LAEDM as a candidate for modeling real count
data sets, while comparing it to other frequently used probability models. For this, we utilize
various metrics of goodness-of-fit tests such as chi-squared tests, Akaike information criterion,
root-mean-square error, and Kullback–Leibler divergence to demonstrate its superior fit.

The paper is organized as follows. For the sake of readability, we summarize in Section 2
some preliminaries of the concept’s natural exponential family, exponential dispersion
model, mean value parameterization, and variance function. Section 3 presents the main fea-
tures and properties of the LAEDM, notably, (a) its mean value parameterization; (b) exact
expression of the probability mass function f (n); (c) a simple bound for these probabilities
that is sharp for large n; (d) moments, central moments, and coefficients of skewness and
kurtosis. In particular, we show that all LAEDM distributions are skewed to the right and
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are leptokurtic. Section 4 develops a Monte Carlo algorithm for sampling from the LAEDM
distributions. Applications of the LAEDM are given in Sections 5 and 6. In Section 5, we im-
plement the LAEDM in an collective risk model and analyze its statistical performance for
a data set of car insurances, and in Section 6, the LAEDM is implemented in the statistical
modeling of various real count data sets. Section 7 is devoted to some concluding remarks.

2. Preliminaries

We summarize the concepts of the natural exponential family (NEF), the exponential
dispersion model (EDM), mean value parameterization, and variance function.

2.1. Natural Exponential Family

Let µ be a positive non-Dirac Radon measure on R, S the support of µ, and C the
convex-hull of S. The Laplace transform of µ is defined by

L(θ) =
∫
R

exθ µ(dx),

where the effective domain D of µ is D = {θ ∈ R : L(θ) < ∞}. We assume that Θ = intD 6=
∅, so that Θ is a nonempty open interval. Thus the cumulant transform k(θ) = log L(θ) of
µ is well defined by Θ. The family F of probability measures (or distributions) defined by

F =
{

Pθ(dx) = exθ−k(θ) µ(dx), θ ∈ Θ
}

is the NEF generated by µ. Therefore, µ is called a generating kernel for F . It is easy to
see that µ is not unique in its generation of F ; any exponential shift µ∗(dx) = ea+bxµ(dx)
generates the same family of distributions.

2.2. Variance Function

The cumulant transform λθ(s) of a distribution Pθ(dx) ∈ F is defined by log
∫
R esx Pθ(dx),

which equals

λθ(s) = log
∫
R

esx eθx−k(θ) µ(dx) = k(s + θ)− k(θ). (1)

The first moment and the j-th central moments j = 2, 3, . . . of a distribution Pθ(dx) ∈ F can
be computed by the derivatives (d/ds)jλθ(s)|s=0. From (1) we see that these moments are
equal to k(j)(θ) = (d/dθ)jk(θ), j = 1, 2, . . .. In particular, k′(θ) and k′′(θ), and θ ∈ Θ, are
the respective mean and variance.

The open intervalM = k′(Θ) is called the mean domain of F . Note that it depends
on the generating kernel µ only through its exponential shifts. The map θ 7→ k′(θ) is one
to one; thus, its inverse function (k′)−1 : M → Θ is well defined. Then, the variance of a
distribution Pθ(dx) ∈ F can be expressed as a function of the mean m,

V(m) = k′′
(
(k′)−1(m)

)
. (2)

The pair (V,M) is called the variance function of the NEF F . It uniquely determines F
within the class of NEFs (see Letac and Mora [2], Morris [5]).

2.3. Mean Parameterization

The inverse function (k′)−1, as a function on the mean domainM, is denoted by ψ.
Differentiating the ψ function, we obtain the following from (2):

ψ′(m) =
1

k′′
(
(k′)−1(m)

) =
1

V(m)
.
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Next, we define the function φ on the mean domain by φ(m) = k
(
(k′)−1(m)

)
= k

(
ψ(m)

)
.

Differentiating, we obtain

φ′(m) = k′
(
ψ(m)

)
ψ′(m) =

m
V(m)

.

Note that in this way, the ψ and φ functions can be interpreted as being primitives of the
functions 1/V(m) and m/V(m), respectively, on the mean domainM.

Now, let there be given a variance function (V,M) of an NEF F , without having
specified the generating kernel µ. We choose two primitives ψ and φ of 1/V(m) and
m/V(mZ), respectively, and then there is a positive Radon measure µ on the real line such
that [2],

φ(m) = log
∫
R

eψ(m) µ(dx), m ∈ M.

This leads to expressing the NEF F in terms of the mean as

F =
{

Pm(dx) = exψ(m)−φ(m) µ(dx), m ∈ M
}

. (3)

The representation (3) is called the mean value parametrization of F [2,4].
The generating kernel is not unique, as any exponential shift generates the same

family. This corresponds to the fact that the functions ψ(m) and φ(m) are not unique as
primitives. Indeed, the set of such primitives is infinitely uncountable. We shall detail how
to choose appropriate primitives in subsequent work. Parameterization (3) is important
for two reasons. One is related to the fact that the parameter m is as meaningful as the
mean, and therefore is much more significant than the canonical parameter θ which is
just the argument of the corresponding Laplace transform. The second reason is related
to situations in which the corresponding Laplace transforms are not explicitly expressed,
while primitives ψ and φ are easy. Numerous examples of the latter situation are presented
in Bar-Lev and Kokonendji [4], Awad et al. [11].

Additionally, our study relates to the latter situation. We consider an NEF given by
the variance function (V,M) in which the mean domainM = R+, and variance

V(m) = m
(

1 + 2m +
1 + a2

a2 m2
)

, m ∈ M, (4)

where a > 0 is a positive parameter. In Section 3, we will derive primitives φ and ψ and an
associated kernel µ for the NEF represented by the mean value parametrization (3). This
NEF is called the large arcsine family in Letac and Mora [2].

2.4. Exponential Dispersion Model

Let F be an NEF generated by a kernel µ with a variance function (V,M), a Laplace
transform L(θ), and a cumulant transform k(θ). Consider the set

Λ =
{

p ∈ R+ : Lp is a Laplace transform of a kernel µp
}

.

Then, Λ is nonempty due to convolution. This is called the Jørgensen set (or the dispersion
parameter space). It has been shown that Λ = R+ if µ is infinitely divisible (then also all
distributions in the family F are infinitely divisible). For any p ∈ Λ, the NEF generated by
µp is the set of probability measures of the form

Fp =
{

Pθ,p(dx) = exθ−pk(θ) µp(dx), θ ∈ Θ
}

. (5)

The set of NEFs
∪p∈ΛFp

is the EDM associated with µ [12]. The parameter p is called the dispersion parameter. In partic-
ular if Λ = R+ (i.e., µ is infinitely divisible) then EDMs are used to describe the distribution
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of the error component in generalized linear models (see Nelder and Wedderburn [13], and
Jørgensen [3,12] for numerous applications). Note that an EDM is an uncountable set and
that the NEF with which we began to construct the EDM is just a special case with a unit
dispersion parameter.

Next, let us develop the mean value parameterization of an EDM. The NEF Fp of (5)
has a variance function of (Vp,Mp) withMp = pM. Clearly,

ifM = R+ thenMp = pM = R+. (6)

The variance satisfies (where kp(θ) = p k(θ)),

Vp(m) = k′′p
(
(k′p)

−1(m)
)
= p k′′

(
(k′)−1(m/p)

)
= pV(m/p). (7)

Then, it is easy to see that we can choose primitives ψp(m) of 1/Vp(m), and φp(m) of
m/Vp(m) that satisfy

ψp(m) = ψ(m/p), φp(m) = p φ(m/p). (8)

Then, we obtain the mean value parameterization corresponding to (5),

Fp =
{

Pm,p(dx) = exψ(m/p)−p φ(m/p)µp(dx), m ∈ Mp
}

. (9)

Specifically, in our study of the large arcsine family with variance given in (4) for the NEF
(p = 1), the variance for the EDM (any p > 0) becomes

Vp(m) = m
(

1 + 2
m
p
+

1 + a2

a2
m2

p2

)
. (10)

This will be the variance function of our study. We denote the associated exponential
dispersion model by LAEDM (large arcsine exponential dispersion model).

2.5. Literature Review on Discrete EDMs and Related Distributions

Exponential dispersion models (EDMs) are considered to be powerful tools for statisti-
cal analysis because of their modeling flexibility, convolution properties, their usage for
generalized linear models [3,12], and their mean value parameterization feature [2,4,5]. The
latter enables the modeling of the variances of the distributions as functions of the mean.
Jørgensen [12] showed that all polynomial variance functions with non-negative coefficients
and a zero constant coefficient correspond to infinitely divisible NEFs. A discrete EDM is
an EDM for which its distributions have a discrete domain (not necessarily the integers).
The LAEDM is a special case of a discrete exponential dispersion model where its domain
is the non-negative integers (denoted N0) and it has a polynomial variance function of
degree 3 which satisfies the infinite divisibility property. As a consequence, its variance
function (10) fulfills (6).

In the introductory section, we already reflected on the three other discrete EDMs on
N0 with cubic variance functions identified by Letac and Mora [2] and implemented in Bar-
Lev and Ridder [6]. Other simple discrete EDMs on N0 are the classic Poisson with variance
function V(m) = m (degree 1 polynomial), the binomial with V(m) = m(1 − m/N)
(degree 2), and the negative binomial with V(m) = m(1 + m/r) (degree 2) identified by
Morris [5]. For ease, we mention here the variance function of the default NEF. The general
variance function for dispersion p has the form Vp(m) = p V(m/p) (see (7)).

In Bar-Lev and Ridder [8,9], we analyzed discrete EDMs in N0 with polynomial
variance functions in the form V(m) = m(1 + m)r for any r = 0, 1, . . . and discrete EDMs
on N0 with rational variance functions of the form V(m) = m/(1−m)r, r = 1, 2, . . .. We
showed that these models give excellent fitting performances of data showing zero-inflation,
overdispersion, and a large amount of skewness and kurtosis.
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Kokonendji et al. [14] investigated two discrete EDMs, the first is a class of Poisson
mixture with positive Tweedie mixing distributions, hence called a Poisson–Tweedie EDM,
which is concentrated on N0. Its variance function has the form V(m) = m + mγ exp

(
(2−

γ)ψ(m)
)
, where γ ≥ 1, and ψ(m) the inverse of the derivative of the cumulant function

(see Section 2.3). The second discrete EDM in [14] has the variance function V(m) = m +
mγ, γ > 1, and is called Hinde–Demétrio class. If γ = 1, 2, . . ., it is concentrated on N0. The
probability mass functions of the Poisson–Tweedie EDM and the Hinde-Demétrio EDM are
generally not easy, except for in cases with specific parameter values. Kokonendji et al. [14]
considered two data sets of car insurance claims [15] and fit Poisson–Tweedie EDM with
γ = 2 (which is negative binomial model) and the Hinde–Demétrio EDM with γ = 3,
which is the strict arcsine model (see also Kokonendji and Khoudar [16]). The generating
measure of the Poisson–Tweedie EDM is the Poisson–Tweedie mixture distribution whose
probability mass function is more easily computable, and has three parameters that allow
for maximum likelihood estimation. Therefore, it has been applied in a wide range of
modeling data, such as crash and traffic accident data [17,18], species abundance data [19],
and longitudinal RNA-sequencing data [20]. In Section 6, we implement the Poisson–
Tweedie mixture distribution as one of the models for fitting count data.

Two of the three parameters of the Poisson–Tweedie mixture model are the dispersion
p and the power γ of the Tweedie EDM [12]. Then, the variance of the Poisson–Tweedie
mixture distribution is expressed by its mean as Var = m + pmγ. Recently, Abid et al. [21]
extended this model to the Poisson–exponential Tweedie model by the relationship
Var = m + m2 + pmγ, and applied this model for fitting overdispersed count data sets.
Although they are closely related, note however that these distributions are not members
of an EDM.

3. The Large Arcsine Exponential Dispersion Model

This section is dedicated to our main study. We first establish the mean value
parametrization of the LAEDM and the choice of appropriate primitives ψp(m) and φp(m)
for any dispersion parameter p. From these, we argue that the probability distributions
Pm,p(dx) (see (9)) of the LAEDM are concentrated on the non-negative integers. Therefore,
we denote these as the probability mass functions fm,p(n), n = 0, 1, . . .. We then present a
generating kernel µp = {µp(n), n = 0, 1, . . .} from which we obtain exact expressions for
the probability mass functions fm,p(n). As these expressions are rather cumbersome, we
derive simple bounds of fm,p(n) for any n. These bounds are sharp, as n→ ∞. Furthermore,
in the next section, the bounds serve for developing a sampling algorithm based on the
accept–reject method.

We end this section by presenting general expressions for the central moments of
LAEDM and show that all LAEDM members are skewed to the right and are leptokurtic,
i.e., in terms of shape, a leptokurtic distribution has fatter tails.

3.1. The Mean Value Parameterization of the LAEDM

From now on and for convenience, we will use the abbreviation LAEDM, both to
indicate the variance function (10) and to its associated EDM. In this section, we will
derive the mean value parameterization (9) of the LAEDM. To obtain the mean value
parameterization, we start with computing the primitives ψ(m) of 1/V(m), and φ(m) of
m/V(m) of the NEF whose variance is given for the unit dispersion in (4).
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Lemma 1. Consider the large arcsine NEF with variance function given in (4). Then,∫ 1
V(m)

dm = log m− 1
2

log
(
(1 + a2)m2 + 2a2m + a2)

− a arctan
(1 + a2)m + a2

a
+ c,∫ m

V(m)
dm = a arctan

(1 + a2)m + a2

a
+ d,

where c, d ∈ R are integration constants.

Proof. Use partial fraction for

1
V(m)

=
1

m
(
1 + 2m + 1+a2

a2 m2
) =

a2

m
(
a2 + 2a2m + (1 + a2)m2

)
=

1
m
− 1

2
log

2a2 + 2(1 + a2)m
a2 + 2a2m + (1 + a2)m2 −

a2

a2 + 2a2m + (1 + a2)m2 .

The first two terms have primitives log m and 1
2 log

(
1 + 2m + (1 + a2)m2), respectively. For

the third term, apply square completion of the denominator to obtain after rewriting

1 + a2

1 +
( (1+a2)m+a2

a
)2 ,

with primitive a arctan (1+a2)m+a2

a .
Similarly,

m
V(m)

=
1

1 + 2m + 1+a2

a2 m2
=

a2

a2 + 2a2m + (1 + a2)m2

=
1 + a2

1 +
( (1+a2)m+a2

a
)2 ,

with primitive a arctan (1+a2)m+a2

a .

Primitives of the variance function (10) for any dispersion parameter p > 0 follow
from (8), 

ψ
(c)
p (m) = ψ(m/p) = log m− 1

2 log
(
(1 + a2)m2 + 2a2mp + a2 p2)

−a arctan (1+a2)m+a2 p
ap + c,

φ
(d)
p (m) = p φ(m/p) = ap arctan (1+a2)m+a2 p

ap + d,

(11)

where we have added the superscripts c and d to indicate the integration constants that are
free parameters at this moment.

Corollary 1. The LAEDM is a class of probability distributions on the non-negative integers.

Proof. Proposition 4.4 of Letac and Mora [2] provides the necessary and sufficient condi-
tions under which a given variance function is associated with an NEF concentrated on
the non-negative integers. We check these conditions for any NEF of an LAEDM given by
the variance function (10). The first two conditions (M = (0, b) for some 0 < b ≤ ∞ and
(φ

(d)
p )′ = m/Vp(m) is a real analytic onM) are clearly satisfied. The third condition is



Mathematics 2022, 10, 3715 8 of 25

lim
m→0

(φ
(d)
p )′(m) = 1. (12)

Because (φ
(d)
p )′(m) = m/Vp(m) =

(
1 + 2m/p + (1 + a2)m2/(ap)2)−1, the condition (12) is

immediate.

Now, the question becomes how to choose, appropriately, the integration constants c and d.
The most convenient method is to impose [2,8]

lim
m→0

φ
(d)
p (m) = 0, and lim

m→0
me−ψ

(c)
p (m) = 1. (13)

We denote the resulting primitives just by ψp(m) and φp(m). Then, under these conditions,
a generating kernel µp can be represented (and computed) by [2,8],

µp(n) =
1
n!
( d

dm
)n−1eφp(m) φ′p(m)

(
me−ψp(m)

)n∣∣
m=0. (14)

Proposition 1. The mean value parameterization of LAEDM that satisfies the conditions (13) is
given by primitives

ψp(m) = log amp− 1
2 log

(
(1 + a2)m2 + 2a2mp + a2 p2)

−a
(

arctan (1+a2)m+a2 p
ap − arctan a

)
,

φp(m) = ap
(

arctan (1+a2)m+a2 p
ap − arctan a

)
.

(15)

Proof. It suffices to determine the integration constants c and d in (11) such that (13) holds.
Concerning the φ

(d)
p primitive in (11), we immediately obtain d = −ap arctan a. To compute

c, let ξ
(c)
p (m) = ψ

(c)
p (m)− log m, then

me−ψ
(c)
p (m) = elog m−ψ

(c)
p (m) = e−ξ

(c)
p (m),

where (see (11))

ξ
(c)
p (m) = −1

2
log
(
(1 + a2)m2 + 2a2mp + a2 p2)− a arctan

(1 + a2)m + a2 p
ap

+ c.

Thus ,

lim
m→0

me−ψ
(c)
p (m) = 1 ⇔ lim

m→0
ξ
(c)
p (m) = 0 ⇔ c = log ap + a arctan a.

Now, we substitute the found constants c and d in (11) to obtain (15).

The final component of the mean value parameterization (9) is the generating kernel {µp(n),
n = 0, 1, . . .}.

Proposition 2. Consider the discrete measure on the non-negative integers given by

µp(2n) =
p

p + 2n
1

(ap)2n
1

(2n)!

n−1

∏
k=0

(
a2(2n + p)2 + 4k2), n = 0, 1, . . . ,

µp(2n + 1) =
ap

(ap)2n+1
1

(2n + 1)!

n−1

∏
k=0

(
a2(2n + 1 + p)2 + (2k + 1)2), n = 0, 1, . . . ,

(16)

(with empty products equal one). This measure generates the mean value parameterization of
LAEDM, and serves as a kernel.
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Proof. When the primitives ψp and φp satisfy the conditions (13), a kernel can be computed
by (14) for n = 1, 2, . . ., with µp(0) = 0. This has been elaborated in Letac and Mora [2] by
applying the Lagrange formula, to become

µp(n) =
p

p + n
1

(ap)n
1
n!

πn
(
a(n + p)

)
, n = 0, 1 . . . ,

where the polynomials (πn)∞
n=0 are defined by

π2n(x) =
n−1

∏
k=0

(
x2 + 4k2), π2n+1(x) = x

n−1

∏
k=0

(
x2 + (2k + 1)2).

By computation, we can obtain the expressions in (16).

3.2. Computation of the Probability Mass Functions

Let { fm,p(n), n = 0, 1, . . .} be the probability mass function as member of LAEDM
with a specific mean m > 0 and dispersion p > 0. It is represented by the mean value
parameterization

fm,p(n) = µp(n)enψp(m)−φp(m), n = 0, 1, . . . , (17)

where the kernel µp and the primitives ψp and φp are computed in Section 3.1. We present
here their expressions that result after straightforward computations. For completeness,
we give the calculus in Appendix A.

Lemma 2. The LAEDM probability mass functions are given by

fm,p(2n) = e−apB p
p + 2n

1
Cn

1
(2n)!

n−1

∏
k=0

(
a2(2n + p)2 + 4k2),

fm,p(2n + 1) = ap e−apB 1√
C

1
Cn

1
(2n + 1)!

n−1

∏
k=0

(
a2(2n + 1 + p)2 + (2k + 1)2), (18)

where 
B = arctan (1+a2)m+a2 p

ap − arctan a,

C = (1 + a2)(1 + D)e2aB,

D = a2

1+a2
p
m
(
2 + p

m
)
.

(19)

These exact expressions are rather cumbersome, and not very helpful for recognizing
structural properties. However, in Appendix B we shall prove the following theorem
expressing simple bounds and asymptotics. For these, define

E = 1
2 log

(
1 + 1

a2

)
− 1 + a arctan 1

a ,

γ = e−apB pep
√

2π
,

ρ = a e1+E
√

C
.

(20)

All these parameters depend only on the variance function parameters m, p, a.

Proposition 3.

(i) For all n = 1, 2, . . .,
fm,p(n) ≤ γ n−3/2 ρn.

(ii) The bound is asymptotically sharp.

fm,p(n) = γ n−3/2 ρn + o(1), as n→ ∞.
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(iii) For all m, p, a > 0, 0 < ρ < 1.

Hence, we see that the tail of an LAEDM distribution decays to zero faster than the geomet-
ric distribution with parameter ρ. Notwithstanding, we call it the geometric parameter of
LAEDM.

3.3. Moments, Central Moments, Skewness and Kurtosis

Consider the NEF Fp of an LAEDM with an arbitrary dispersion parameter p > 0
(see (5)) In Section 2.4, we saw that Fp has the cumulant kp(θ) as function of the natural
parameter, variance function Vp(m) as function of the mean parameter, and ψp(m) as a
primitive of 1/Vp(m). Then, we can define the derivatives of the cumulant in the mean
parameterization by

k(j)
p (m) =

( d
dθ

)jkp(θ)
∣∣
θ=ψp(m)

.

Recursively, it can easily be shown that

k(j+1)
p (m) = Vp(m)

(
k(j)

p
)′
(m), j = 1, 2, . . . ; m ∈ Mp. (21)

Now, consider the random variable Xm,p associated with the probability mass func-

tion (17). By definition, its mean is given by k(1)p (m) = m. Its higher central moments are

C(j)
p (m) = E

[
(Xm,p −m)j], j = 2, 3, . . . .

Using the recursion (21) for the cumulant derivatives, we can easily obtain that

C(2)
p (m) = k(2)p (m) = Vp(m),

C(3)
p (m) = k(3)p (m) = V(m)V′(m),

. . .

C(r+2)
p (m) = k(r+2)

p (m) +
r

∑
j=2

(
r + 1

j

)
C(j)

p (m)k(r−j+2)
p (m), r ≥ 2.

The LAEDM shares the following properties.

Proposition 4. The LAEDM distributions are

(a) Overdispersed (relative to the Poisson NEF).
(b) Zero inflated (relative to the Poisson NEF).
(c) Skewed to the right and leptokurtic.

Proof.

(a) This is simple as Vp(m) > m.
(b) Let Xm,p ∼ be an LAEDM and Ym ∼ be a Poisson, both with mean m. We need to

show that
P(Xm,p = 0) > P(Ym = 0), for all m, p.

Calculate
P(Xm,p = 0) = fm,p(0) = µp(0)e−φp(m) = e−φp(m),

where by (15),

φp(m) = ap
(

arctan
(1 + a2)m + a2 p

ap
− arctan a

)
.
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Because P(Ym = 0) = e−m, it suffices to show that

m > ap
(

arctan
(1 + a2)m + a2 p

ap
− arctan a

)
(22)

for all m, a and p. Define

h(m) = m− ap
(

arctan
(1 + a2)m + a2 p

ap
− arctan a

)
,

then

h′(m) = m
m + a2m + 2a2 p

a2m2 + 2a2mp + a2 p2 + m2 > 0,

for all m > 0, a > 0, p > 0. As h(0) = 0, (22) follows.
(c) Recall that a distribution is skewed to the right if its skewness coefficient γ1 > 0. It

is called leptokurtic if it has a positive excess kurtosis γ2 > 0 (i.e., in terms of shape
it has fatter tails). For the LAEDM variance function, we have by (21) and denoting
k j ≡ k(j)

p (m), Cj ≡ C(r)
p (j), that k j > 0 for all j ≥ 1, implying

γ1 =
C3

C3/2
2

=
k3

k3/2
2

> 0,

γ2 =
C4

C2
2
=

k4 + 3C2k2

k2
2

=
k4 + 3k2

2
k2

2
> 0.

4. Monte Carlo Simulation Algorithm for Sampling from LAEDM Distributions

From the upper bound in Proposition 3, we are able to construct a Monte Carlo
simulation algorithm for sampling from any LAEDM distribution. The method is based on
the accept–reject method [22].

Let X be the random variable on the non-negative integers with probability mass
function fm,p(n), n = 0, 1, . . ., as given in Lemma 2, and with the upper bound displayed
in Proposition 3. We shall consider two random variables, Y and Z, both on the positive
integers, as candidates for majorizing X|X ≥ 1 in the accept–reject sampling method. We
define the probability in zero,

q = fm,p(0) = e−apB.

1. Consider the random variable Y on {1, 2, . . .} with probability mass function (or
density)

g(n) =
ρn−1

n3/2 −
ρn

(n + 1)3/2 , n = 1, 2, . . . . (23)

Now, we majorize the density of X given X ≥ 1:

fm,p(n|n ≥ 1) =
fm,p(n)
1− q

≤ q
1− q

pep
√

2π

ρn

n3/2

=
q

1− q
pep
√

2π

ρ

1− ρ

(1− ρ)ρn−1

n3/2

=
q

1− q
pep
√

2π

ρ

1− ρ

(ρn−1

n3/2 −
ρn

n3/2

)
≤ q

1− q
pep
√

2π

ρ

1− ρ

(ρn−1

n3/2 −
ρn

(n + 1)3/2

)
.
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In this way, we obtain the inequality fm,p(n|n ≥ 1) ≤ Cyg(n) for all n = 1, 2, . . ., with
the majorizing constant

Cy =
q

1− q
pep
√

2π

ρ

1− ρ
. (24)

2. Consider the random variable Z on {1, 2, . . .} with density

h(n) =
1√

n + 1

(√
1 +

1
n
− 1
)

, n = 1, 2, . . . . (25)

This easily shows that
1

n3/2 ≤
√

2√
2− 1

h(n).

Because ρ < 1, we find

fm,p(n|n ≥ 1) =
fm,p(n)
1− q

≤ q
1− q

pep
√

2π

ρn

n3/2

≤ q
1− q

pep
√

2π

√
2√

2− 1
h(n).

So now, we obtain the inequality fm,p(n|n ≥ 1) ≤ Czh(n) for all n = 1, 2, . . ., with the
majorizing constant

Cz =
q

1− q
pep
√

2π

√
2√

2− 1
. (26)

Consequently, sampling from an LAEDM distribution can be executed by an accept–
reject algorithm using the dominating Y or Z defined above. In fact, we choose the one
with the smallest dominating factor C (highest chance of acceptance), thus

ρ

1− ρ
<

√
2√

2− 1
⇒ use Y;

ρ

1− ρ
>

√
2√

2− 1
⇒ use Z.

Hence, given the parameters p, m, a of the LAEDM, we compute the probability in zero q
and the majorizing constants Cy, Cz as in (24) and (26). Then, Algorithm 1 summarizes the
accept–reject method in the case of sampling using the Z majorant. The case of using the Y
majorant is similar.

Algorithm 1 Sampling X from LAEDM Using Z

1: Generate U ∼ uniform(0, 1)
2: if U < q then
3: return 0
4: else
5: repeat
6: Generate X ∼ h(·)
7: Compute P = f (X)|X≥1)

Czh(X)

8: Generate U ∼ uniform(0, 1)
9: until U < P

10: return X
11: end if

In the following sections, we sketch the process of generating samples of the majorant
distributions of Y and Z. As a performance test, we sampled N = 10000 samples of the
LAEDM distribution with parameters a = 2.3, p = 1.5, and m = 3.7. The geometric
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parameter ρ satisfies ρ/(1− ρ) >
√

2/(
√

2− 1), and thus the Z majorant was used. The
acceptance ratio in Algorithm 1 for these LAEDM parameters was 1/CZ = 0.31. The
simulated samples were tested (chi-square) against expected numbers. The p-value was
0.46, which verifies that the algorithm was implemented correctly. Figure 1 shows the
simulated and expected number of data.

Figure 1. Histogram of the simulated data and their expected numbers.

4.1. Sampling Y

The cumulative distribution function associated with density (23) is

G(n) = 1− P(Y ≥ n + 1) = 1− ρn

(n + 1)3/2 , n = 1, 2, . . . .

Hence, the inverse transform method applies,

Y = inf{n = 1, 2, . . . : G(n) ≥ U},

where U ∼ uniform (0, 1). Solving for u ∈ (0, 1):

G(n) ≥ u ⇔ ρn

(n + 1)3/2 ≤ 1− u.

Thus, let x > 0 be the solution to

ρx

(x + 1)3/2 = 1− u,

then Y = dxe. Now,

ρx

(x + 1)3/2 = 1− u

⇔
( ρx+1

ρ(x + 1)3/2

)2/3
= (1− u)2/3

⇔ (x + 1)ρ−(2/3)(x+1) =
(
ρ(1− u)

)−2/3

⇔ (x + 1)e
(
−(2/3) log ρ

)
(x+1) =

(
ρ(1− u)

)−2/3

⇔
(
− (2/3) log ρ

)
(x + 1)e

(
−(2/3) log ρ

)
(x+1) =

(
− (2/3) log ρ

)(
ρ(1− u)

)−2/3
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This reads as w ew = z (for positive z) whose solution is the Lambert W function. Hence,(
− 2

3 log ρ
)
(x + 1) = W

((
− 2

3 log ρ
)(

ρ(1− u)
)−2/3

)
.

Finally, solving for x, we obtain the random sample

Y =
⌈ 3
−2 log ρ

W
((
− 2

3 log ρ
)(

ρ(1−U)
)−2/3

)
− 1
⌉

4.2. Sampling Z

Recall the density (25) of Z,

h(n) =
1√

n + 1

(√
1 +

1
n
− 1
)

, n = 1, 2, . . . .

It is well known (for instance, see page 550 in Devroye [22]) that such a density is associated
with the random variable bU−2c, where U is the uniform (0, 1) variate. Sampling is easy.

5. Applications of the LAEDM to Risk Measures

Risk measures are statistical indicators that are used by investors, financial institutions,
and financial regulators for assessing investment risk. Their main purpose is to determine
an amount of capital to keep in reserve in order to cope with risk. Here we consider risk
measures for a collective risk model SN = ∑N

j=1 Yj, where

• Y1, Y2, . . . are i.i.d. positive random variables representing the individual claims (or
losses) at, for instance, an insurance (or financial) company.

• N ∈ N0 = {0, 1, . . .} is a random variable designating the total number of claims (or
losses) occurring during a certain time period. Commonly it is called the frequency of
the claims.

• N and the Yjs are independent.

Risk measures could be

• Catastrophic risk, or the loss probability [23]

P(SN > x) (27)

for large levels of x. Such a case is very familiar to actuaries since many insurance
policies include a deductible and reinsurance contracts which involve some level of
retention from the insurer [24].

• The value at risk (VaR) at confidence level q ∈ (0, 1):

VaRq = inf{x : P(SN ≤ x) ≥ q)}.

• The tail conditional expectation at level q ∈ (0, 1) [25,26]:

TCEq = E
[
SN |SN > VaRq

]
.

This is also known to be the expected shortfall, or the conditional value-at-risk. It is
interpreted as the expected worst possible loss, given that this loss exceeds the value
at risk. Typically in practice, q is taken to be larger than 0.9.

For a case study, we chose the data from Bar-Lev and Ridder [6] to compute the loss
probability (27) in a car insurance company. Typically for automobile insurance, only a
small percentage of the policyholders will file claims in any given year. Hence, data sets for
insurance risk modeling are highly zero-inflated, and moreover, they involve overdispersed
distributions (see Lee [27] and references therein). The data that we considered were taken
from a Swedish car insurance company and are publicly available [28,29]. These data sat-
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isfy the aforementioned properties (see Table 1 below). From Bar-Lev and Ridder [6], we
obtained the frequency distributions of Abel, strict arcsine, and Takács EDMs. These are
EDMs on the non-negative integers with cubic variance functions, and their distributions
are zero-inflated and overdispersed. We took the claim distributions from gamma and
inverse Gaussian distributions and distributions from the natural exponential family (NEF)
generated by positive α-stable random variables. The reason for taking these claim distri-
butions is that each forms a natural exponential family also containing their convolutions.
Our findings showed that implementing Abel, strict arcsine, or Takács for the frequency
with any of the mentioned claim size distributions is significantly superior than the use
of the classical Poisson or negative binomial frequency distributions, according to various
goodness-of-fit metrics.

Table 1. Statistics of insurance data.

Variable Zeros p0 Average m Variance V

Frequency N 0.06349 70.60 52,181.5
Aggregate SN 329.2 1,153,532.3

Claim Y 4.663 265.3

As a follow-up to our previous study, we now investigate whether the fourth EDM
with cubic variance function, the large arcsine EDM, might be an alternative for modeling
the frequency distribution. The data set is the same as the one in Bar-Lev and Ridder [6]:
630 observations (ni, si) where ni is the i-th frequency (sample of N) and si the i-th observa-
tion of the aggregated claim (sample of SN). The statistics of the data are shown in Table 1.
Note that the individual claim data (yij) are not observed, but that their sample average
can be computed:

m̂Y =
∑i si

∑i ni
.

For the sample variance of the individual claims, we use the well-known identity for the
variance of the aggregated sum SN :

Var(SN) = (E[N])(Var(Y)) + (Var(N))(E[Y])2.

From Table 1 we see that the claim frequency is overdispersed (V/m = 52181.5/70.60� 1)
and zero-inflated (p0 = 0.06349� 2.189× 10−31 = e−m). The LAEDM parameters (a, p, m)
are estimated by matching the fraction of zeros p0, the mean m, and the variance V(m).
The distribution of the claim size Y is chosen from gamma, inverse Gaussian, and NEF
positive α-stable distributions. These are two-parameter distributions, estimated by two
moment matching.

With these parameters, we have fit the frequency distribution and the claim distribu-
tion. Then, we ran simulations of aggregated claim sizes in these models and executed
the chi-square test for goodness of it (hypothesizing that the samples came from the same
distribution). Furthermore, we show the histograms in Figure 2 and Q–Q plots of the data
SN versus simulated SN in these three cases in Figure 3.
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Figure 2. Histograms of the aggregated claim observed data and 2000 simulated samples (normed to
form pdf’s), using LAEDM frequency.

Figure 3. Q–Q plots of the aggregated claim observed data and 2000 simulated samples, using
LAEDM frequency.

Table 2 summarizes the test results in terms of p-values.

Table 2. p-values of the fitted models.

Frequency Model Claim Model p-Value

LAEDM Gamma 0.3709
LAEDM Inverse Gaussian 0.3646
LAEDM NEF Stable 0.6042

As a comparison with classic modeling, we have fitted the negative binomial (NB)
frequency distribution. When combining this with with gamma, inverse Gaussian, and
NEF-stable claim distributions, all three combinations gave p-values of the order 10−5

of the goodness of fit for the aggregated sum samples. Figure 4 shows the three Q–Q
plots. Clearly, the NB distribution does not catch the skewness, and is outperformed by the
LAEDM.

Figure 4. Q–Q plots of the aggregated claim observed data and 2000 simulated samples, using
NB frequency.



Mathematics 2022, 10, 3715 17 of 25

6. Statistical Modeling

In this section, we will investigate the usage of LAEDM distributions for fitting real-
world count data. We consider only data that show the four properties of Proposition 4,
i.e., those that are zero-inflated, overdispersed, skewed to the right, and leptokurtic. Many
data sets fulfilling these conditions are available in areas such as actuarial sciences, labor
economics, health economics, and behavioral science. We choose five data sets with values
given in Table 3. Their origins and the model fitting analyses are given below in Section 6.1.

Table 3. Five data sets.

0 1 2 3 4 5 6 7 8 9 10 11

Set 1 6984 2452 433 100 26 5
Set 2 29,087 2952 464 108 40 9 5 2 3 1 1
Set 3 65 14 10 6 4 2 2 2 1 1 1 2
Set 4 3541 599 176 48 20 12 5 1 4
Set 5 256 54 14 10 1 2

Their statistics are listed in Table 4, showing the required properties for the zero-
inflation (p0 > e−m), the dispersion δ = V(m)/m > 1, the skewness γ1 > 0, and the excess
kurtosis γ2 > 0 (see Section 3.3).

Table 4. The statistics of the data sets.

p0 m e−m δ γ1 γ2

Set 1 0.6984 0.3747 0.6875 1.127 2.054 5.455
Set 2 0.8903 0.1376 0.8714 1.485 5.119 45.25
Set 3 0.5909 1.391 0.2488 4.394 2.230 4.807
Set 4 0.8037 0.2960 0.7438 1.882 3.963 22.80
Set 5 0.7596 0.3739 0.6881 1.742 2.748 8.786

6.1. Model Fit Analysis

Given a data set, we estimate the mean parameter m of the LAEDM distribution by the
data average, and the other two parameters (a and dispersion p) by the maximum likelihood
method. Then, we compute the performance of using the LAEDM-(a, p, m) distribution as
a model for the data. In addition to the usual measures, Akaike information criterion (AIC)
and the χ2 value (chi sq) with degrees of freedom (df) [30], we also computed the difference
between the observed data frequencies and the expected frequencies under the fitted
LAEDM distribution by their root mean squared error (RMSE). Finally, we also computed
the difference of the empirical (data) distribution and the fitted LAEDM distribution by
their Kullback–Leibler divergence (KL).

For assessing the quality of these measures, we also computed these values when
using other models for fitting. Because the LAEDM distributions have three parameters,
we consider other three-parameter distributions: (a) distributions from the ABM and LM
exponential dispersion models. We introduced these models in Bar-Lev and Ridder [8],
and analyzed their fits for insurance and crash data in Bar-Lev and Ridder [9]. (b) Poisson–
Tweedie distributions (PTD), introduced in Kokonendji et al. [14] and analyzed for fitting
purposes in Saha et al. [18]. These distributions are based on Poisson mixing of distribu-
tions from the Tweedie exponential dispersion model, and in this way, they are flexible
in the sense that they include classical two-parameter distributions such as negative bino-
mial, Poisson-inverse Gaussian, and the geometric-Poisson distributions. (c) Zero-inflated
negative binomial distribution (ZINB), which is a traditional model. To illustrate that two-
parameter distributions typically perform worse, we included the Poisson-inverse Gaussian
(PIG) distribution which has been used for modeling insurance data in Wilmot [15].
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data set 1 Automobile claim data from the Central African Republic, 1984 [14,16], pre-
sented in Table 5. Surprisingly, all models have difficulty fitting these data
except the LAEDM, which, in fact, gave an excellent fit. The statistics of these
data show a minor zero-inflation (p0 = 0.6984 > 0.6875 = e−m) and a minor
overdispersion (δ = 1.127). We will consider data sets with larger zero-inflation
and overdispersion for which other models perform just as well as LAEDM.

Table 5. Performance for fitting models of data set 1.

Model AIC chi sq df RMSE KL

LAEDM 15,943.9 0.2596 1 3.004 0.0002498
PTD 16,028.1 140.6 1 72.75 0.004459
ABM 15,965.5 25.65 1 53.15 0.001332
LM 15,963.1 22.45 1 52.50 0.001208

ZINB 15,967.6 28.22 1 53.00 0.001432
PIG 15,961.2 22.70 2 52.64 0.001214

data set 2 Single-vehicle roadway departure fatal crashes on rural two-lane horizontal
curves in Texas 2003–2008 [31], presented in Table 6. The best fit to these data
was the Poisson–Tweedie distribution, while our LAEDM performs well and
much better than the other models. Again, zero-inflation and overdispersion is
minor, though larger than in data set 1.

Table 6. Performance for fitting models of data set 2.

Model AIC chi sq df RMSE KL

LAEDM 27,062.8 6.183 3 6.177 0.0001844
PTD 27,058.0 2.868 3 4.764 0.0001123
ABM 27,075.7 20.10 3 25.99 0.0003818
LM 27,059.6 4.509 3 10.65 0.0001361

ZINB 27,105.2 58.17 3 38.70 0.0008345
PIG 27,062.6 8.294 4 14.56 0.0002120

data set 3 The counts of cysts of kidneys using steroids in 2010 [32], presented in Table 7.
These data show a large zero-inflation (p0 = 0.5909 > 0.2488 = e−m, and large
overdispersion (4.394). Here, we see that the traditional zero-inflated negative
binomial distribution performs just as well as the Poisson–Tweedie model
(and, actually better than the distribution proposed in El-Morshedy et al. [32]).
These two are clearly the best. The optimal a parameter of the LAEDM is rather
large, making it the same distribution as ABM with a power parameter of two.

Table 7. Performance for fitting models of data set 3.

Model AIC chi sq df RMSE KL

LAEDM 343.5 1.900 2 1.713 0.04392
PTD 340.0 0.1371 2 0.6587 0.02827
ABM 343.5 1.900 2 1.713 0.04392
LM 347.6 4.454 2 2.628 0.06257

ZINB 340.1 0.1217 2 0.6482 0.02857
PIG 345.7 4.755 3 2.763 0.06333

data set 4 The length of stays after admission in a USA hospital among the elderly pop-
ulation, aged 65 years or more in 1997 [33], presented in Table 8. The data
show moderate zero-inflation and overdispersion, but a large excess kurtosis
(γ2 = 22.80). All optimal distributions from the exponential dispersion models
(LAEDM, PTD, ABM, LM) perform about the same (and about the same as pro-
posed in Bhati and Bakouch [33]). The traditional ZINB and PIG perform worse.
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Table 8. Performance for fitting models of data set 4.

Model AIC chi sq df RMSE KL

LAEDM 6021.1 3.533 4 5.428 0.001268
PTD 6021.1 3.504 4 5.885 0.001264
ABM 6020.8 3.105 4 5.434 0.001235
LM 6020.9 3.091 4 5.932 0.001240

ZINB 6025.2 8.303 4 7.386 0.001735
PIG 6020.5 4.715 5 9.994 0.001421

data set 5 Falls of older people in a randomized controlled study in Sydney 2007 [34], pre-
sented in Table 9. Again, these data have moderate zero-inflation and overdis-
persion, now also with moderate excess kurtosis. All six models of our com-
parison analysis perform about the same, including the two-parameter PIG.

Table 9. Performance for fitting models of data set 5.

Model AIC chi sq df RMSE KL

LAEDM 542.1 3.383 1 2.094 0.008977
PTD 541.8 2.979 1 2.303 0.008497
ABM 542.1 3.382 1 2.093 0.008977
LM 542.7 3.941 1 2.190 0.009763

ZINB 541.8 3.023 1 2.256 0.008541
PIG 541.1 4.472 2 2.366 0.01043

7. Conclusions

In this study, we gave a comprehensive analysis of a three-parameter distribution
(LAEDM) on the non-negative integers as an alternative for classical Poisson, negative
binomial, and their zero-inflated (or Hurdle) variations. The main feature of LAEDM is that
it is introduced by the variance function of an exponential dispersion model. This leads to
an ability to easily derive statistical properties such as zero-inflation, overdispersion, right
skewness, and leptokurtic. With these properties, the LAEDM distributions are well suited
to fit insurance, accident, or crash data, as these show typically the mentioned statistics.
Indeed, we showed that for small sets of count data from insurance and accidents, the
fitted LAEDM performs very well and much better than traditional distributional models
when zero-inflation and overdispersion is present (but not too much). We also compared
the model fitting of the LAEDM distributions with other distributions from exponential
dispersion models. The results of this comparison showed that LAEDM performs as good
as the other distributions in most cases. An advantage of LAEDM distributions is that they
are easy to sample from. This is useful for larger stochastic problems such as insurance risk
measures in an insurance risk model, as we showed. In conclusion, we believe that the
LAEDM distributions form a useful tool for modeling and analyzing data that show zero-
inflation, overdispersion, right skewness, and leptokurtic properties. Future work concerns
the use of the LAEDM distributions for analyzing data in the context of a generalized linear
model, in which, for instance, the mean is linked to covariates.
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Appendix A. Proof of Lemma 2

We give here the computations for obtaining the LAEDM probability mass function.
Basically, it can be summarized as computing the mean value parameterization for the even
and odd terms.

The even terms
fm,p(2n) = µp(2n)e2nψp(m)−φp(m),

where µp(2n) is given in (16), the primitives ψp(m) and φp(m) are given in (15), and the
parameters B, C, D are given in (19).

Start with

e2nψp(m) = exp
[

2n
(

log amp− 1
2

log
(
(1 + a2)m2 + 2a2mp + a2 p2)− aB

)]
= (ap)2n m2n(

(1 + a2)m2 + 2a2mp + a2 p2
)n e−2naB.

Go on with

m2n(
(1 + a2)m2 + 2a2mp + a2 p2

)n =
( m2

(1 + a2)m2 + 2a2mp + a2 p2

)n

=
1(

(1 + a2) + 2a2 p
m + a2 p2

m2

)n = (1 + a2)−n
(

1 +
2p
m

a2

1 + a2 +
p2

m2
a2

1 + a2

)−n

= (1 + a2)−n
(

1 +
a2

1 + a2
p
m
(
2 +

p
m
))−n

= (1 + a2)−n (1 + D)−n.

Next, note that
e−φp(m) = e−apB.

Hence, collecting all ingredients,

fm,p(2n) =
(
µp(2n)

)
×
(
e2nψp(m)

)
×
(
e−φp(m)

)
=
( p

p + 2n
1

(ap)2n
1

(2n)!

n−1

∏
k=0

(
a2(2n + p)2 + 4k2))

×
(
(ap)2n (1 + a2)−n (1 + D)−n e−2naB

)
×
(
e−apB)

= e−apB p
p + 2n

1
Cn

1
(2n)!

n−1

∏
k=0

(
a2(2n + p)2 + 4k2).

The odd terms

e(2n+1)ψ(m)

= exp
[
(2n + 1)

(
log amp− 1

2
log
(
(1 + a2)m2 + 2a2mp + a2 p2)− aB

)]
= (ap)2n+1 m2n+1(

(1 + a2)m2 + 2a2mp + a2 p2
)(2n+1)/2

e−(2n+1)aB,
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with

m2n+1(
(1 + a2)m2 + 2a2mp + a2 p2

)(2n+1)/2

=
(
(1 + a2)(1 + D)

)−n (
(1 + a2)(1 + D)

)−1/2.

Thus,

fm,p(2n + 1) =
(
µp(2n + 1)

)
×
(
e(2n+1)ψp(m)

)
×
(
e−φp(m)

)
=
( ap
(ap)2n+1

1
(2n + 1)!

n−1

∏
k=0

(
a2(2n + 1 + p)2 + (2k + 1)2))

×
(
(ap)2n+1 ((1 + a2)(1 + D)

)−n (
(1 + a2)(1 + D)

)−1/2 e−(2n+1)aB
)
×
(
e−apB)

= ap e−apB 1√
C

1
Cn

1
(2n + 1)!

n−1

∏
k=0

(
a2(2n + 1 + p)2 + (2k + 1)2).

Appendix B. Proof of Proposition 3

(i) The even terms
The following inequalities are elementary analysis.

• By Stirling approximation, for any n ≥ 1,

n! ≥
√

2πn
(n

e

)n
.

• Differential calculus gives for any n ≥ 1,(2n + p
2n

)2n
=
(

1 +
p

2n

)2n
≤ ep.

• Because all parameters are positive,

2
a(2n + p)

≤ 1
na

.

• By Riemann integration,

∫ 1/a

0
log(1 + x2) dx ≥

n−1

∑
k=0

1
na

log
(

1 +
( 1

na
k
)2
)

≥
n−1

∑
k=0

2
2na

log
(

1 +
( 2

a(2n + p)
k
)2
)

,

where ∫ 1/a

0
log(1 + x2) dx =

[
x log(1 + x2)− 2(x− arctan x)

]1/a

0

=
1
a

log
(
1 +

1
a2

)
− 2

a
+ 2 arctan

1
a
=

2
a

E..

• Using the previous inequalities,

n−1

∑
k=0

log
(

1 +
( 2

a(2n + p)
k
)2
)
≤ 2na

2

∫ 1/a

0
log(1 + x2) dx = 2nE.
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Now, collect all bounds in the expression of the probability fm,p(2n) given in (18),
as follows.

fm,p(2n) = e−apB p
p + 2n

1
Cn

1
(2n)!

n−1

∏
k=0

(
a2(2n + p)2 + (2k)2)

= e−apB p
p + 2n

1
Cn

1
(2n)!

a2n(2n + p)2n
n−1

∏
k=0

(
1 +

( 2k
a(2n + p)

)2
)

≤ e−apB p
p + 2n

1
Cn

1√
2π(2n)

( e
2n
)2n a2n(2n + p)2ne2nE

= e−apB p√
2π

2n
p + 2n

1
2n
√

2n

(2n + p
2n

)2n( ae√
C

eE)2n

≤ e−apB pep
√

2π

1
2n
√

2n
ρ2n = γ (2n)−3/2 ρ2n.

The odd terms
The analysis is similar.

fm,p(2n + 1) = ap e−apB 1√
C

1
Cn

1
(2n + 1)!

n−1

∏
k=0

(
a2(2n + 1 + p)2 + (2k + 1)2)

= ap e−apB 1√
C

1
Cn

1
(2n + 1)!

a2n(2n + 1 + p)2n prodn−1
k=0

(
1 +

( 2k + 1
a(2n + 1 + p)

)2
)

≤ p e−apB 1√
C

1
Cn

1√
2π(2n + 1)

( e
2n + 1

)2n+1 a2n+1(2n + 1 + p)2ne(2n+1)E

= e−apB p√
2π

1
(2n + 1)

√
2n + 1

(2n + 1 + p
2n + 1

)2n (ae)2n+1 e(2n+1)E

Cn
√

C

≤ e−apB pep
√

2π

1
(2n + 1)

√
2n + 1

ρ2n+1 = γ(2n + 1)−3/2 ρ2n+1.

(ii) All inequalities above become asymptotics as n→ ∞. For instance,

n! ∼
√

2πn
(n

e

)n
, n→ ∞,

and (2n + p
2n

)2n
=
(

1 +
p

2n

)2n
∼ ep, n→ ∞,

where ∼ indicates that the ratio of the left and right part trends toward 1 as n→ ∞.
(iii) The geometric parameter ρ

Recall

ρ =
a e1+E
√

C
,

where B, C, D, and E are given in (19)–(20).
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Clearly, ρ is positive. We prove that ρ2 < 1. Solve

ρ2 =
(ae)2

C
e2E =

a2

1 + a2 ×
e2

1 + D
× e2E−2aB

=
a2

1 + a2 ×
e2

1 + a2

1+a2
p
m
(
2 + p

m
)

× exp
[

log
(
1 +

1
a2

)
− 2 + 2a arctan

1
a

− 2a
(

arctan
(1 + a2)m + a2 p

ap
− arctan a

)]
=

a2

1 + a2 ×
e2

1 + a2

1+a2
p(2m+p)

m2

× a2 + 1
a2 e−2 exp

[
2a
(

arctan
1
a
− arctan

(1 + a2)m + a2 p
ap

+ arctan a
)]

=
1

1 + a2

1+a2
p(2m+p)

m2

exp
[
2a
(π

2
− arctan

(1 + a2)m + a2 p
ap

)]
.

Let

x =
a2

1 + a2
p
m

. (A1)

We obtain

ρ2 =
1

1 + x (2 + p/m)
exp

(
2a
(π

2
− arctan a(1 + 1/x)

))
=

1
1 + x

(
2 + x(1 + a2)/a2

) exp
(

2a
(π

2
− arctan a(1 + 1/x)

))
.

(A2)

• Fix a and p, then ρ2 as function of m is increasing. This follows by differentiat-
ing:

d
dm

ρ2 =
2a2(1 + a2)x2

m
(
x2 + a2(1 + x)2

)2 exp
[
2a
(π

2
− arctan a(1 + 1/x)

)]
> 0.

From (A1), we obtain limm→∞ x = 0, hence,

lim
m→∞

ρ2 =
(

lim
x→0

1
1 + x

(
2 + x(1 + a2)/a2

))
×
(

lim
x→0

exp
[
2a
(π

2
− arctan a(1 + 1/x)

)])
= 1× exp(0) = 1.

Conclude, for any pair (a, p), the geometric parameter satisfies 0 < ρ < 1 for
all m > 0.

• In the same way, fix a and m, and consider ρ2 as function of p.

d
dp

ρ2 = − 2a2(1 + a2)x2

p
(
x2 + a2(1 + x)2

)2 exp
[
2a
(π

2
− arctan a(1 + 1/x)

)]
< 0.

Thus, ρ2 is decreasing (as function of p) with (see (A1)–(A2)),

lim
p→0

x = 0 ⇒ lim
p→0

ρ2 = lim
x→0

ρ2 = 1,

which gives 0 < ρ < 1 for all p > 0 (and any pair (a, m)).
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• Finally, fix m and p and consider ρ2 as function of a. The derivative with
respect to a is a large expression which is negative for all positive a. Thus, ρ2

is decreasing (as function of a), with (see (A1)–(A2)),

lim
a→0

x = 0 ⇒ lim
a→0

ρ2 = lim
x→0

ρ2 = 1,

which gives 0 < ρ < 1 for all a > 0 (and any pair (p, m)).

Conclude that 0 < ρ < 1 for any triple (a, p, m) of the LAEDM parameters.
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