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Abstract: Adversarial examples easily mislead vision systems based on deep neural networks (DNNs)
trained with softmax cross entropy (SCE) loss. The vulnerability of DNN comes from the fact that
SCE drives DNNs to fit on the training examples, whereas the resultant feature distributions between
the training and adversarial examples are unfortunately misaligned. Several state-of-the-art methods
start from improving the inter-class separability of training examples by modifying loss functions,
where we argue that the adversarial examples are ignored, thus resulting in a limited robustness
to adversarial attacks. In this paper, we exploited the inference region, which inspired us to apply
margin-like inference information to SCE, resulting in a novel inference-softmax cross entropy (I-SCE)
loss, which is intuitively appealing and interpretable. The inference information guarantees that
it is difficult for neural networks to cross the decision boundary under an adversarial attack, and
guarantees both the inter-class separability and the improved generalization to adversarial examples,
which was further demonstrated and proved under the min-max framework. Extensive experiments
show that the DNN models trained with the proposed I-SCE loss achieve a superior performance
and robustness over the state-of-the-arts under different prevalent adversarial attacks; for example,
the accuracy of I-SCE is 63% higher than SCE under the PGDun

50 attack on the MNIST dataset. These
experiments also show that the inference region can effectively solve the misaligned distribution.

Keywords: neural networks; robustness learning; loss function; adversarial examples

MSC: 68T07

1. Introduction

Although deep neural networks have achieved a state-of-the-art performance in
various tasks, such as image recognition [1] and natural language processing [2], it has been
recently shown that adversarial examples by adding imperceptible disturbances do not find
it difficult to fool well-trained neural networks [3,4], leading to malfunctions in intelligent
systems [5–7]. The vulnerability to adversarial attacks indicates that the neural networks
do not convey proper feature representations and may overfit on the training examples [8].
Schmidt et al. [9] show that the sample complexity of robust learning can be significantly
larger than that of standard learning. Given the difficulty of training robust classifiers
in practice, they further postulate that the difficulty could stem from the insufficiency of
training examples in the commonly used datasets, e.g., CIFAR-10. Recent work intends
to solve this problem by utilizing extra unlabeled data [10,11]. However, extra data are
usually not available. Therefore, optimization strategies and training loss functions are
very important for robust learning.

Take the softmax cross entropy (SCE) loss as an example, which is widely adopted in
regressing probabilities and is a core building block for a high performance. The neural
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networks trained with SCE are shown to be limited in their robustness to input perturbation,
and hence are suboptimal in real applications where adversarial attacks exist [12].

The above issue brings many attempts that optimize SCE to enhance the robustness
and anti-attack properties of neural networks. Several variants have been proposed to
promote the effectiveness of the softmax loss, such as comparing loss [13], triplet loss [14],
center loss [15], large-margin Gaussian mixture (L-GM) loss [16], and max-Mahalanobis
center (MMC) loss [17]. These methods are led by the same principle in that they minimize
the losses to maximally fit the training examples.

However, the adversarial examples have a misaligned distribution with the training
data, meaning that the fitted models in training could be repellent to the adversarial
data [8]. In fact, given a well-trained model, the distribution difference between the training
and adversarial data is a blind region to the model, which we regard as the inference
region. The examples in this region are expected to be generalizable by the well-trained
model, which is not the case in existing methods, resulting in the vulnerability of neural
networks [4]. The reason for why this region exists, according to our analyses, is that
the model overfits on the training data even when large amounts of data are accessible
in training and the adversarial data are clearly absent. Hence, how to generalize the
examples in this region still remains unresolved. Unfortunately, the above methods fail
to take this fact into consideration. Although the existing examples in the distribution
space are unchangeable, adversarial training [18] adds adversarial examples as extra data
to existing examples to change the distribution of training examples and expects to solve
the issue of the misaligned distribution between the training examples and the adversarial
examples. However, adversarial examples cannot be completely found and adversarial
training only relieves the misalignment. A robust learning strategy urgently needs to solve
the misalignment problem.

Considering the misalignment, we exploited the inference region between the dis-
tributions of training data and adversarial examples. This region guides us to develop
an inference schema that imposes a margin-like inference information on the predicted
logit of the network. Based on this, this study propose an inference-softmax cross entropy
(I-SCE) loss as a substitute for the SCE loss. In this loss, the inference information is intu-
itively regarded as an additive term imposed on the prediction, which is extremely easy
to implement and appealing. This study further shows the robustness of I-SCE under
the min-max framework. Under severe adversarial attacks, I-SCE still maintains a high
accuracy and robustness, and has a better performance. The experiments on MNIST and
CIFAR10 demonstrate that the proposed loss produces an improved effectiveness and
robustness compared with the state-of-the-art methods.

The main contributions are as follows:

(1) Considering the misalignment of related work, this study exploited the inference
region to deal with the misalignment of adversarial examples and clean examples.
In addition, this paper also discusses, in detail, the advantages of introducing an
inference region.

(2) Based on this, this study proposes an inference-softmax cross entropy (I-SCE) loss as
a substitute for the SCE loss without complicated implementation.

(3) Proved by rigorous theory and extensive experiments, I-SCE is more effective and
robust compared with the state-of-the-art methods.

The rest of the paper is organized as follows. In Section 2, we present a brief review of
related works. In Section 3, we describe the methodology of the article (inference region,
inference-softmax cross entropy) and a robustness analysis of I-SCE in detail (expected
interval of correct class, proof of the property on the expected interval of correct class, and
min-max framework). In Section 4, the experimental results are displayed and analyzed.
Section 5 discusses practical and theoretical implications. Finally, Section 6 summarizes
our work and looks forward to future research.
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2. Related Work

Adversarial attacks exist widely in the open environment, imposing a critical robust-
ness demand of neural networks regarding the security quality and overall performance of
systems. Therefore, how to design an anti-attack and robust neural network has attracted
the interest of many researchers, who are briefly reviewed in this section.

2.1. Adversarial Attack

Szegedy et al. [4] first proposed the concept of adversarial examples and employed
the L-BFGS method, as the solver of the disturbed problem, to mislead neural networks.
Goodfellow et al. [3] proposed the fast gradient symbol method (FGSM) to generate
adversarial examples with a single gradient step. Before backpropagation, FGSM was
used to perturb the input of the model, which was an early form of adversarial training.
Moosavi-Dezfooli et al. [19] proposed the DeepFool, which calculated the minimal nec-
essary disturbance and applied it to construct adversarial examples. By imposing the
`2 regularization to limit the disturbance scale, DeepFool achieved a good performance.
After this, Madry et al. [18] proposed the projected gradient descent (PGD) attack, which
had a strong attack strength, and was used in adversarial training to improve robustness.
Recently, Guo et al. [20] developed a local searching-based technique to construct a numer-
ical approximation of the gradient, which was then used to perturb a small part of the
input image.

2.2. Adversarial Defense

The features of adversarial examples could follow a different distribution from the
clean training data, making the defense progress very difficult. Some works detect adver-
sarial examples and remove adversarial noise. Metzen et al. [21] introduced a novel model
to detect adversarial examples. Xie et al. [22] proposed the use of random resizing and
random padding on images for defense. In addition, the regularization and penalty term
can also make the model more robust. Ross et al. [23] and Yan et al. [24] proposed regular-
izing the gradients during training to improve the model robustness. Farnia et al. [25] used
a spectral regularization as the gradient penalty, which was combined with adversarial
training to alleviate vulnerability. In addition, data augmentation [26,27] was a typical op-
tion used to enhance the generalization ability of neural networks and to reduce the risk of
overfitting on training data. However, this option could not completely solve the problem
of an adversarial attack which always generated new kinds of adversarial examples. As
a top performer, the adversarial training (AT), which can be seen as data augmentation,
achieved advanced robustness in different adversarial attack environments [18,28–30]. By
using extra adversarial examples, it enabled the model to learn more generalizable feature
representations. The AT mechanism accepted various losses and regularizers and was a
powerful tool used to resist attacks. Despite this, AT might sacrifice the performance in
the clean input and is computationally expensive [31]. Schmidt et al. [9] showed that the
example complexity of robust learning might be much larger than standard learning.

2.3. Robust Loss Functions

Many studies have been conducted to improve the widely used SCE loss function, most
of which focused on encouraging a higher intra-class compactness and greater separation
between classes. The comparing loss [13] and the triplet loss [14] were first proposed
to improve the internal compactness of each class, which, however, suffered from the
slowed training process and the unstable convergence. Center loss [15] was proposed to
avoid the problem of a slow convergence and instability by minimizing the Euclidean
distance between features and the corresponding class centers. However, the center loss
was used together with the SCE loss to balance the inter-class dispersion and the intra-
class compactness, which made it unable to obtain reliable robustness. After this, Liu
et al. [32] converted the softmax loss to the cosine space, and proposed that the angular
distance margin favoured high intra-class compactness and inter-class separability. Then,
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Wan et al. [16] proposed the large-margin Gaussian mixture (L-GM) loss, which used the
Gaussian mixture distribution to fit the training data and increased the distance between
feature distributions of different classes. Recently, Pang et al. [17] proposed the max-
Mahalanobis center (MMC) loss to induce dense feature regions, which encouraged the
model to concentrate on learning ordered and compacted representations.

Different from the previous works, which improve the loss function to better fit the
data distribution, the proposed method (i.e., I-SCE) is a much simple and interpretable
way to enable the neural networks to learn freely. Moreover, we advocate that I-SCE
encourages the models to be more generalizable with respect to the adversarial data instead
of overfitting on the training data.

3. Methods

In this section, we introduce the inference-softmax cross entropy loss by first presenting
the definition of an inference region, which motivated us to develop an inference schema.

Current neural networks tend to overfit on the by-hand clean training data, which,
however, cannot work out a robust model and, instead, makes them vulnerable to ad-
versarial attacks. We advocate that this scenario is caused by the misaligned distribution
between the clean training data and the adversarial data, and overfitting prevents the
model from being tolerant to input perturbations. The distribution difference is termed as
the inference region, which characterizes why adversarial examples are outliers to the neural
networks trained on clean data. Figure 1 is given as an illustration, where the grey circle
region contains the features of the clean data x and the orange circle region contains the
features of the adversarial data x + δ, and δ is the adversarial perturbation. When using
SCE, the optimized decision boundary is located closely to the clean data area as shown in
subfigure (a), whereas the expected boundary is around the adversarial data area as shown
in subfigure (b). Considering the isotropic expansion of the space caused by adversarial
perturbation, the inference region is then induced from the annular area. The features of
adversarial examples reside outside the feature space of training examples, whereas the
decision boundary specified by the well-trained model closely fits the training data area.
Considering that the type of adversarial attack incrementally appears in real scenarios, the
decision boundary in Figure 1a is not good enough to give the right prediction, even if
several kinds of input perturbations are involved in training. Instead, adversarial attacks
are assumed to result in an isotropic expansion of the feature space, where the expanded
region is the inference region as shown in Figure 1b. By expanding the inference region, it
is more difficult for adversarial attacks to cross the decision boundary. Then, the task is to
encourage the model to be generalizable to this region in this study.

Figure 1. Illustration of the inference region. (a) is the decision boundary of SCE; (b) is the decision
boundary using the inference region.

The softmax cross entropy (SCE) loss is a typical loss function used in training deep
models, which imposes a hard constraint on the label of the input, i.e., regressing the
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probability of 1 on the correct label and the probability of 0 on the incorrect labels (generally
in the case of one-hot label representation). Unfortunately, the hard constraint, on the one
hand, causes a difficult regression process in training. On the other hand, it makes the
resultant model over-confident on the predictions, hence bringing the issue of vulnerability.
This has already been mentioned in the literature of label smoothing [33–35], which solved
the problem by designing a soft label or a soft output distribution, i.e., regressing the
probabilities of 1− ε and ε/K on the correct and incorrect labels, respectively, where K
is the number of task labels. As shown in Figure 2, (a) is the softmax cross entropy case,
which regresses the probabilities from one side; (b) is the label smooth case, which regresses
the soft labels from both sides; (c) is the ArcFace case, which regresses the targets on a circle
axis in feature space, i.e., encouraging the circular margins between different classes; (d) is
the inference softmax cross entropy case, which regresses the targets from all directions,
i.e., encouraging the isotropic margins between different classes.

Figure 2. Intuitive explanation of label regression. (a) is the softmax cross entropy case; (b) is the
label smooth case; (c) is the ArcFace case; (d) is the inference softmax cross entropy case.

We give an intuitive explanation of the above discussion in Figure 2a,b. As shown,
the SCE encourages the label regression from one side along the 0-1 axis, whereas the label
smoothing drives the regression from both sides around the target probabilities.

In addition, we also identify that the margin-based idea in SCE is similar to the label
smoothing. Specifically, the soft label implies a margin between the true distribution
and the soft output distribution. Considering that softmax is a monotonically increasing
function, a margin between the label distributions can induce a margin between features in
the logit layer of a neural network, as in the ArcFace loss [36]. From Figure 2c, we can see
that ArcFace pushes regression towards the target angles from both sides in a circle axis.

While the above analyses show that the regression is performed from either one side or
both sides, here, we proposed an alternative definition of a soft label that could be regressed
from arbitrary directions in feature space. Specifically, we freed the circle constraint in
ArcFace and imposed the additive margin to the features only normalized by L2-norm. In
this way, the resultant features are not necessarily located on a circle or a sphere, and, on
the contrary, the margin is isotropically posed around each example in the feature space, as
shown in Figure 2d. We will empirically demonstrate the effectiveness of this operation over
the ArcFace. ArcFace loss normalizes the features and the weights such that the resultant
features are located on a hyper-sphere, and the training process regresses the class targets
along the surface of the hyper-sphere (as shown in Figure 2c). Similarly, Pang et al. [37]
discuss the robust benefit of feature normalization and weight in a hyper-sphere. Different
from it, I-SCE could be regressed from arbitrary directions in feature space (rather than
a hyper-sphere), and normalize features using the L2-norm to ensure the effectiveness of
added inference information (the max value of logit layer varies).
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3.1. Inference Region

While the proposed method (I-SCE) could be viewed as a margin-based loss, the
difference to the ArcFace loss is how the margin (or inference information) is applied to the
logits. Instead, the proposed method only normalizes the features without normalizing the
weights in order to locate the features in a free space, in which case, the regression process
can be performed in any direction (as shown in Figure 2d). We advocate that freeing the
sphere constraint will bring a performance improvement in adversarial defencing, which
was demonstrated in the experiments. The reason for the effectiveness may be that the
adversarial perturbation causes a large variation in the feature space. Constraining the
features on a hyper-sphere would bring a large feature shift if the normalization direction (to
the sphere) is undesirable. By contrast, the proposed method prefers isotropic tolerance to
feature perturbations, and is hence better. By implementing this margin idea, the inference
information is then contained in the margin, which could help (1) to avoid overfitting and
(2) to improve the generalization ability of the feature representation, driving the decision
boundary towards the boundary of the inference region in feature space. Hence, it is not
easy for a small perturbation of an adversarial example to cross the decision boundary,
greatly alleviating the problem of vulnerability. This schema is simple, interpretable, and
effective, as demonstrated in the experiments. In the following, we present the inference-
softmax cross entropy in detail.

3.2. Inference-Softmax Cross Entropy

To derive a robust loss for neural network training, in this Section, we apply the
inference-schema on SCE and propose an inference-softmax cross entropy (I-SCE) loss,
which could encourage the tolerance of the model to adversarial perturbations, thus
avoiding overfitting.

Given a k-class classification task, the posterior probability predicted by the deep
model using softmax is

P
(
y′ = i‖x

)
=

e fi(x)

∑j e f j(x)
, (1)

where i ∈ [1, k] is the label candidate and fi is the prediction function for the i-th class,
which specifies both the backbone and the softmax layer in a typical classification network.

To improve the vulnerability of SCE, we imposed the inference information to the
logits produced by the neural networks and proposed an inference softmax as

PI(y′ = i‖x) = es fi(x)+m

es fi(x)+m + ∑j 6=i e f j(x)
, (2)

When y′ 6= i,

PI(y′ = k‖x) = e fk(x)

es fi(x)+m + ∑j 6=i e f j(x)
, (3)

which then induces the inference-softmax cross entropy loss as

I-SCE = −
k

∑
i=1

yi ln
eyi(s fi(x)+m)+(1−yi) fi(x)

eyi(s fi(x)+m)+(1−yi) fi(x) + ∑j 6=i e f j(x)
, (4)

where yi = 1 if the ground truth label of x is i and otherwise 0, and s ≥ 1 is used to scale
the prediction fi(x) and control the gradient update rate on the right class. Note that we
used yi as an indicator of the inference information, that is, s and m were only imposed on
the right class instead of all classes. s is a scaling factor that controls the gradient of the
predicted class and m is the inference region, which is explained in Section 3.1. As shown,
the implementation of this loss is very easy: simply adding a scalar and a constant on the
prediction of the right class, which is unaggressive to the original training code of neural
networks.
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In the implementation of I-SCE, we found that the case of fi � f j, j 6= i possibly occurs,
which reduces the effect of m. To address this issue, we normalized f (x) by L2 to increase
the numerical stabilization. During the inference process, Equation (2) was calculated by
firstly finding the index i of the maximal value fi(x) among i ∈ [1, k] and then applying s
and m on the i-th class according to this equation. This operation does not change the class
decision since s ≥ 1 and m > 0.

3.3. Robustness Analyses of I-SCE
3.3.1. Expected Interval of Correct Class

To demonstrate the robustness of I-SCE, we analyzed the expected interval of the
correct class predicted by both I-SCE and SCE. The bigger the expected interval is , the
more adversarial perturbations are added to mislead neural networks. Here, assume the
minimum perturbation δ, which makes the model just misclassified. The probability that
the SCE model recognizes the adversarial example x + δ as the correct label i is

P(i|x + δ) =
e fi(x+δ)

∑j e f j(x+δ)
. (5)

Regarding the I-SCE model, the probability is then

PI(i|x + δ) =
es fi(x+δ)+m

es fi(x+δ)+m + ∑j 6=i e f j(x+δ)
. (6)

The expected intervals of the correct class by using SCE are defined as

L = P(i|x)− P(i|x + δ) =
e fi(x)

∑j e f j(x)
− e fi(x+δ)

∑j e f j(x+δ)
, (7)

The expected intervals of the correct class by using I-SCE are defined as

LI = PI(i|x)− PI(i|x + δ) =

es fi(x)+m

es fi(x)+m + ∑j 6=i e f j(x)
− es fi(x+δ)+m

es fi(x+δ)+m + ∑j 6=i e f j(x+δ)
.

(8)

The vulnerability of SCE to adversarial attacks states that f (x + δ) < f (x). Consid-
ering that the perturbation δ is a just value that misleads the SCE model, the expected
interval measures the maximal level of perturbation that the model is robust on. The larger
the interval, the more robust the model. Starting from this point, we show the following
property of I-SCE:

When s ≥ 1, m > 0, and ses fi(x)+m

(es fi(x)+m+∑j 6=i e f j(x)
)2
− e fi(x)

(∑j e f j(x)
)2

> 0, LI is larger than L.

The condition in the above property is both theoretically demonstrated and empirically
validated in Section 3.3.2. This states that the robustness of I-SCE is improved compared
with SCE.

3.3.2. Proof of the Property on Expected Interval of Correct Class

According to the definition L and LI in Equations (7) and (8), we can derive LI − L;
if LI − L > 0, the expected intervals of the correct class of I-SCE are larger than SCE, and
therefore I-SCE cannot break down easily under an adversarial attack.
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LI − L =
es fi(x)+m

es fi(x)+m + ∑j 6=i e f j(x)
− es fi(x+δ)+m

es fi(x+δ)+m + ∑j 6=i e f j(x+δ)

− e fi(x)

∑j e f j(x)
+

e fi(x+δ)

∑j e f j(x+δ)
.

(9)

By defining h( f (x)) = PI(i|x)− P(i|x),

h( f (x)) = PI(i|x)− P(i|x)

=
es fi(x)+m

es fi(x)+m + ∑j 6=i e f j(x)
− e fi(x)

∑j e f j(x)

=
∑j 6=i e f j(x)(es fi(x)+m − e fi(x))

(es fi(x)+m + ∑j 6=i e f j(x))∑j e f j(x)
.

(10)

The above equation shows that h( f (x)) > 0 ⇐⇒ es fi(x)+m − e fi(x) > 0 ⇐⇒
es fi(x)+m

e fi(x) > 1 ⇐⇒ e(s−1) fi(x)+m > 1 ⇐⇒ (s− 1) fi(x) + m > 0 ⇐⇒ s > fi(x)−m
fi(x) . Hence,

when the parameters s and m satisfy s ≥ 1 > fi(x)−m
fi(x) and m > 0, h( f (x)) > 0. When s = 1

and m = 0, PI(i|x) degenerates to P(i|x).
Similarly, regarding h( f (x + δ)), we have

h( f (x + δ)) = PI(i|x + δ)− P(i|x + δ)

=
es fi(x+δ)+m

es fi(x+δ)+m + ∑j 6=i e f j(x+δ)
− e fi(x+δ)

∑j e f j(x+δ)

=
∑j 6=i e f j(x+δ)(es fi(x+δ)+m − e fi(x+δ))

(es fi(x+δ)+m + ∑j 6=i e f j(x+δ))∑j e f j(x+δ)
.

(11)

When s ≥ 1 > fi(x+δ)−m
fi(x+δ)

and m > 0, h( f (x + δ)) > 0.
Based on the above derivations, we calculated

LI − L = h( f (x))− h( f (x + δ)). (12)

To analyze the sign of the above equation, we computed the derivative of h( f (x)) with
respect to fi(x) as

∂h( f (x))
∂ fi(x)

=

∂( es fi(x)+m

es fi(x)+m+∑j 6=i e f j(x) − e fi(x)

∑j e f j(x) )

∂ fi(x)

= ∑
j 6=i

e f j(x)(
ses fi(x)+m

(es fi(x)+m + ∑j 6=i e f j(x))2
− e fi(x)

(∑j e f j(x))2
).

(13)

Considering that the perturbation δ is a just value that misleads the network, f (x) >
f (x + δ). When s and m satisfy ses fi(x)+m

(es fi(x)+m+∑j 6=i e f j(x)
)2
− e fi(x)

(∑j e f j(x)
)2

> 0, h( f (x)) is monotoni-

cally increasing. This guarantees that LI − L > 0.

However, the condition ses fi(x)+m

(es fi(x)+m+∑j 6=i e f j(x)
)2
− e fi(x)

(∑j e f j(x)
)2

> 0 is not easy to validate in

the case of s ≥ 1 and m > 0. Here, we conducted an experiment to empirically demonstrate
its validation. Specifically, we computed the empirical values ∑j 6=i e f j(x) ≈ 8, fi(x) ≈ 0.97 by
averaging the corresponding values of all examples in MNIST and CIFAR10. By employing
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these two values, we plotted the 3D surface of z = ses fi(x)+m

(es fi(x)+m+∑j 6=i e f j(x)
)2
− e fi(x)

(∑j e f j(x)
)2

with

respect to s and m, which is shown in Figure 3. The surface indicates that z is always larger
than 0 when s > 1 and m > 0. This empirically demonstrates the validity of the conditions
in the property.

Figure 3. Parameter selection for s and m.

3.3.3. Min-Max Framework

The above robustness conclusion is also applicable to the min-max framework [18],
which is a typical framework of adversarial attack and defense. The min-max framework is
formulated as

min
θ

ρ(θ), where ρ(θ) = E(x,y)∼D

[
max
δ∈S

`(θ, x + δ, y)
]

, (14)

where θ is the model parameter and δ is the input perturbation. The internal maximization
is an attack process that finds the perturbation that maximally misleads the model θ. The
external minimization is a defense process that encourages the model to be tolerant to
such an attack. We used ρI and ρ to represent the objective losses by using I-SCE and SCE,
respectively. Given an input perturbation δ and a trained model { fi}, we had, when s ≥ 1
and m > 0, PI(i|x + δ) > P(i|x + δ), which is proven in Equation (10). This states that the
PI results in a lower loss than P, i.e., ρI < ρ. Hence, the lower loss indicates the better
defense performance on adversarial attacks, which demonstrates the improved robustness
of I-SCE.

4. Experiments

In this Section, we conducted a series of experiments on MNIST [38] and CIFAR-10 [39]
to demonstrate the effectiveness of the proposed I-SCE. The MNIST and CIFAR-10 are
classic data sets in image classification task. The MNIST is a handwritten digital dataset of
0–9, and the size of each picture is 28× 28× 1. The CIFAR-10 has 10 classes, and the size of
each picture is 32× 32× 3. The backbone used in our implementation was ResNet-32, with
five stages [40], which was optimized by using the Adam algorithm [41]. We employed the
white-box attack and the black-box attack, including the targeted and untargeted PGD [18],
Deepfool [19], and SimBA [20]. The white-box attack means that the attacker can obtain the
network structure and weight of the model, whereas the black-box attack means that the
attacker does not know the network structure and weight of the model. The untargeted
attack means that the attacker only makes the neural network misclassify, whereas the
targeted attack makes the neural network with a specific wrong class. In this paper, the
specific wrong class of the targeted attack is the class with the lowest prediction probability
of the model. We selected the state-of-the-art models as competitors, such as the center
loss [15], the large-margin Gaussian mixture (L-GM) loss [16], ArcFace loss [36], the max-
Mahalanobis center (MMC) loss [17], the random method [22], label smoothing [33], and
the adversarial training (AT) method [18]. Extensive experiments show that the model
trained by I-SCE is more robust compared with competitors.
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4.1. Parameter Setting

I-SCE was directly used as the loss function to train the neural network model. There
were two hyper-parameters s and m in the proposed I-SCE, which affects the defense
performance. We set the ranges as s ∈ [1, 2] and m ∈ (0, 0.1], and densely evaluated the
performance of I-SCE under different settings and different attacks. Figure 4 illustrates
the results, from which, we can see that the performance is highly correlated with the
settings, the attack types, and the datasets. Therefore, to obtain better robustness, the
parameters needed to be reset in different tasks by using a small validation set. In the
following experiments, to make a fair comparison, we set s = 1 and m = 0.1.

Through a detailed analysis, using the inference information can significantly improve
the robustness of neural networks. Intuitively, the bigger the inference interval, the better
the robustness. However, the inference interval also influences the accuracy, and the
inference interval needs to balance robustness and accuracy. Through our research, if
hyper-parameter s > 1, it will increase the risk of gradient exposure and will lead to a
model susceptible to adversarial attacks, specially based on a gradient attack, such as a PGD
attack. Some works have reduced the amplitude of the gradient to improve robustness,
such as the constraint of the Lipschitz constant and distillation temperature. If s < 1, it may
cause a reduction in the inference interval. Therefore, we set s = 1.

Figure 4. Performance of I-SCE under different parameter settings. The x-axis is s, the y-axis is
m, and the z-axis is the accuracy. (a) Deepfool attack on MNIST. (b) Deepfool attack on CIFAR10.
(c) Untargeted PGD attack on MNIST. (d) Untargeted PGD attack on CIFAR10.

4.2. Comparison with State-of-the-Arts

PGD attack:
The PGD attack is a strong white-box untargeted and targeted attack. We used L2

constrained untargeted and targeted PGD attacks for comparison. The results are listed
in Figures 5 and 6. The Acc is the accuracy on clean examples, ε is the perturbation level,
and PGDtar,un

10,50 represents the targeted or untargeted attacks with 10 or 50 iterations. The
results indicate that I-SCE produces a better performance than the others in most cases. In
particular, under a PGDun

50 attack, the accuracy of I-SCE is 63.13% higher than SCE on the
MNIST dataset. The accuracy of I-SCE is 60.31% higher than center loss. The accuracy of
I-SCE is 61.06% higher than L-GM loss. The accuracy of I-SCE is 11.35% higher than center
loss. The accuracy of I-SCE is 17.41% higher than MMC loss. While AT sometimes achieves
a good performance, it has a noticeable sacrifice of accuracy on clean examples, e.g., on
CIFAR10, and it has a weaker defense against strong PGD attacks than I-SCE. In constrast,
I-SCE preserves a high performance on clean data. Under several attack cases, e.g., ε = 0.04,
I-SCE performs better than the others and is comparable with MMC and AT. In particular,
considering the accuracy of AT in clean examples, we reduced the adversarial disturbance
of AT to improve the accuracy; for example, as shown in Tables 1 and 2, the adversarial
disturbance of AT is ε = 0.02 with 10 iterations. Although AT is an effective method used
to improve robustness, it can only learn the existing distribution of adversarial examples.
When the adversarial disturbance of a PGD attack exceeds the adversarial disturbance of
AT, we can find that AT does not have a good defensive effect on the PGD attack and AT
does not learn the distribution of higher adversarial disturbances with higher iterations. In
particular, we find that increasing the adversarial disturbance does not always improve
the robustness during adversarial training. As shown in Figure 7, the X axis represents the
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perturbation level during adversarial training and the Y axis represents the accuracy of
classification. The red curve is the classification accuracy of clean examples. The blue curve
is the PGD attack with 0.03/10 (0.03 is the perturbation level of the adversarial attack, 10
is the iterations of the adversarial attack). Similarly, the green curve, sky-blue curve, and
yellow curve represent 0.03/30, 0.06/10, and 0.06/30. Two point coordinates represents the
maximum values of the green curve and yellow curve. When the robustness reaches the
peak, the robustness of adversarial training decreased, with an increase in the perturbation
level during adversarial training with ResNet-32. It shows that adversarial training cannot
increase robustness without limitation via sacrificing accuracy. In addition, the two point
coordinates of the curve’s maximum values indicate that the model cannot achieve the best
robustness under different attacks. In general, adversarial training has an upper bound for
robustness.

Figure 5. Classification accuracy (%) under PGD attack on MNIST.

Figure 6. Classification accuracy (%) under PGD attack on CIFAR10.

Figure 7. The robust evaluation of adversarial training.
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Table 1. Adversarial training with PGD attack on MNIST.

PGDun
50 PGDtar

50

Method Clean ε = 0.02 ε = 0.04 ε = 0.02 ε = 0.04

I-SCE 99.57 63.47 46.41 12.74 6.78
AT 99.25 13.62 0.74 6.73 0.01

Table 2. Adversarial training with PGD attack on CIFAR10.

PGDun
50 PGDtar

50

Method Clean ε = 0.01 ε = 0.04 ε = 0.01 ε = 0.04

I-SCE 89.09 14.82 5.51 5.26 1.95
AT 83.48 7.87 7.15 0.08 0.07

Deepfool attack:
The Deepfool attack generates minimal input perturbations to mislead the neural

Networks. Here, we used the L2 constrained Deepfool attack on MNIST and CIFAR10. From
the results in Figure 8, it is clearly observed that I-SCE produces a much higher performance
than all competitors, which have a very limited defense ability against Deepfool. The
improvement in I-SCE is above 50% in most cases, which is significant and exciting. In real
applications, the minimal disturbance generated by Deepfool is more usual than the strong
offensive disturbance generated by PGD. Therefore, the results indicate that I-SCE is more
suitable and can achieve a better performance in real scenarios than the other methods.

Figure 8. Classification accuracy (%) under Deepfool attack.

Black-box attack:
A robust performance is critical to claiming reliable robustness against the black-box

attacks. SimBA [20] is a black-box query-based attack, which was employed here. We set
the frequency of the query to 300 times per image on MNIST and 500 times per image on
CIFAR10. The results under different disturbance levels are shown in Table 3, from which,
we can see that I-SCE has a higher accuracy and a lower sacrifice of accuracy compared
with the others. This evidence indicates that I-SCE can induce a reliable robustness rather
than the false one caused by, e.g., the gradient mask [42].
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Table 3. Classification accuracy (%) under SimBA attack.

MNIST CIFAR10

Method Clean ε = 0.5 ε = 1 ε = 1.5 Clean ε = 0.5 ε = 1 ε = 1.5

SCE 99.33 97.00 91.23 88.43 90.17 77.60 72.77 70.17
Center 99.25 96.20 91.04 88.17 89.27 81.80 77.94 76.48
MMC 99.18 98.38 97.42 96.15 89.77 82.57 77.83 76.17
I-SCE 99.40 98.73 97.90 97.10 89.63 85.93 83.33 82.07

Random 98.90 94.84 92.32 86.12 89.48 76.54 72.74 71.30
AT 98.86 97.32 66.98 49.94 83.46 80.14 75.40 72.22

Feature embedding:
To visually investigate the effect of I-SCE, we computed a three-dimensional (3D)

representation of the input by adding a three-dimensional embedding layer before the
output layer. The embedded points are plotted in Figure 9, where the examples are
selected from the test set of MNIST and CIFAR10 without any perturbation. The embedded
points are composed of 5000 examples. If the embedded points look fewer in Figure 9,
they can indicate that embedding points are coincident and the class centers are more
concentrated. As seen, the distribution examples of SCE are confused in the space, where
little perturbations in the examples could change the category decision. The center loss
adds a penalty term for the class center together with the SCE loss, and we can clearly see
the center of the class. However, center loss still has many embedded points far from the
center of the class. L-GM loss uses Gaussian mixture distribution to fit the data distribution,
and embedded points also fit very well with a Gaussian distribution. MMC loss induces
dense feature regions to improve robustness. L-GM loss and MMC loss still have some
embedded points close to other centers of the class, which means that adversarial examples
are more likely to cross the decision boundary. In contrast, I-SCE produces separable
clusters for each class with large margins among them, and, hence, has a higher tolerance
to the perturbations than the other competitors.

Figure 9. Illustration of three-dimensional feature embedding.

4.3. Experiments on Shallow Networks

In real applications on mobiles, shallow networks are generally preferred because
of low computational costs. Hence, in this section, we evaluated the robustness of the
proposed I-SCE with shallow networks. Specifically, we followed the same settings of
competitors and attack methods as in Section 4. The backbone network was LeNet-5 [38]
for MNIST and an eight-layer neural network for CIFAR10.

Figure 10 and Figure 11 illustrate the performance under the PGD attack on MNIST
and CIFAR10, respectively. The results indicate that I-SCE performs surprisingly well in
all cases of attack, while a slight sacrifice of accuracy on the clean data remains. Notably,
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the performance gaps between I-SCE and the others are above 50% in many cases, which
validates the effectiveness of the proposed schema. More importantly, under severe attacks,
I-SCE still shows strong robustness. Significantly, under the PGDun

50 attack, the accuracy
of I-SCE is 97% higher than SCE on the MNIST dataset and 79% higher than SCE on the
CIFAR-10 dataset. The I-SCE is above a 48% accuracy compared with other methods on
the MNIST dataset and a 55% accuracy compared with other methods on the CIFAR-10
dataset.

Figure 12 lists the results of all methods under the Deepfool attack. We find that the
performance of I-SCE is comparable with the state-of-the-arts. MMC produces the best
accuracy under attacks, but has a noticeable sacrifice in accuracy on clean data. By contrast,
I-SCE shows a better trade-off between accuracy and robustness.

Figure 10. Performance (%) of shallow neural networks under PGD attack on MNIST.

Figure 11. Performance (%) of shallow neural networks under PGD attack on CIFAR10.

Figure 12. Performance (%) of shallow neural networks under Deepfool attack.
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5. Discussion

In image classification tasks, because the loss function of DNN aims to overfit the
training examples, DNN is vulnerable to out-of-distribution attacks (e.g., adversarial
examples) far from the training data. Therefore, it is essential to improve the loss function
to guarantee the neural network’s generalization to out-of-distribution, and related work is
lacking. In an attempt to fill this knowledge gap, we advocate that this scenario is caused
by the misaligned distribution between the clean training data and the adversarial data.
Overfitting training data prevents the model from being tolerant to input perturbations.

The misaligned distribution between the training and adversarial data is a blind region
to the model, which we regard as the inference region. We exploit the inference region,
which inspires us to involve margin-like inference information to SCE, resulting in a novel
inference-softmax cross entropy (I-SCE) loss. The inference information guarantees the
generalization of the neural network to out-of-distribution. Furthermore, I-SCE ensures
inter-class separability and that it is difficult for the adversarial example to cross the decision
boundary. The softmax cross entropy (SCE) loss is a typical loss function used in training
deep models that generally imposes a hard constraint on the label of the input, regressing
the probability of 1 on the correct label and the probability of 0 on the incorrect labels,
where the hard constraint makes the resultant model over-confident on the predictions,
bringing the issue of vulnerability. Several instances of literature have proposed promoting
the effectiveness of the softmax loss, such as comparing loss [13], triplet loss [14], center
loss [15], large-margin Gaussian mixture (L-GM) loss [16], and max-Mahalanobis center
(MMC) loss [17]. These methods are still led by the same principle: minimizing the losses to
fit the training examples maximally. These methods make it difficult for adversarial attacks
to find the minimum perturbation, making it harder for adversarial examples to cross the
decision boundary. These methods ignore the problem of distributional differences. Unlike
other methods, our proposed ISCE loss function for distribution differences avoids model
overfitting and enlarges the training set distribution. It also has good robustness under
adversarial attacks.

In the Methods section, we detailed how adversarial attacks faced by neural network
models cross the decision boundary, the design ideas of existing loss functions, and the
loss ideas that we propose. In addition, we conducted a theoretical analysis of our method.
I-SCE generalizes the clean example distribution to the adversarial example distribution,
which solves the misaligned distribution to a certain extent. Compared with SCE, I-SCE has
a higher correct expectation in adversarial attacks. We further demonstrated the robustness
of I-SCE under the min-max framework.

In the experimental part, we used different adversarial attack methods to verify the
effectiveness of our method, including a white-box attack and black-box attack; under se-
vere adversarial attacks, I-SCE still maintains a high accuracy and robustness and performs
better. On the MNIST dataset, the accuracy of I-SCE is 63% higher than SCE under the
PGDun

50 attack of ResNet-32. On the CIFAR-10 dataset, the accuracy of I-SCE is 38% higher
than SCE under the PGDtar

5 attack. Significantly, under the PGDun
50 attack of LeNet-5, the

accuracy of I-SCE is 97% higher than SCE on the MNIST dataset and 79% higher than
SCE on the CIFAR-10 dataset. The I-SCE is above a 48% accuracy compared with other
methods on the MNIST dataset and 55% accuracy compared with other methods on the
CIFAR-10 dataset. In addition, we also verified the feature space embedding of different
loss functions. Figure 9 shows that our method has a better inter-class separability; it is
more difficult for adversarial examples to cross the decision boundary.

We propose the inference region to solve the misaligned distribution problem for
robust loss function. Furthermore, we recommend that data-driven neural networks avoid
overfitting training examples. More optimization objectives (loss functions) need to be
designed to learn from existing distributions.
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6. Conclusions

The original SCE loss induces the model to fit the distribution of the clean data, which
is shown as being vulnerable to adversarial attacks. We advocate that the vulnerability
is caused by the unawareness of the inference region during learning. Targeting this
issue, we proposed an I-SCE loss that avoids overfitting by imposing an additive inference
information on the output of the neural network such that the sensitive class region of the
model is expanded. In this way, the model has a higher generalization to the adversarial
examples. Extensive experiments demonstrated the superiority of I-SCE compared with the
state-of-the-arts. Especially in the case of strong attacks, I-SCE still remains highly robust.
I-SCE is only currently suitable for supervision training on image classification, and other
tasks need to be confirmed. Despite the limitations, these are valuable in light of image
classification. We believe that the focus of future research on the robustness loss function
is to avoid overfitting the training data and to learn the out-of-distributed examples for
generalization. Our analyses in this paper also provide valuable insights for future work
on designing new objectives beyond the SCE framework. It also provides design guidance
for solving the issue of misaligned distribution in other fields.
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