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Abstract: In this study, a 3D numerical study of free ventilated room equipped with a discrete heat
source was performed using the Finite Volume Method (FVM). To ensure good ventilation, two
parallel openings were created in the room. A suction opening was located at the bottom of the left
wall and another opening was located at the top of the opposite wall; the heat source was placed
at various positions in order to compare the heating efficiency. The effects of Rayleigh number
(103 ≤ Ra ≤ 106) for six heater positions was studied. The results focus on the impact of these
parameters on the particle trajectories, temperature fields and on the heat transfer inside the room. It
was found that the position of the heater has a dramatic effect on the behavior and topography of
the flow in the room. When the heat source was placed on the wall with the suction opening, two
antagonistic behaviors were recorded: an improvement in heat transfer of about 31.6%, compared to
the other positions, and a low Rayleigh number against 22% attenuation for high Ra values was noted.

Keywords: 3D room; natural ventilation; entropy generation; discrete heating

1. Introduction

Natural convection in closed and open geometry has been and is still an interesting
research subject, due to its omni-presence in natural phenomena and engineering appli-
cations such as drying, electronic cooling, crystallization, casting, solar collectors and
buildings HVAC.

Several authors investigated the natural convection effect of using discrete heat sources
or partial heating on the convective heat transfer in cavities. Al-Rashed et al. [1] studied
the natural convection in a partially heat 3D encloser. Several configurations related to the
position of the heater have been studied and the results showed that it is an optimizing
parameter for the heat transfer. Kondrashov and Burkova [2] studied the effect of local
heating of the free convection in a thin layer and found that for low Rayleigh number
values, the flow field is symmetrical. This symmetry disappears for Ra values higher than
the critical Rayleigh number. Yigit et al. [3] considered a power-law fluid filled square
cavity heated partially from blow and symmetrically cooled from the top. The author
concluded the main parameter governing the heat transfer to be the Rayleigh number.
Cho [4] studied the heat transfer and entropy generation in a porous partially heated cavity
filled with a nanofluid and having a wavy wall. The author mentioned that the increase of
nanoparticle concentration and the length of the heated surface, leads to the enhancement of
the heat transfer. Koca et al. [5] studied a triangular cavity partially heated from below. The
authors considered several fluids having various Prandtl numbers and found that the flow
is significatively affected by changing the fluid. Similar geometry, but filled with a porous
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media, was considered by Rao and Barman [6]. The author concluded that the porosity and
Rayleigh number are the main parameters that govern the flow. Alam et al. [7] studied the
effect of partial heating and cooling on the free convection in a 2D cavity. It was found that
in addition to Rayleigh number, the aspect ratio plays an important role in the heat transfer.
Lajnef et al. [8] studied the effect of capillarity on the MHD flow in a partially heated
cavity. They found that the induced Lorentz force opposes the thermo-capillary effects
leading to a control of the flow. Rahimi et al. [9] investigated the irreversibility production
in a partially heated nanofluid filled cavity and found that the entropy production can be
reduced by choosing the optimal values of Rayleigh number, nanofluid concentration and
the arrangement of the partial heating.

On the other hand, the number of studies on the convective heat transfer in open
enclosures is increasing. Fontana et al. [10] considered a differentially heated open 2D
cavity equipped with an internal heat source. The results showed that the opening had
a very important effect on the heat transfer and flow structure. Oztop et al. [11] studied
a square cavity filled with porous media with partial openings. They concluded that
the heat transfer can be optimized by varying the opening position. Kolsi et al. [12]
studied the 3D natural convection in an open side cavity filled with CNT-nanofluid. In
this study, the flow is controlled by the existence of an inclined plate and the application
of an external magnetic field. It was found that the flow and temperature fields depend
on the inclination of the plate and the intensity of the magnetic field. In addition, the
heat transfer is enhanced by increasing the CNT volume fraction. Fontana et al. [13]
numerically studied the free convection in a partially opened cube cavity equipped with a
heat source at the bottom wall. The authors mentioned that the heat transfer and the fluid
structure depend significatively on Prandtl number. Bilgen and Oztop [14], considered
an inclined partially open cavity with differentially heated vertical walls. It concluded
that the heat transfer can be optimized for a specific couple of inclination and opening
positions. Kolsi et al. [15] studied the effect of a diamond shaped internal obstacle on the
3D natural convection in an open sided cavity. The results show that the presence of the
obstacle controls the flow and the heat transfer in the cavity. Al-Rashed et al. [16] studied
the free convection in a nanofluid filled parallelogrammic 3D cavity heated from the bottom
by a discrete heat source and opened from the top. The increases of the size of the heat
source and of the nanoparticle’s concentration were found to significatively enhance the
heat transfer. Chen et al. [17] performed a numerical study using LBM method on the
free convection in a 2D open cavity filled partially with a porous media. They proved
that the LBM is a performant technique that can be used in such complex configurations.
Oztop et al. [18] studied the 3D natural convection and entropy generation in partially
open cavities using the FVM. The results revealed that the heat transfer and irreversibility
production to be higher for larger openings. Lauriat and Desrayaud [19] studied the
coupled convective and radiative heat transfer in partially opened cavities. The authors
mentioned that the radiation is more dominant compared to convection for all the cases.
Gangawane et al. [20] studied the natural convection in partially heated open ended square
cavities using the LBM. The authors studied various fluids and concluded that higher heat
transfer occurs in the case of water. In addition, they proposed new correlations allowing
the evaluation of the Nusselt number. Bondareva et al. [21] studied the entropy production
during the buoyancy convection in a triangular cavity filled with a nanofluid equipped
with an opening. The main conclusion was that the addition of nanoparticles leads to the
enhancement of the heat transfer and the reduction of the flow intensity. Gangawane [22]
studied the MHD convective heat transfer in partially heated open cavity. The author
mentioned that the lowest heat transfer is encountered for an inclination of the magnetic
field equal to 45◦ and the size of the heater becomes non-effective for Rayleigh values
higher than 105. Saleh et al. [23] investigated the fluid structure interaction during natural
convection in an open cavity equipped with two flexible fins. They concluded that the
opening size and the oscillation direction can be used as an optimizing parameter for the
heat transfer rate. Al-Rashed et al. [24] considered a double open 3D cavity filled with
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nanofluid and with an incorporated obstacle. The conclusions indicate that the produced
entropy generation depends mainly on the nanoparticles volume fraction and Richardson
number. Astanina et al. [25] used the FEM to study the effect of an external magnetic field
on the heat transfer and entropy production in a trapezoidal open cavity partially filled
with a porous media. The induced flow was perioding with higher amplitude for higher
magnitude of the external magnetic field. Miroshnichenko et al. [26] studied the same
geometry but with a cavity filled with a nanofluid and showed that the magnetic field
reduces the heat transfer and the addition of the nanoparticles enhances it.

Some studies were dedicated to different aspects related to natural convection in
buildings. Wurtz et al. [27] used the zonal model approach to study the natural convection
in building rooms. The authors concluded that this method is relatively faster compared
to CFD methods. Wang et al. [28] studied the coupled effects of radiation and natural
convection in a room having a porous envelope. It was proven that the Nusselt number
increase with Rayleigh number was significatively affected by the presence of the radiation.
Zhan et al. [29] considered a building equipped with a single heat source and concluded
that for high aspect ratios, the heat source size becomes ineffective. Ben-Nakhi and Mah-
moud [30,31] used the FVM to numerically study the turbulent buoyancy convection in a
roof during winter [30] and summer [31]. The authors concluded that Ra and the aspect
ratio have an important effect on the flow structure, temperature field and heat transfer
rate. Wang et al. [32] considered the combined effects of natural convective ventilation
and radiation in an industrial building. It was found that the heat transfer and ventilation
rates increase by increasing Rayleigh number and the surface emissivity. Ziskind et al. [33]
studied the natural ventilation caused by a heat source mounted at the top wall of a story
building. The authors mentioned that using such configuration can provide good venti-
lation of the building. Mokhtarzadeh-Dehghan [34,35] studied the 3D natural convection
between two floors of a building. The author mentioned that their numerical results are in
good concordance with previous experimental findings.

Based on the above-described literature review, most of studies dealing with naturally
ventilated cavities having discrete heating are performed for 2D geometries, with the
limitation of incorporating a finite internal obstacle. Thus, the novelty of this paper is
to study the 3D natural ventilation and entropy generation in a typical room, with an
incorporated conductive object using the finite volume method. The flow is caused by a
discrete heat source and six geometrical configurations related to its position are studied.

2. Governing Equations and Numerical Procedure

Figure 1 presents the studied configurations. A 3D room heated by a discrete heat
source, having two openings at the bottom of the left wall and the top of the right wall, and
equipped by an internal obstacle. The considered cases are related to the position of the
hot surface. Neglecting the radiative heat transfer, the dimensional equations governing
the 3D natural convection are the equations of continuity, momentum and energy, and are
presented as follow [18]:

∇.
→
V
′
= 0 (1)

∂
→
V
′

∂t′
+

(→
V
′
.
→
∇
)→

V
′
= −1

ρ

→
∇P′ + ν∆

→
V
′
+ β

(
T′ − T0

)→
g (2)

∂T′
∂t′ +

→
V
′
.∇T′ = α f∇2T′

∂T′
∂t′ = αs∇2T′

(3)

With the aim to eliminate the gradient pressure terms, which are very difficult to
treat and a source of divergences, we used the vector potential-vorticity formulation in its
3D form.
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To obtain the dimensionless set of equations, l2/α, α/l, α, l2/α, are used for the,

time t′, velocity
→
V
′
, vector potential

→
ψ
′

and vorticity
→
ω
′
, respectively. The dimensionless

temperature is T = T′−T′c
T′h−T′c

.

And the dimensionless equations become:

−→ω = ∇2→ψ (4)

∂
→
ω

∂t
+ (
→
V.∇)→ω − (

→
ω.∇)

→
V = Pr.∇2→ω + Ra.Pr.

[
∂T
∂z

; 0;−∂T
∂x

]
(5)

∂T
∂t +

→
V.∇T = ∇2T : fluid domain

∂T
∂t = αs

α f
∇2T : solid domain

(6)

with, Pr = ν
α and Ra =

g.β.l3.(T′h−T′c)
α.ν .

Equation (6) is to be solved in the solid portion (Wood) with ks as conductivity. The
heat flux continuity at the solid–fluid interface is expressed as:(

∂T
∂n

)
f
=

ks

k f

(
∂T
∂n

)
s

(7)

The total dimensionless entropy generation is expressed as:

S′gen = − 1
T′2

.
→
q .
→
∇T′ +

µ

T′
.ϕ′ (8)

Using the expression of dissipation function:
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ϕ′ = 2

[(
∂V′1
∂x′

)2

+

(
∂V′2
∂y′

)2

+

(
∂V′3
∂z′

)2
]
+

(
∂V′2
∂x′

+
∂V′1
∂y′

)2

+

(
∂V′3
∂y′

+
∂V′2
∂z′

)2

+

(
∂V′1
∂z′

+
∂V′3
∂x′

)2

(9)

The total dimensional entropy generation becomes [18]:

S′gen = k
T′2

[(
∂T′
∂x′

)2
+
(

∂T′
∂y′

)2
+
(

∂T′
∂z′

)2
]
+ 2µ

T′

[(
∂V′1
∂x′

)2
+
(

∂V′2
∂y′

)2
+
(

∂V′3
∂z′

)2
]

+ µ
T′

[(
∂V′2
∂x′ +

∂V′1
∂y′

)2
+
(

∂V′3
∂y′ +

∂V′2
∂z′

)2
+
(

∂V′1
∂z′ +

∂V′3
∂x′

)2
] (10)

The dimensionless local entropy generation is [18]:

Ns = Sgen
1
k

(
lTm
∆T

)2

=

[(
∂T
∂x

)2
+

(
∂T
∂y

)2
+

(
∂T
∂z

)2
]

︸ ︷︷ ︸
Thermal Entropy generation

+

Is.

{
2

[(
∂V1

∂x

)2
+

(
∂V2

∂y

)2
+

(
∂V3

∂z

)2
]
+

[(
∂V2

∂x
+

∂V1

∂y

)2
+

(
∂V3

∂y
+

∂V2

∂z

)2
+

(
∂V1

∂z
+

∂V3

∂x

)2
]}

︸ ︷︷ ︸
Viscous Entropy generation

(11)

with Is =
µα2Tm
l2k∆T2 .

The total entropy generation and Bejan number are expressed as:

Stot =
∫
V

NsdV =
∫
V

(NSth + NSvis)dV = Sth + Svis (12)

and
Be =

Sth
Sth + Svis

(13)

The local Nusselt number at the hot surface is expressed as:

Nu =
∂T
∂n

(14)

with n is the normal vector to the hot surface.
The average Nusselt number on hot wall is:

Nuav =

0.25∫
0

0.25∫
0

Nu.dτ1.dτ2 (15)

with τ1 and τ2 are the tangent vectors to the hot surface.
The dimensionless boundary conditions are:

• Temperature
∂T
∂n = 0 on all the walls.

Tin = Tc if n.V < 0 and ∂T
∂n

∣∣∣
out

= 0 if n.V ≥ 0 at open boundaries

• Vorticity
ω1 = 0, ω2 = − ∂V3

∂x , ω3 = ∂V2
∂x at x = 0 and 1

ω1 = ∂V3
∂y , ω2 = 0, ω3 = − ∂V1

∂y at y = 0 and 1

ω1 = − ∂V2
∂z , ωy = ∂Vx

∂z , ωz = 0 at z = 0 and 1
• Potential vector
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∂ψ1
∂x = ψ2 = ψ3 = 0 at x = 0 and 1

ψ1 = ∂ψ2
∂y = ψ3 = 0 at y = 0 and 1

ψx = ψy = ∂ψz
∂z = 0 at z = 0 and 1

• Velocity
V1 = V2 = V3 = 0 on all walls
∂Vx
∂x =

∂Vy
∂x = ∂Vz

∂x = 0 at open boundaries.

The scalar equations are expressed as:

∂ω1
∂t + ∂

∂x

[
V1.ω1 − Pr. ∂ω1

∂x

]
+ ∂

∂y

[
V2.ω1 − Pr. ∂ω1

∂y

]
+ ∂

∂z

[
V3.ω1 − Pr. ∂ω1

∂z

]
= ω1. ∂V1

∂x + ω2. ∂V1
∂y + ω3. ∂V1

∂z + Ra.Pr. ∂T
∂z

(16)

∂ωy
∂t + ∂

∂x

[
V1.ω2 − Pr. ∂ω2

∂x

]
+ ∂

∂y

[
V2.ω2 − Pr. ∂ω2

∂y

]
+ ∂

∂z

[
V3.ω2 − Pr. ∂ω2

∂z

]
= ω1. ∂V2

∂x + ω2. ∂V2
∂y + ω3. ∂V2

∂z

(17)

∂ω3
∂t + ∂

∂x

[
V1.ω3 − Pr. ∂ω3

∂x

]
+ ∂

∂y

[
V2.ω3 − Pr. ∂ω3

∂y

]
+ ∂

∂z

[
V3.ω3 − Pr. ∂ω3

∂z

]
= ω1. ∂V3

∂x + ω2. ∂V3
∂y + ω3. ∂V3

∂z − Ra.Pr. ∂T
∂x

(18)

∂T
∂t

+
∂

∂x

[
V1.T − ∂T

∂x

]
+

∂

∂y

[
V2.T − ∂T

∂y

]
+

∂

∂z

[
V3.T − ∂T

∂z

]
= 0 (19)

The generalized equation is expressed as:

∂Φ
∂t

+
∂

∂x

(
V1.Φ− ΓΦ

∂Φ
∂x

)
+

∂

∂y

(
V2.Φ− ΓΦ

∂Φ
∂y

)
+

∂

∂z

(
V3.Φ− ΓΦ

∂Φ
∂z

)
= SΦ (20)

∂Φ
∂t

+
∂Lx

∂x
+

∂Ly

∂y
+

∂Lz

∂z
= SΦ (21)

with:
Lx = Vx.Φ− ΓΦ

∂Φ
∂x

, Ly = Vy.Φ− ΓΦ
∂Φ
∂y

and Lz = Vz.Φ− ΓΦ
∂Φ
∂z

Based on the pure implicit scheme algebraic equations become:

al
P Il

P = al
W Il

W + al
E Il

E + al
S Il

S + al
N Il

N + al
B Il

B + al
F Il

F + bP
With : al

W = ∆Awmax(−Nl
w, 0), al

E = ∆Aemax(−Nl
e , 0), al

S = ∆Asmax(−Nl
s , 0),

al
N = ∆Anmax(−Nl

n, 0), al
B = ∆Abmax(−Nl

b, 0), al
F = ∆A f max(−Nl

f , 0), bP = βRP∆vP

al
P = ∆Awmax(Nl

w, 0) + ∆Aemax(Nl
e , 0) + ∆Asmax(Nl

s , 0) + ∆Anmax(Nl
n, 0)

+∆Abmax(Nl
b, 0) + ∆A f max(Nl

f , 0) + β∆vP

(22)

A single control volume is shown in Figure 2. The total number of nodes in x, y
and z directions are denoted by, Nx, Ny and Nz, respectively, and the spatial steps are
expressed as:

∆x =
1

Nx− 1
, ∆y =

1
Ny− 1

et ∆z =
1

Nz− 1
(23)

The integration of Equation (21) on the control volume gives:(
Φp −Φ

◦
p

)
.∆x.∆y.∆z + (Lxe − Lxw).∆y.∆z.∆t +

(
Lyn − Lys

)
.∆x.∆z.∆t+

(Lzh − Lzb).∆x.∆y.∆t =
_
S.∆x.∆y.∆z.∆t

(24)

The superscript “ ◦ ” indicates the previous time step (explicit scheme).
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If we set

Le = Lxe.∆y.∆z; Lw = Lxw.∆y.∆z; Ln = Lyn.∆x.∆z; Ls = Lys.∆x.∆z;
Lh = Lzh.∆x.∆y; Lb = Lzb.∆x.∆y

(25)

We obtain:(
Φp −Φ

◦
p

)
.
∆x.∆y.∆z

∆t
+ (Le − Lw) + (Ln − Ls) + (Lh − Lb) =

_
S∆x∆y.∆z (26)

The source term
_
S is linearized as:

_
S = Sc + SpΦp (27)

The dimensionless continuity equation is:

∂V1

∂x
+

∂V2

∂y
+

∂V3

∂z
= 0 (28)

By integrating the control volume, we get:

(V1e.∆y.∆z−V1w.∆y.∆z) + (V2n.∆x.∆z−V2s.∆x.∆z) + (V3h.∆x.∆y−V3b.∆x.∆y) = 0 (29)

By setting:

Fe = V1e.∆y.∆z; Fw = V1w.∆y.∆z; Fn = V2n.∆x.∆z; Fs = V2s.∆x.∆z;
Fh = V3s.∆x.∆y

and Fb = V3b.∆x.∆y
(30)

We get:
(Fe − Fw) + (Fn − Fs) + (Fh − Fb) = 0 (31)

By multiplying the discretized continuity equation by Φp and by subtracting it from
the general equation we obtain:

Φp

(
∆x.∆y.∆z

∆t − Sp∆x.∆y.∆z
)
+
(

Le − FeΦp
)
−
(

Lw − FwΦp
)
+
(

Ln − FnΦp
)

−
(

Ls − FsΦp
)
+
(

Lh − FhΦp
)
−
(

Lb − FbΦp
)
=
(

Sp∆x.∆y.∆z + Φ
◦
p

∆x.∆y.∆z
∆t

) (32)

By setting: (
Ln − FnΦp

)
= aN

(
Φp −ΦN

)
(33)(

Ls − FsΦp
)
= aS

(
ΦS −Φp

)
(34)(

Le − FeΦp
)
= aE

(
Φp −ΦE

)
(35)(

Lw − FwΦp
)
= aW

(
ΦW −Φp

)
(36)(

Lh − FhΦp
)
= aH

(
Φp −ΦH

)
(37)(

Lb − FbΦp
)
= aB

(
ΦB −Φp

)
(38)

The discretized equation becomes:

apΦp = aEΦE + aWΦW + aNΦN + aSΦS + aHΦH + aBΦB + bp (39)

with:
ap = aE + aW + aN + aS + aH + aB +

∆x.∆y.∆z
∆t

− Sp.∆x.∆y.∆z (40)

bp = Sc.∆x.∆y.∆z + Φ
◦
p

∆x.∆y.∆z
∆t

(41)
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Similarly, the remaining equations are expressed as follow:

• Energy equation:

apTp = aETE + aW TW + aNTN + aSTS + aHTH + aBTB + bp

with : bp = T
◦
p

∆x.∆y.∆z
∆t

(42)

• Vorticity equation; x-component:

apω1p = aEω1E + aWω1W + aNω1N + aSω1S + aHω1H + aBω1B + bp (43)

with:

bp = ω
◦
1p

∆x.∆y.∆z
∆t + ω1p.

(
V1E−V1w

2

)
.∆y.∆z + ω2p.

(
V1S−V1N

2

)
.∆x.∆z+

ω3p.
(

V1H−V1B
2

)
.∆x.∆y + Ra.Pr.

(
TH−TB

2

)
.∆x.∆y

• Vorticity equation; y-component:

apω2p = aEω2E + aWω2W + aNω2N + aSω2S + aHω2H + aBω2B + bp (44)

with:

bp = ω
◦
2p

∆x.∆y.∆z
∆t + ω2p.

(
V2E−V2w

2

)
.∆y.∆z + ω2p.

(
V2S−V2N

2

)
.∆x.∆z+

ωzp.
(

VyH−VyB
2

)
.∆x.∆y

• Vorticity equation; z-component:

apω3p = aEω3E + aWω3W + aNω3N + aSω3S + aHω3H + aBω3B + bp (45)

with:

bp = ω
◦
3p

∆x.∆y.∆z
∆t + ω3p.

(
V3E−V3w

2

)
.∆y.∆z + ω3p.

(
V3S−V3N

2

)
.∆x.∆z+

ω3p.
(

V3H−V3B
2

)
.∆x.∆y + Ra.Pr.

(
TE−TW

2

)
.∆y.∆z

• Vector potential equations:

ψ1p =
1

2.
(

1
∆x2 +

1
∆y2 +

1
∆z2

)(ψ1E + ψ1W
∆x2 +

ψ1N + ψ1S
∆y2 +

ψ1H + ψ1B

∆z2 + ω1p

)
(46)

ψ2p =
1

2.
(

1
∆x2 +

1
∆y2 +

1
∆z2

)(ψ2E + ψ2W
∆x2 +

ψ2N + ψ2S
∆y2 +

ψ2H + ψ2B

∆z2 + ω2p

)
(47)

ψ3p =
1

2.
(

1
∆x2 +

1
∆y2 +

1
∆z2

)(ψ3E + ψ3W
∆x2 +

ψ3N + ψ3S
∆y2 +

ψ3H + ψ3B

∆z2 + ω3p

)
(48)

• Entropy generation:
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Ns =

[(
TE−TW

2x

)2
+
(

TS−TN
2y

)2
+
(

TH−TB
2z

)2
]
+

Is.


2
[(

V1E−V1W
2x

)2
+
(

V2S−V2N
2y

)2
+
(

V3H−V3B
2z

)2
]
+

[(
V2S−V2N

2x + V1E−V1W
2y

)2
+
(

V3H−V3B
2y + V2S−V2N

2z

)2
+
(

V1E−V1W
2z + V3H−V3B

2x

)2
]


(49)

The finite volume method based on regular grid is used to discretize the governing
equation [36]. The convective terms are treated via the central-difference scheme and
the temporal derivative via the fully implicit method. To accelerate the convergence of
the simulations, the successive relaxation iterating scheme is used. It is notable that the
advantages of the FVM are that it enforces the conservation of quantities at the discretized
level, thus momentum and energy equations remain conserved at a local scale. In addition,
fluxes between adjacent control volumes are directly balanced. The Fortran Language is
used to write the numerical code with a convergence criterion for each variable expressed
as follow:

∑
i

max
∣∣∣∆n

i − ∆n−1
i

∣∣∣
max|∆n

i |
≤ 10−5 (50)
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The dimensionless continuity equation is: 

Figure 2. Representation of the control volume.

3. Code Verification and Validation

The model verification is performed by comparing with the quantitative findings of
(Wakashima and Saitoh [37]) for the 3D differentially heated cavity filled with air (Table 1).
In addition, a qualitative verification is performed by comparing the flow structure and the
temperature field (Figure 3) with the results of Bilgen and Oztop [14] in a partially open
cavity. In addition to the numerical verification, a validation is performed by comparing the
findings of the present code with the results of the experimental study of Leporini et al. [38]
(Figure 4). A good agreement with the previous results presented in the literature is noticed.

Table 1. Verification of the present model with the findings of Wakashima and Saitho [37].

Ra Authors Nuav

104 Present work 2.062
Wakashima and Saitho [37] 2.063

106 Present work 8.618
Wakashima and Saitho [37] 8.595
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The finite volume method based on regular grid is used to discretize the governing 
equation [36]. The convective terms are treated via the central-difference scheme and the 
temporal derivative via the fully implicit method. To accelerate the convergence of the 
simulations, the successive relaxation iterating scheme is used. It is notable that the ad-
vantages of the FVM are that it enforces the conservation of quantities at the discretized 
level, thus momentum and energy equations remain conserved at a local scale. In addi-
tion, fluxes between adjacent control volumes are directly balanced. The Fortran Lan-
guage is used to write the numerical code with a convergence criterion for each variable 
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Figure 5 presents the distribution of the temperature iso-surfaces as well as the tra-
jectory of the particles for different Rayleigh numbers. In the case when the heat source
centered at the bottom of the plane (x = 1, case 1) is considered for Ra = 103, a significant
thermal diffusion towards the middle of the chamber was noted. A horizontal and orthog-
onal thermal stratification at the heat source takes place. The ventilation velocity (at the
suction and extraction) is relatively low and the birth of a small eccentric cell at the top
near the x = 0 plane is observed. By increasing Ra to 104 the horizontal warm air layer,
propagation decreases, the ventilation at the exhaust and suction windows accelerate, the
size of the cell becomes larger and occupies the entire middle of the enclosure.
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It should also be mentioned that the presence of the table as an obstacle does not seem
to disturb the flow for low Rayleigh numbers.
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For Ra = 105, a strong upward flow of warm air occurs just above the source. The
isothermal surfaces show a strong temperature gradient located above the source. This
gradient helps the thermal buoyancy forces to dominate the viscous ones, which explains
the observed ascending air movement.

When a large value of Rayleigh number is reached (5 × 105 or 106), the table interferes
with the flow and a strong vortex activity is noted on the whole left edge of the table. It is
also noted that the thermal buoyancy forces generate a strong movement just overhead of
the heat source preventing the warm air layers to be blown into the center of the chamber.
In this configuration and regardless the Rayleigh number, the main ventilation flow is along
the floor (y = 0) and then up the wall equipped with the heat source (x = 1).

Finally, it is important to point out that there is a transition from a horizontal stratifica-
tion starting from the heat source at Ra = 103 to a vertical stratification starting from the
roof for Ra = 106.

For the second case (Figure 6), where the heat source is moved to the wall containing
the suction window (x = 0, case 2), the behavior of the flow has completely changed. Indeed,
we note that the main ventilation flow goes up directly to the top of the chamber as soon as
it leaves the suction window (x = 0). Then the airflow drifts towards the extraction window,
following the ceiling. The flow observed in the first configuration, i.e., the circulation at
ground level then climbing up the wall (y = 1) until the suction window still coexists for
low Rayleigh number. Moreover, for small Rayleigh numbers, a lateral infiltration of the
warm air layer towards the center of the room is achieved while for high Rayleigh numbers,
this infiltration is carried out vertically just above the heat source and then a strong thermal
gradient is established in this region. In fact, from Ra = 105, the thermal buoyancy forces
take the control of the ventilation and impose the air circulation in the chamber.
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The obstacle effect is only felt for very high Rayleigh numbers. For instance, at Ra = 106,
the table imposes a kind of compartmentalization, and a reversed air circulation is observed
below and above it.

In Figure 7, the temperature and particle movement are presented for the case where
the heat source is placed on the wall z = 1 (case 3). In this situation, where the heat source
is perpendicular and at halfway between the suction and extraction windows, another
flow behavior takes place. For low Rayleigh numbers (103 and 104), it seems that there is
a diagonal stratification starting from the heat source towards the suction window. This
thermal stratification leads to a penetration of warm air to the core region. Two types of
flow occur, the first connecting the suction window to the discharge one through the floor
and up along the plane x = 1. The second is created by the thermal buoyancy forces, which
drive the air to the top of the room just above the heat source and due to the influence of
the roof, there is creation of a rotating cell located in the upper left part of the chamber. By
increasing the Rayleigh number, the upward movement on the heat source dominates the
flow. This warm air movement eventually impacts the roof and then splits into two parts.
One part feeds the discharge source and the other one supplies the rotating thermal vortex.
It is also noticed that the vortex center becomes much closer to the roof.
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Figure 7. Effect of Rayleigh number variation on the distribution of temperature iso-surfaces and
particle trajectories for a heat source position as indicated in case 3.

In this condition, we can clearly see the three-dimensional character of the flow with a
significant air movement in the z-axis direction. This air movement occurs mainly between
the inlet and the heat source. The obstacle effect, especially at the left table border, (border
parallel to the inlet window) shows a very intense vortex activity.
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Figure 8 presents the distribution of the temperature iso-surfaces as well as the trajec-
tory of the particles for different Rayleigh numbers. In this figure, the heat source is placed
on the wall z = 0 (case 4). Unlike all the previous configurations, the air flow from the inlet
to the outlet across the floor is almost eliminated. The ventilation occurs mainly in the
upper part of the chamber. For Ra = 103 the air flow is basically uniform from the bottom
of the wall x = 0 (suction) to the top of the wall x = 1 (discharge). A horizontal thermal
stratification along the z-axis develops. For Rayleigh numbers higher than 104, a chaotic
flow seems to take place with air layers rising on one side and falling on the other side and
at the same time the development of a three-dimensional movement toward the z-direction.
For very high Rayleigh numbers (5 × 105 and 106) as for the previous configurations,
a strong thermal gradient is localized just above the heat source. The buoyancy forces
become intense, and a strong air movement is created from the source. The flow is therefore
impacting with the roof and then becomes parietal to the extraction window.
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Figure 8. Effect of Rayleigh number variation on the distribution of temperature iso-surfaces and
particle trajectories for a heat source position as indicated in case 4.

The temperature fields and flow structure for the case of bottom heating (case 5) are
presented in Figure 9. The isotherm profile shows a thermal stratification between the
heat source and the air inlet opening for low “Ra” values. This stratification becomes
isotropic from the heat source for high “Ra” values. The particles trajectory is marked by
two dominant flow motions when the Rayleigh number is low: the first starting from the air
inlet opening, passing through the ground, and then following the wall x = 1 until it reaches
the air outlet opening, and the second immediately towards the top of the chamber from
the inlet opening. This second flow hits the room roof causing the creation of a rotational
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cell with a vortex center located in the upper left corner of the room. A slight increase in Ra
up to 104 ensures that the rotating cell expands and moves towards the center of the room.
For an even higher “Ra”, the main flow movement is essentially horizontal from the inlet
to the source and then vertical to the roof from the hot spring. The presence of the table as
an obstacle deflects the upward movement to the left side.
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particle trajectories for a heat source position as indicated in case 5.

If we move the heat source to the ceiling of the room (Figure 10, case 6), it should
be noted that the isothermal layers remain blocked at the roof level; this result is to be
expected since the thermal buoyancy forces are ascending forces. The greater the thermal
gradient between the heat source and the ambient air (large Ra), the more the convective
forces push the hot fluid upwards in the room. At Ra = 106 for example it is only the
upper quarter of the room that is affected by the heating. Under these conditions the main
airflow movement is diagonal from the inlet opening at the bottom of the x = 0 plane to the
outlet opening at the top of the x = 1 plane. The presence of secondary movement of low
intensity is also detected. This sub movement creates a rotating cell in the upper left corner
of the room.
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Figure 10. Effect of Rayleigh number variation on the distribution of temperature iso-surfaces and
particle trajectories for a heat source position as indicated in case 6.

Figure 11 shows the effect of heat source position on thermal, viscous and total entropy
generation for Ra = 105. As expected, whatever the configuration, the generation of thermal
entropy is localized in the immediate vicinity of the heat source, and it is more effective
when we get closer to this heat source. Concerning the viscous entropy, regardless of the
studied case, the entropy generation is very important at the suction and discharge opening
areas due to the ventilation flow. Moreover, in the region just above the heat source the
entropy generation is significant as a result of the warm air circulation caused by the natural
convention motion.
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The variations of average Nusselt number at the heat source for different Ra values and
heat source positions are presented in Figure 12. A similar behavior for all configurations is
recorded, with a significant Nusselt number enhancement with the increase of the Rayleigh
number. Indeed, by increasing Ra from 103 to 106 the Nusselt number value is multiplied by
10. However, the case 2 presents a specific variation. Indeed, for Ra < 12,500 the position of
the heat source in this second case presents the best thermal exchange with an improvement
of about 31.6% compared to the other positions; on the other hand if Ra < 12,500 this second
case represents the worst convective heat exchange with an attenuation of 22% for Ra = 106.
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It is also to be mentioned that the heat transfer rate is lowest for case 6 due to the localization
of the heat source at the upper wall that limits the heating to the top region.
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Figure 13 illustrates the thermal entropy generation for various heat source positions
and different Ra. As shown in the figure, the average thermal entropy generation increases
significantly with the Rayleigh number. In fact, from Ra = 103 to 106, the generation of
average thermal entropy is multiplied by 13. It should be noted that whatever the position
of the heat source, the variation of the average thermal entropy is similar except for case 2,
where the entropy generation is higher by 33% for Ra = 104.
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Viscous entropy generation for various heat source positions and different Ra is
outlined in Figure 14. It is clear that the viscous entropy value becomes significative
only from a certain critical value of the Rayleigh number around 60,000. Beyond this
critical value, an exponential entropy growth is recorded. The heat source configuration
for the second case presents again as outstanding compared to the other cases. In fact,
in this situation, the generated viscous entropy value is almost double compared to the
other configurations.
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It is also necessary to mention that the value of the thermal entropy is insignificant
compared to the viscous one, which confirms the similar variation between the viscous and
total entropy indicated in Figure 15.
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The variation of Be versus of Ra presented in Figure 16 confirms the previous findings.
Indeed, for low Rayleigh numbers, the viscous irreversibility is too weak, which allows for
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a Bejan number close to 1 and as the Rayleigh number increases, the thermal irreversibility
become negligible with respect to the viscous one, thus leading to a Be number close to 0.
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4. Conclusions

The goal of this work has been to perform a numerical study on convective heat
transfer flow in a three-dimensional ventilated room. Effect of heat source position on
dynamic fields, thermal fields and entropy generation were examined. It can be stated that
the position of the heat source has a significant influence on the behavior of the flow and
also for a given position; the value of the Rayleigh number affects the flow topography
and the temperature distribution in a chamber. Regarding the Nusselt number, a similar
evolution could be observed regardless of heat source position being recorded, with a
significant (about 10 times) increase of the Nu and increase of the Rayleigh number from
103 to 106. However, a specific variation was seen when the heat source was installed
on the wall with the suction opening. Indeed, for Ra < 12,500, an improvement of about
31.6% compared to the other positions was observed, but in contrast to for Ra < 12,500,
we obtained the worst convective heat exchange with an attenuation of 22%. For all
considered Ra values, the lowest heat transfer rate occurred for case 6. The thermal entropy
generated was multiplied by 13, from Ra = 103 to 106. As for the viscous entropy, it became
significant only from a certain critical value of the Rayleigh number around 60,000. Above
this critical value, an exponential growth of the entropy was recorded. Finally, to compare
the contribution of thermal irreversibility to the total generated entropy, the Bejan number
was calculated. For low Ra, the viscous irreversibility was too low, which led to a Bejan
number close to 1. When the Ra increased, the thermal irreversibility became negligible
compared to the viscous one, which led to a Bejan number close to 0.
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Nomenclature

g gravitational acceleration [m/s2]
k thermal conductivity [W/m.K]
L Cavity Width
n unit vector normal to the wall
Ns local generated entropy
Nu local Nusselt number
Pr Prandtl number
→
q
′

heat flux vector
Ra Rayleigh number
S′gen generated entropy
T dimensionless time (t′.α/L2)
T dimensionless temperature [(T′ − T′c)/(T′h − T′c)]
T′c cold temperature [K]
T′h hot temperature [K]
→
V dimensionless velocity vector (=

→
V
′
.L/α)

x, y, z dimensionless Cartesian coordinates (x′/L, y′/L, z′/L)
Greek symbols
α thermal diffusivity [m2/s]
β thermal expansion coefficient [1/K]
ρ density [kg/m3]
µ dynamic viscosity [kg./m.s]
ν kinematic viscosity [m2/s]
Is irreversibility coefficient
φ′ dissipation function
τ tangent vector
→
ψ dimensionless vector potential (

→
ψ
′
/α)

→
ω dimensionless vorticity (

→
ω
′
.α/L2)

∆T dimensionless temperature difference
Subscripts
av average
x, y, z cartesian coordinates
th thermal
fr friction
tot total
Superscript
′ dimensional variable
Abreviations
CFD Computational Fluid Dynamics
CNT Carbone NanoTube
FEM Finite Element Method
FVM Finite Volume Methd
LBM Lattice Boltzman Method
MHD Magnetohydrodynamics
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