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Abstract: The Markov jump systems (MJSs) are a special case of parametric switching system.
However, we know that time delay inevitably exists in many practical systems, and is known as
the main source of efficiency reduction, and even instability. In this paper, the stochastic stable
control design is discussed for time delay MJSs. In this regard, first, the problem of modeling of MJSs
and their stability analysis using Lyapunov-Krasovsky functions is studied. Then, a state-feedback
controller (SFC) is designed and its stability is proved on the basis of the Lyapunov theorem and
linear matrix inequalities (LMIs), in the presence of polytopic uncertainties and time delays. Finally,
by various simulations, the accuracy and efficiency of the proposed methods for robust stabilization
of MJSs are demonstrated.

Keywords: control; mathematical algorithm; control systems; polytopic uncertainties; LMI set; time
delay; markov jump systems; stability; robust control

1. Introduction

Markov Jump Systems (MJS) are a class of parametric switching systems (SSs). The MJSs
are represented as a set of systems that are constantly in transition between models with
a Markov process with a limited state number. These systems can also be classified as
a case of hybrid SSs, in which switchings are managed by a Markov chain the Ref. [1].
Mathematically, Markov jump systems are classified as random systems, in which the
system matrices are randomly jumped at a series of discrete times managed by the Markov
process, and in the time between these random jumps, these matrices are time-invariant.
Due to their widespread use in practical systems, significant attention has been paid to them
in the last few decades. These systems are used to model a variety of processes, including
sudden changes in structures, such as accidental breakdowns and sudden disturbances,
environmental changes, and changes in the internal connections of subsystems, power
systems and solar panels, flight controllers, modeling abrupt changes in economic systems
and modeling and predicting network control systems. Many researchers have addressed
the problem of modeling Markov jump systems, analyzing their stability and efficiency,
designing a variety of controllers, including state feedback [2], robust H∞ [3], output
feedback [4], and sliding mode control [5].
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MJSs were first introduced by Krasovsky and Lidsky in 1961, who studied the control
process of a system subject to stochastic changes and expressed the style of this class of
systems [6]. Vanham was then one of the pioneering researchers in the development of these
systems, developing mathematical models and algorithms suitable for complex dynamic
systems, which are under natural constraints and random perturbations [7]. In the model
of economics studied in the Refs. [8,9], it is considered that the state of the economy can
be described as one of three functional modes: “normal”, “rapid growth”, or “recession”.
Additionally, switching between these states can be modeled as a Markov-chain. In 1983,
Aswarder et al. developed Markovian jump systems based on optimal control and random
estimation [10]. Since then, the stability study of MJSs has been increased significantly. This
is due to the fact that most practical systems are inherently exposed to stochastic changes
and sudden environmental disturbances. Markov jump systems are also used to analyze the
stability of controlled flight systems, which operates under various perturbations [11,12].

The Markov jumps are used in the control and dynamic identification of power
systems [13], in which a switching mechanism is used to identify sudden load changes,
production unit disconnection, and transmission line defects. The security criterion that
is used to determine the vulnerability of the current state of the system and network
topology can also be represented by a finite-time Markov process and a model-dependent
jump. In network control systems, data latency and loss are the two main phenomena that
occur due to the existence of the network, which must be considered in the design of the
controller; otherwise, the efficiency drops sharply. One of the methods of modeling these
two phenomena is as an MJS system [14].

2. Literature Review

in the Ref. [15], the H∞ controller developed MJSs, and the improvement of the tran-
sient behavior was studied. In the Ref. [16], the feedback controller was formulated, and the
time delay effect was investigated. The passivity analysis was presented in the Ref. [17],
and the effect of deception attacks was studied by designing an asynchronous control
scenario. In the Ref. [18], the application of the theory of MJSs in robotic problems was
addressed, and the control scheme was developed for disturbance rejection. A quantized
control scheme was designed in the Ref. [19] for Roesser MJS, and the feasibility of a
designed controller in some applications was investigated. In the Ref. [20], by the use of
neural networks (NN), the nonlinear dynamics in MJSs were eliminated, and the system
dynamics were converted to the linear sub-systems, and then an optimal controller was
designed for linearized models. The self-triggered scheme was developed in the Ref. [21],
and by designing an H∞-based control system, the signal boundedness was ensured.
The fuzzy controllers were investigated in the Ref. [22], and the problem of stochastic
stability was analyzed.

The nonlinear MJSs under time delay has been rarely studied. For example, in the
Ref. [23], the exponential stability was analyzed under time delay, and some stability
conditions were derived via a LMI approach. The event-triggered scheme was studied in
the Ref. [24], and a H∞-based controller was designed for fuzzy MJSs. The time-varying
delay problem was addressed in the Ref. [25], and the output boundedness was ensured
by the suggested LMI technique. In the Ref. [26], the time delay was studied by the
use of fuzzy rules, and by the Lyapunov-Krasovskii approach, some stability conditions
were suggested. In the Ref. [27], the discrete-time MJSs were taken into account, and the
stochastic stability was proven. In this paper, some conditions were extracted to guarantee
stability against time delay. The L1-gain analysis was developed in the Ref. [28] for MJS,
and the stability against time delays was investigated. In the Ref. [29], the L∞ scheme
was developed for fuzzy MJSs, and the effect of transmission delay was studied. In the
Refs. [30–34], the various versions of a sliding-mode controller (SMC), such as a simple
SMC, integral SMC, backstepping SMC, and terminal were studied, and they were applied
on an under-actuated quadcopter.
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3. Novelties

The literature review shows that the state-feedback control system has been designed
for the delayed MJSs. However, in most of them, the system equations are considered
nominally, or structural uncertainties such as ∆A = EF(t)H are used in control design,
in which ∆A is a real function, E and H are known matrices, and unknown F(t) satisfies
F(t)T F(t) ≤ I. According to the literature review, in very few studies, the control design
for MJSs under polytopic uncertainties was discussed. The main difficulties are the effect of
polytopic uncertainties, time delays, and restrictions on LMI sets. The basic novelties are:

• Introducing a suitable Lyapunov-Krasovsky function to analyze the stability of the
time delayed MJSs, and extract a sufficient condition in the LMI form to find a higher
delay bound;

• Analyzing the stability of the MJSs in the presence of polytopic uncertainty and
generalizing the obtained results; and

• Designing the controller using a mode-dependent state feedback approach and finding
appropriate control gains in LMI form.

4. Problem Description

We consider the dynamical model of a MJS as [35]:
χ̇(t) = A(rt)χ(t) +Ad(rt)χ(t− τ) + B(rt)u(t)
y(t) = C(rt)χ(t)
χ(t) = Φ(t) r(0) = r0 t ∈ [−τ, 0],

(1)

where χ(t) ∈ Rn/u(t) ∈ Rm, and y(t) ∈ Rl are the continuous-time state/controller and
output, respectively; τ > 0 represents the constant delay; {rt} is a homogeneous finite-state
Markov process; A(rt),Ad(rt) ∈ Rn×n,B(rt) ∈ Rn×m, and C(rt) ∈ Rl×n. The initial state
of the system is indicated as (r0, Φ(.)) with χ(ϑ) = Φ(ϑ) ∈ L2[−τ, 0] and χ0 = Φ(0).

Contemplate a system with modes, S = {1, 2, . . . , N} and infinitesimal generator
Λ = (λi,j), i, j ∈ S, where Λ = λi,j ≥ 0, ∀j 6= i, λi,i = −∑j 6=i λi,j. Then, the transition
probabilities are given as [36]:

P[rt+∆ = j|rt = i] =

{
λi,j∆ + o(∆), j 6= i
1 + λi,j∆ + o(∆), j = i.

where lim
∆→0

o(∆)
∆

= 0. (2)

5. Preliminaries

Definition 1. The polytopic-type uncertainties are defined as follows

Λi =

{
[Ai Adi Bi]|[Ai Adi Bi] =

νi

∑
r=1

βir[Air Adir Bir]; βir ≥ 0,
νi

∑
r=1

βir = 1

}
, (3)

where νi denotes the number of the vertices of Λi, βir(r = 1, . . . , νi) are the time-invariant
uncertainties, Air,Adir and Bir are known matrices and Ai,Adi and Bi, are unknown matrices.

Definition 2. For the finite Φ(t) ∈ Rn and all initial modes r0 ∈ S, the stochastic stability of MJS
is ensured if the following inequality exists:

lim
t→∞

E
{∫ t

0
χT(q, Φ, r0)χ(q, Φ, r0)dq

}
< ∞, (4)

where u(t) = 0, χ(q, Φ, r0) represents a solution, and Φ and r0 are initial conditions.
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Definition 3. The weak infinitesimal generator of a stochastic process (J ) is written as:

JV(χ(t), i, t) =

lim
∆→0

1
∆

{
E[V(χ(t + ∆), r(t + ∆), t + ∆)|χ(t), r(t) = i]

−V(χ(t), i, t)

}
(5)

Lemma 1. Finsler’s Lemma: Consider real matrices Ω ∈ Rn×n and the full row rank matrix
F ∈ Rm×n, then we can write:

1. For ξ ∈ Rn, we can write ξT(t)Ωξ(t) < 0 and Fξ(t) = 0;
2. For a scalar µ ∈ R we can write µ + FT F < 0;
3. The following condition holds: F⊥TΩF⊥ < 0

Lemma 2. Consider matrices W, U, V, T1, T2 and suppose that T1 > 0, T2 > 0, and that U/V
have column/row full ranks. Then there exists a matrix Σ such that:

(W + UΣV)T1(W + UΣV)T − T2 < 0 (6)

if, and only if:

U⊥
(

T2 −WT1WT
)

U⊥T > 0

VT⊥
(

T−1
1 −WT−1

2 W
)

VT⊥T > 0. (7)

Theorem 1. The stability of MJS (1) with u(t) = 0 is ensured for any time delay τ > 0, if we have
Pi > 0, Q > 0, Z > 0 such that the:

Ωi = F⊥T
i [Θi + P̄i]F⊥i < 0 (8)

where, i = 1, 2, . . . , N, and

Fi =

[
Ai Adi 0 −I
I −I −I 0

]
Pi =

N

∑
j=1

λijPj

Θi =


Q 0 0 Pi
∗ −Q 0 0
∗ ∗ −Z 0
∗ ∗ ∗ ι2Z

 P̄i =diag{Pi, 0, 0, 0}.

Note that F⊥T
i denotes the orthogonality complement of Fi and Θi(ι) = Θi is defined.

Proof. The stochastic Lyapunov-Krasovskii functional is considered as

V(χ(t), r(t)) = χT(t)Piχ(t) +
∫ t

t−ι
χT(ϑ)Qχ(ϑ)d#

+ ι
∫ 0

−ι

∫ t

t+θ
χ̇T(ϑ)Zχ̇(ϑ)d#d`, (9)

where Pi = P(r(t)) when r(t) = i. Consider J for process {χt, rt}, then, for each rt = i(i ∈
S), we have:



Mathematics 2022, 10, 187 5 of 18

V1(χ(t), r(t)) = χT(t)Piχ(t)→

JV1(χ(t), r(t)) = lim
∆→0+

1
∆

{
E
[
χT(t + ∆)Pr(t+∆)χ(t + ∆)

]
− χT(t)Piχ(t)

}
= lim

∆→0+

1
∆

{
E
[
(∆χ̇(t) + χ(t))T Pr(t+∆)(∆χ̇(t) + χ(t))

]
− χT(t)Piχ(t)

}
= lim

∆→0+

1
∆

{
E
[
∆2χ̇T(t)Pr(t+∆)χ̇(t)

]
+ E

[
∆
(

χT(t)Pr(t+∆)χ̇(t) + χ̇T(t)Pr(t+∆)χ(t)
)]

+E
[
χT(t)Pr(t+∆)χ(t)

]
− χT(t)Piχ(t)

}
= 0 +

(
χT(t)Pr(t)χ̇(t) + χ̇T(t)Pr(t)χ(t)

)
+ lim

∆→0+

1
∆

(
χT(t)

(
N

∑
j=1,j 6=i

λij∆Pj + λii∆Pi

)
χ(t)

)

+ χT(t)Piχ̇(t) + χ̇T(t)Piχ(t) + χT(t)

(
N

∑
j=1

λijPj

)
χ(t) (10)

V2(χ(t), r(t)) =
∫ t

t−ι
χT(ϑ)Qχ(ϑ)d#→

JV2(χ(t), r(t)) = lim
∆→0+

1
∆

(
E
[∫ t+∆

t+∆−ι
χT(ϑ)Qχ(ϑ)d#

]
−
∫ t

t−ι
χT(ϑ)Qχ(ϑ)d#

)
lim

∆→0+

1
∆

(∫ t+∆

t
χT(ϑ)Qχ(ϑ)d#−

∫ t−´+

t−´
ØT(#)QØ(#)d#

)
lim

∆→0+

1
∆

(
∆χT(t)Qχ(t)− ∆χT(t− ι)Qχ(t− ι)

)
= χT(t)Qχ(t)− χT(t− ι)Qχ(t− ι) (11)

V3(χ(t), r(t)) = ι
∫ 0

−ι

∫ t

t+θ
χ̇T(ϑ)Zχ̇(ϑ)d#d`→

JV3(χ(t), r(t)) = ι lim
∆→0+

1
∆

(
E
[∫ 0

−ι

∫ t+∆

t+θ+∆
χ̇T(ϑ)Zχ̇(ϑ)d#d`

]
−
∫ 0

−ι

∫ t

t+θ
χ̇T(ϑ)Zχ̇(ϑ)d#d`

)
= ι lim

∆→0+

1
∆

(∫ 0

−ι

∫ t+∆

t
χ̇T(ϑ)Zχ̇(ϑ)d#d`−

∫ 0

−´

∫ t+ +`

t+`
Ø̇T(#)ZØ̇(#)d#d`

)
ι
∫ 0

−ι
χ̇T(ϑ)Zχ̇(ϑ)dθ − ι

∫ 0

−ι
χ̇T(t + θ)Zχ̇(t + θ)dθ

= ι2χ̇T(t)Zχ̇(t)− ι
∫ t

t−ι
χ̇T(ϑ)Zχ̇(ϑ)dϑ. (12)

From Jensen’s inequality, one has

−ι
∫ t

t−ι
χ̇T(ϑ)Zχ̇(ϑ)dϑ ≤ −

(∫ t

t−ι
χ̇T(ϑ)dϑ

)T
Z
(∫ t

t−ι
χ̇(ϑ)dϑ

)
(13)

Thus

JV(χ(t), r(t)) = JV1(χ(t), r(t)) + JV2(χ(t), r(t)) + JV3(χ(t), r(t))

= +χT(t)Piχ̇(t) + χ̇T(t)Piχ(t) + χT(t)

(
N

∑
j=1

λijPj

)
χ(t) (14)

+ χT(t)Qχ(t)− χT(t− ι)Qχ(t− ι)

+ ι2χ̇T(t)Zχ̇(t)− (χ(t)− χ(t− ι))TZ(χ(t)− χ(t− ι))
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Considering

ξ(t) =
[

χT(t) χT(t− ι)
(∫ t

t−ι χ̇(ϑ)dϑ
)T

χ̇T(t)
]T

(15)

One can achieve

JV(χ(t), r(t)) = ξT(t)[Θi + P̄i]ξ(t). (16)

Therefore it is obvious that JV(χ(t), r(t)) < 0 holds if:

ξT(t)[Θi + P̄i]ξ(t) < 0. (17)

Regarding the Newton-Leibniz formula, one has∫ t

t−ι
χ̇(ϑ)dϑ = χ(t)− χ(t− ι)→ χ(t)− χ(t− ι)−

∫ t

t−ι
χ̇(ϑ)dϑ = 0 (18)

− χ̇(t) +A(rt)χ(t) +Ad(rt)χ(t− ι) = 0, (19)

or equivalently, [
Ai Adi 0 −I
I −I −I 0

]
ξ(t) = 0→ Fiξ(t) = 0. (20)

The equalities (20) and (17) hold, if and only if:

F⊥T
i [Θi + P̄i]F⊥i < 0 i = 1, 2, . . . , N. (21)

This completes the proof.

6. Main Results

Theorem 2. The stochastic stability of MJS (1) is ensured for time delay ι, if for Ψi, Pi > 0, Q >
0, Z > 0 and scalars µi > 0, we have:

S ,
[

Θi + P̄i − µi I µi I + FT
i Ψi

∗ −µi I

]
< 0 (22)

where u(t) = 0, i = 1, 2, . . . , N.

Proof. According to Lemma 2, define T1i = µi I ∈ R4n×4n with enough large scalars
µi > 0, T2i = T1i − (Θi + P̄i) > 0, Ui = FT

i , Vi = I, Wi = I. Now, if there exist Σi ∈ R2n×4n,
with full row ranks, such that:

µi

(
I + FT

i Σi

)(
I + FT

i Σi

)T
+ Θi + P̄i − µi I < 0. (23)

Then, the LMIs (22) hold by using the change of variable Ψi = µiΣi. Moreover, it is evident
by the system (1) by (u(t) = 0) that in the presence of time delays it is stochastically stable,
and this completes the proof.

Remark 1. Before expressing the next Theorem, since LMIs (22) are affine in respect of Ai and
Ai, sufficient conditions for investigating the robust stochastic stability in the presence of polytopic
uncertainties can be acquired by considering the proposed LMIs only in polytopic uncertainty
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vertices for each mode. In other words, the corresponding system subject to polytopic uncertainties
has robust stochastic stability if the following LMIs have feasible solutions:

S ,
[

Θi + P̄i − µi I µi I + FT
ir Ψi

∗ −µi I

]
< 0 i = 1, 2, . . . , N, r = 1, 2, . . . , νi (24)

where:

Fir =

[
Air Adir 0 −I

I −I −I 0

]
Proof. For each i, we multiply inequalities of (24) by scalars βir, r = 1, . . . , N, where
∑νi

r=1 βir = 1, βir > 0 and we sum up the achieved results with each other, and the LMIs
of (22) are extracted.

Since Lyapunov matrices (Pi, Q, Z) of LMIs (24) are independent of the system matri-
ces, the suggested results are conservative. Therefore, the next Theorem will be proposed
to reduce the conservatism of the robust stability analysis of the MJS. In this regard, the fol-
lowing matrices are defined

: Pi(βi) =
νi

∑
r=1

βirP(r)
i

Qi(βi) =
νi

∑
r=1

βirQ(r) (25)

Zi(βi) =
νi

∑
r=1

βirZ(r) i = 1, . . . , N (26)

where P(r)
i , Q(r), Z(r) are positive definite matrices. Moreover, considering P = [P1 . . . PN ]

T

and Πi = [λi1 In . . . λiN In]T , one has

Pi =
N

∑
j=1

λijPj = ΠT
i P . (27)

Theorem 3. Consider MJS (1) with the system matrices belonging to polytopic uncertainty in the
form of (3), the system has robust stochastic stability if, for ι > 0, there exist matrices Ψi, P(r)

i >

0, Q(r) > 0, Z(r) > 0 and scalars µ
(
i r) > 0, such that:

S ,

[
Θ(r)

i + P̄[πir ]
i − µ

(r)
i I µ

(r)
i I + FT

ir Ψi

∗ −µ
(r)
i I

]
< 0

i = 1, 2, . . . , N, r = 1, 2, . . . , νi, ∀πir ∈ Iir, (28)

where

Fir =

[
Air Adir 0 −I

I −I −I 0

]
P̄[πir ]

i = diag
{

ΠT
i P [πir ], 0, 0, 0

}

Θ(r)
i =


Q(r) 0 0 P(r)

i
∗ −Q(r) 0 0
∗ ∗ −Z(r) 0
∗ ∗ ∗ ι2Z(r),


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where Iir indicates the N-tuple sets of the following form:

Iir = {πir|πir = [p1 . . . pi−1 r pi+1 . . . pN ], pϑ = 1, . . . , νϑ, ∀ϑ ∈ {1, . . . , N}, ϑ 6= i}. (29)

Hence, for each πir, there exists the following matrix:

Pπir =
[

Pp1
1 . . . Ppi−1

i−1 Pr
i Ppi+1

i+1 . . . PpN
N

]
. (30)

Proof. Considering polytopic uncertainties and multiplying LMIs of Theorem 2 by β jk, k =
1, . . . , νj summing them up leads to

νj

∑
k=1

β jk

[
Θ(r)

i + P̄[πir ]
i − µ

(r)
i I µ

(r)
i I + FT

ir Ψi

∗ −µ
(r)
i I

]

=

[
Θ(r)

i + P̄[Ωir ]
i − µ

(r)
i I µ

(r)
i I + FT

ir Ψi

∗ −µ
(r)
i I

]
< 0, (31)

where

P [Ωir ] =
[

P1(β1) . . . Pi−1(βi−1) P(r)
i Pi+1(βi+1) . . . PN(βN)

]T

P̄[Ωir ]
i = diag

{
ΠT

i P [Ωir ], 0, 0, 0
}

.

Now, multiplying (31) by scalars βir, r = 1, 2, . . . , νi and summing them up, we conclude:

νi

∑
k=1

βir

[
Θ(r)

i + P̄[Ωir ]
i − µ

(r)
i I µ

(r)
i I + FT

ir Ψi

∗ −µ
(r)
i I

]

=

[
Θi(βi) + P̄[πir ]

i (βi)− µi(βi)I µi(βi)I + FT
i Ψi

∗ −µi I

]
< 0, (32)

where

P [πir ] =
[

P1(β1) . . . Pi−1(βi−1) P(r)
i Pi+1(βi+1) . . . PN(βN)

]T

P̄[πir ]
i = diag

{
ΠT

i P [πir ](βi), 0, 0, 0
}

State Feedback Controller

Designing u(t) = K(rt)χ(t) and (1), one has{
χ̇(t) = (A(rt) + B(rt)K(rt))χ(t) +Ad(rt)χ(t− ι)

χ(t) = Φ(t) r(0) = r0 t ∈ [−ι, 0].
(33)

Additionally, in the LMI extracted in Theorem 2, due to open-loop stability analysis, we
should only replace Ai with the Ai + BiKi matrix. Thus, we will have:

S ∆
=

[
(Θi + P̄i)− µi I µi I + FT

i Ψi
∗ −µi I

]
< 0 i = 1, 2, . . . , N

Fi =

[
Ai + BiKi Adi 0 −I
−I −I −I 0

] (34)
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On the other hand, in Theorems 2 and 3, it was said that Ψi = µiΣi, in which Σi ∈ R2n×4n

is a matrix with an optional row rate, and the main structure of it will be chosen as below:

Σi =

[
Σ11i 0 0 Σ14i
Σ21i 0 0 Σ24i

]
. (35)

In the following Theorem, the method of extracting interest of the state feedback controller
due to nominal stability of the closed loop system is explained:

Theorem 4. The system in relation (33) has the potential to change to random stability. If, for the
given delay ι > 0, Σ11i and Σ14i matrices M1i, M2i, Ni, Pi > 0, Q > 0 and Z > 0, and scalar
µi > 0 exists in a way that the following LMIs can be established simultaneously:

Υ ∆
=

[
(Θi + P̄i)− µi I µi I + Ξi

∗ −µi I

]
< 0 i = 1, 2, . . . , N

where :

Ξi =


µiAT

i Σ11i + NT
i BT

i Σ11i + M1i 0 0 µiAT
i Σ14i + NT

i BT
i Σ14i + M2i

µiAT
diΣ11i 0 0 µiAT

diΣ14i −M2i
−M1i 0 0 −M2i
µiΣ11i 0 0 −µiΣ14i


(36)

If the above LMI is affordable, controller Ki is defined from the relation Ki = µ−1
i Ni.

Proof. Where replacing Σi is suggested from the relation in the FT
i Ψi matrix of LMI in

relation (34), we will have Ψi = µiΣi and

FT
i Ψi =


µiAT

i Σ11i + µiKT
i BT

i Σ11i + µiΣ21i 0 0 µiAT
i Σ14i + µiKT

i BT
i Σ14i + µiΣ24i

µiAT
diΣ11i 0 0 µiAT

diΣ14i − µiΣ24i
−µiΣ21i 0 0 −µiΣ24i
µiΣ11i 0 0 −µiΣ14i

. (37)

Considering this point that choosing a Σi matrix introduction is for the designer, Σ11i
and Σ14i can be assumed as given (in other words, these two matrices are design parameters
and their initialization data are defined by the designer). Additionally, Σ21i & Σ24i are
undefined (these two matrices are free parameters). Now, applying the variables’ changes
Ni = µiKi, M1i = µiΣ21i, M2i = µiΣ24i, relation 31-3 will be a linear matrix according to
parameters Ni, Mi1, Mi2, and µi, which is in fact the defined Ξi in relation (36), and so the
relation (36) is a type of LMI, and in the case of being affordable, the optimum values of
anonymous parameters will be specified, and the interest of mode-dependent controllers
will be defined from relation Ki = µ−1

i Ni.
So far, we have managed to extract an optimal mode feedback controller to ensure

closed loop stability for nominal systems mentioned in relation (33). In the next Theorem,
the target is to generalize the obtained results for system equations in the presence of
polytopic uncertainties. To gain this goal, assume Ai, Adi, Bi are undefined matrices
but are related to the given Λi multidimensional. In Theorem 3, we have proved that
an open loop system in the presence of ι > 0 delay has random stability if Ψi, P(r)

i > 0,
Q(r) > 0, Z(r) > 0 matrices exist for i = 1, 2, . . . , N, in the way that the following LMIs are
established simultaneously:

S ∆
=

[ (
Θ(r)

i + P̄[πir ]
i

)
− µ

(r)
i I µ

(r)
i I + FT

ir Ψi

∗ −µ
(r)
i I

]
< 0

i = 1, 2, ...N, r = 1, ..., νi, ∀πir ∈ Iir

. (38)
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To stabilize the closed loop system, it is sufficient to replace Air + BirKi instead of Air
in the Fir matrix, and the Theorem will be defined as below:

Theorem 5. The system in relation (33) with a systemic matrix containing multidimensional
uncertainty has randomly stable stability if, for ι > 0 delay Σ11i, Σ14i, the given M1i, Ni, P(r)

i > 0,
Q(r) > 0, Z(r) > 0, matrices and µi > 0 scalar for i = 1, 2, ...N, r = 1, . . . , νi LMIs are established
simultaneously:

Υ ∆
=

[ (
Θ(r)

i + P̄[πir ]
i

)
− µi I µi I + Ξir

∗ −µi I

]
< 0

i = 1, 2, . . . , N, r = 1, . . . , νi, ∀πir ∈ Iir
where :

Ξir =


µiAT

irΣ11i + NT
i BT

irΣ11i + M1i 0 0 µiAT
irΣ14i + NT

i BT
irΣ14i + M2i

µiAT
dirΣ11i 0 0 µiAT

dirΣ14i −M2i
−M1i 0 0 −M2i
µiΣ11i 0 0 −µiΣ14i



Θ(r)
i =


Q(r) 0 0 P(r)

i
∗ −Q(r) 0 0
∗ ∗ −Z(r) 0
∗ ∗ ∗ ι2Z(r)

P̄[πir ]
i = diag

{
ΠT

i P [πir ], 0, 0, 0
}

. (39)

If the above LMI is feasible, the Ki controller is determined from the Ki = µ−1
i Ni relation.

Proof. The proof procedure is exactly the same as Theorem 3. We know that relation (36)
LMIs in Theorem 4 that have been achieved for designing a randomized stabilizer controller
closed loop system in the presence of delay are affine to the Ξir matrix. Now, considering
multidimensional uncertainty in systemic matrices and successive multiplication of rela-
tion (39) inequalities in β jk suitable scalars for their summation and repeating this method,
this time-successive multiplication of the parties in βir suitable scalars for r = 1, . . . , νi and
their summation will have:[ (

Θi(βi) + P̄[πir ]
i (βi)

)
− µi I µi I + Ξi

∗ −µi I

]
< 0

where :
P [πir ] =

[
P1(β1) ... Pi−1(βi−1) Pi(βi) Pi+1(βi+1) ... PN(βN)

]T

P̄[πir ]
i (βi) = diag

{
ΠT

i P [πir ](βi), 0, 0, 0
} . (40)

In relation (39), it is seen that for any (Ai,Adi,Bi) ∈ ΛiorΞi ∈ Λi and i = 1, ...N is confirmed
in which a Lyapunov nominal matrix replaced with Lyapunov uncertainty matrices. Thus,
in Theorem 5, we managed to achieve a sufficient condition with less conservation to
relation (36) LMIs for designing a stable stabilizer controller due to ensuring randomized
closed-loop stability under polytopic uncertainty in systemic matrices, and this section is
thus also complete.

7. Simulations

Example 1. In this example, the stability of linear MJLS with nominal time delay is investigated.
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In Theorem 2, we proved that system (1) is stable if, for delay ι > 0, there exists a
full-rank matrix Ψi and Laypunov matrices Pi > 0, Q > 0, Z > 0 and scalar µi > 0 such
that the LMI (22) is satisfied. A system with the following matrices is considered:

A1=

[
−3.4888 0.8057
−0.6451 −3.2684

]
A2=

[
−2.4898 0.2895
1.3396 −0.0211

]
Ad1 =

[
−0.862 −1.2919
−0.6841 −2.0729

]
Ad2 =

[
−2.8306 0.4978
−0.8436 −1.0115

] (41)

where,

Π=

[
−6 6
8 −8

]
, ι = 0.756 (42)

For ι = 0.756, we obtain:

P(1) =
[

0.1526 −0.0266
−0.0266 0.0547

]
P(2) =

[
0.1624 −0.0348
−0.0348 0.0833

]
Z =

[
0.0213 0.0158
0.0158 0.0118

]
Q =

[
0.7928 −0.2758
−0.2758 0.2050

]
µ(1) = 1.3635µ(2) = 1.0127

(43)

For the initial condition χ0 =
[

1 0.5
]T , the results are shown in Figure 1. The Markovian

changes are depicted in Figure 2.

0 5 10 15 20 25
Time (sec)

-0.8

0

0.5

1

E
st

im
at

io
n

 e
rr

o
r

Figure 1. Example 1: Output trajectories.

0 5 11 16
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1.2

1.4

1.6

1.8

2

Figure 2. Example 1: Markovian changes.

It should be noted that, in comparison with the method of [37], the upper bound (UB)
of the time delay is smaller than our method. In the LMI of [37], if m = 1, the UB of the
time delay is obtained as ι = 0.377. The other advantage of our method is that, in our LMIs,
the systematic matrices are separated from Lyapunov matrices. Then, the conservatism of
our approach in the presence of polytopic uncertainties is reduced.
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Example 2. In this example, the effectiveness of state feedback is evaluated. In Theorem (4), we
proved that for delay ι > 0, asymptotic stability is ensured if u(t) = K(rt)χ(t), and there exist M1i,
M2i, Ni, Pi > 0, Q > 0, Z > 0 and scalar µi > 0 such that LMIs (36) are satisfied. The system
matrices are considered as:

A1=

[
0.5 0
0 0.75

]
Ad1=

[
−0.862 −1.2919
−0.6841 −2.0729

]
B1 =

[
0.5
0.5

]
A2 =

[
0.5 0
0 0.75

]
Ad2 =

[
−2.8306 0.4978
−0.8436 −1.0115

]
B2 =

[
0.4
0.8

] (44)

where,

Π=

[
−6 6
8 −8

]
(45)

For ι = 0.1.05, we obtain:

P(1) =
[

0.1487 −0.1072
−0.1072 0.1172

]
P(2) =

[
0.1318 −0.0941
−0.0941 0.1092

]
Z =

[
0.4497 −0.3714
−0.3714 0.4921

]
Q =

[
0.9511 −0.1457
−0.1457 0.4721

]
µ(1) = 0.5875µ(2) = 0.6923

(46)

Σ11(1) =
[

0.2509 −0.0973
−0.0973 0.1138

]
Σ14(1) =

[
0.3811 −0.2439
−0.2439 0.2264

]
Σ11(2) =

[
0.3250 −0.1153
−0.1153 0.1230

]
Σ14(2) =

[
0.2391 −0.1065
−0.1065 0.1058

] (47)

By solving the LMIs, the feedback gains are obtained as:

K(1)=
[
−0.5639 −1.0707

]
K(2)=

[
−0.8979 −4.3916

] . (48)

For the initial χ0 =
[

1 0.5
]T , the results are given in Figure 3. The Markovian changes are

depicted in Figure 4. The control signal is given in Figure 5.

0 5 10 15 20 25 30 35 40
Time (sec)

-1

0

1

2

Figure 3. Example 2: Output trajectories.
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1.6

1.8
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Figure 4. Example 2: Markovian changes.

It should be noted that, in comparison with the method of [35], the UB of the time
delay is smaller than our method. In the LMI of [35], the stability is proved for ι = 0.47,
while in our suggested approach, we obtain ι = 1.05. We see that states are converged
compared to the larger time delay.
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Figure 5. Example 2: Control signals.

Example 3. In this example, the stability is investigated in the presence of ploytopic uncertainties.
To consider ploytopic uncertainties, the system matrices are written as:

Λi =


[

Ai Adi Bi
]
|
[

Ai Adi Bi
]
=

νi
∑

r=1
βir
[

Air Adir Bir
]
; βir ≥ 0,

νi
∑

r=1
βir = 1

. (49)

The matrices Air, Adir and Bir are known matrices. In Theorem 5, we proved that for delay ι > 0,
the stability is ensured if there exist Ψi, P(r)

i > 0, Q(r) > 0, Z(r) > 0, µ
(r)
i > 0, such that the

LMIs (39) are satisfied. For examination, the system matrices are considered as:

A11=

[
−3.4888 0.8057
−0.6451 −3.2684

]
A12=

[
−3 0.8057
−0.6 −2.7

]
A21=

[
−2.4898 0.2895
1.3396 −0.0211

]
A22=

[
−2.4898 0.2895

1 0

]
Ad11 =

[
−0.862 −1.2919
−0.6841 −2.0729

]
Ad12 =

[
−0.7 −1
−0.5 −2.0729

]
Ad21 =

[
−2.8306 0.4978
−0.8436 −1.0115

]
Ad22 =

[
−2 0.4978
−0.4 −1.0115

]
(50)

where,

Π=

[
−6 6
8 −8

]
(51)
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For time delay ι = 0.62, and initial condition χ0 =
[

1 0.5
]T , the results are given in Figure 6.

The Markovian changes are depicted in Figure 7. The control signal is given in Figure 8. We see
that χ1 and χ2 are converged compared to the time delay ι = 0.62 and polytopic uncertainties.
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Figure 6. Example 3: Output trajectories.

0 5 10 15 20
Time (sec)

1

1.2

1.4

1.6

1.8

2

Figure 7. Example 3: Markovian changes.
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Figure 8. Example 3: Control signals.
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Example 4. In this example, the feedback controller for MJLSs in the presence of polytopic uncer-
tainties and time delay is evaluated. The details of stability are given in Theorem 5. The system
matrices are considered as:

A11=

[
−1.6 0.8
−0.6 −1.5

]
A12=

[
−1.4 0.7
−0.6 −1.3

]
A21=

[
−1.4 0.3
1.3 0

]
A22=

[
−1.6 0.3
1.4 0.1

]
Ad11 =

[
−0.9 −1.3
−0.7 −2.1

]
Ad12 =

[
−1.1 −1.5
−0.8 −2.3

]
Ad21 =

[
−2.3 0.5
−0.8 −0.1

]
Ad22 =

[
−2.5 0.6
−0.7 −0.2

]
B11 =

[
1
1

]
B12 =

[
1.1
0.9

]
B21 =

[
0
1

]
B22 =

[
0.1
0.9

]

(52)

where,

Π=

[
−6 6
8 −8

]
(53)

For ι = 0.74, we obtain:

Σ11(1) =
[

0.3419 −0.0888
−0.0888 0.2364

]
Σ14(1) =

[
0.2828 −0.0890
−0.0890 0.1501

]
Σ11(2) =

[
0.2061 −0.0016
−0.0016 0.2652

]
Σ14(2) =

[
0.1428 −0.0092
−0.0092 0.1830

] (54)

K(1)=
[
−0.4358 −0.7116

]
K(2)=

[
−0.3768 −0.2166

] (55)

For initial condition χ0 =
[

1.4 0.3
]T , the results are given in Figure 9. The Markovian

changes are depicted in Figure 10. The control signal is shown in Figure 11. We see that χ1 and χ2
are converged compared to time delay ι = 0.74 and polytopic uncertainties.
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Figure 9. Example 4: Output trajectories.

Remark 2. The paper proposed a practical approach for MJSs, such that in addition to polytopic
uncertainties, the effect of time delays was also considered. The conventional restrictions were made
easier and the suggested controller can support more levels of time delays.
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Figure 10. Example 4: Markovian changes.
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Figure 11. Example 4: Control signals.

8. Conclusions

In this paper, the target was to analyze stochastic stability and design the stable
stabilizer feedback controller for the delayed-MJLS systems in the presence of polytopic
uncertainties. As it can be observed in the literature overview, systemic and polytopic
matrices of the suggested Lyapunov-Krasovskii function exists in the extracted results
of LMIs, and this causes more conservation for generalizing the polytopic uncertainty
mode. For this target, in this paper, we managed to separate systemic matrices and
Lyapunov matrices in the suggested Lyapunov-Krasovskii function to generalize the results
of polytopic uncertainty with less conservation. The main results were divided into two
main sections: stabilization analysis and feedback controller design for delayed MJSs. Four
theorems were presented to give sufficient conditions to ensure stability in the presence
of time delay and uncertainties. In simulation sections, four examples were presented
to verify the obtained criteria. In the first example, the stability of a linear MJLS with
nominal time delay was investigated. It is shown that the upper bound (UB) of time delay
is bigger for our method in comparison with other conventional approaches. Additionally,
in our LMIs, the systematic matrices were separated from Lyapunov matrices. Then, the
conservatism of our approach in the presence of polytopic uncertainties was reduced. In the
second example, the effectiveness of state feedback was evaluated. It was shown that the
designed controller can support larger time delay. In the third example, the stability was
investigated in the presence of polytopic uncertainties, and finally, in the last example,
the feedback controller for MJLSs in the presence of polytopic uncertainties and time delay
was evaluated. Simulation results show that the presented theorems are more effective,
and in comparison with conventional methods, the stability was achieved in a higher upper
bound of time delays. Additionally, it was shown that the conservative conditions became
easier. For future studies, imperfections can be taken into consideration in switching
with delay.
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