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Abstract: This paper presents the effects of temperature and the nonlocal coefficient on the bending
response of functionally graded (FG) nanoplates embedded in an elastic foundation in a thermal
environment. The effects of transverse normal strain, as well as transverse shear strains, are con-
sidered where the variation of the material properties of the FG nanoplate are considered only in
thickness direction. Unlike other shear and deformations theories in which the number of unknown
functions is five and more, the present work uses shear and deformations theory with only four
unknown functions. The four-unknown normal and shear deformations model, associated with
Eringen nonlocal elasticity theory, is used to derive the equations of equilibrium utilizing the principle
of virtual displacements. The effects due to nonlocal coefficient, side-to-thickness ratio, aspect ratio,
normal and shear deformations, thermal load and elastic foundation parameters, as well as the
gradation in FG nanoplate bending, are investigated. In addition, for validation, the results obtained
from the present work are compared to ones available in the literature.

Keywords: nonlocal theory; FG nanoplates; thermal load; four-unknown normal and shear deforma-
tions theory; elastic foundations

1. Introduction

Nanotechnology is the study of small objects and their applications and has many
uses in scientific fields, such as physics, materials science, engineering, chemistry, and
biology. For centuries, nanotechnology has been used even though modern nanoscience
and nanotechnology are modern. Aifantis [1] discussed the interpretation of size effects
using the strain gradient theory. Reddy [2] studied the bending, buckling, and vibration
of beams utilizing nonlocal theories. Hashemi and Samaei [3] discussed the buckling
of micro/nanoscale plates used the nonlocal elasticity theory. Zenkour and Sobhy [4]
discussed the thermal buckling of nanoplates resting on Winkler–Pasternak foundations
utilizing the nonlocal elasticity theory. The thermo-mechanical bending and free vibration
behavior of single-layered graphene sheets lying on elastic foundations were studied by
Sobhy [5].

Functionally graded materials (FGMs) consist of a mixture of metal and ceramic
materials, which range from one material to the other following the law of volume fractions
of the two materials through the thickness of the nanoplate [6–8]. Due to their distinct
physical and thermal properties, the FGMs are preferable in many real-life applications.
Maintaining the structural reliability of FGMs in a high thermal gradient environment is one
of the advantages of using FGMs [9–13]. Consequently, many studies about the applications
FG nanoplates/nanobeams can be found in the literature [14–19]. Zenkour et al. [20,21]
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investigated the deflection and stresses of laminated plates resting on Winkler–Pasternak
foundations in thermal and hygrothermal environments, respectively.

Due to the importance of designing foundations, various methods have been devel-
oped to study the response of beams and plates that are resting on elastic foundations such
as Winkler’s soil model [22] and Pasternak’s model [23–28] and many other studies that are
available in the literature [29–31]. However, most of the available shear and deformations
theories used in the analysis involve five, six, and more unknown functions.

A refined four-unknown higher-order normal and shear deformations theory (RHT)
for bending analysis of FG nanoplates embedded in elastic foundations is presented in this
work where only four independent known functions are used. The equations of equilibrium
are then analytically solved for bending and deflections of simply supported nanoplates
to investigate the influence of the nonlocal parameter in which the material properties
are influenced by the variation of temperature. The effects of foundation parameters,
temperature, transverse normal deformation, plate aspect ratio, side-to-thickness ratio,
nonlocal coefficient, and volume fraction on deflections and stresses are also investigated.

2. Geometrical Formulation

A rectangular (a × b) FG nanoplate is considered with thickness of h, as shown
in Figure 1. The FG nanoplate is embedded in an elastic foundation and exposed to a
distributed transverse load q(x, y), as well as temperature T (x, y, z). According to two
gradation models (Equations (1) and (2)), the material properties Pr such as the modulus
of elasticity E and the thermal expansion coefficient α of the FG nanoplate with simply-
supported edges in thermal environments, might be assumed:

P1(z) = Pm + PcmVβ, Vβ =

(
2z + h

2h

)β

, (1)

P2(z) = Pm(Pc/Pm)
Vβ , (2)

where Pm is the property of the metal, Pcm = Pc−Pm, Pc is the property of the ceramic and
β is the FG parameter. In addition, Equations (1) and (2) implies that the upper surface of
FG nanoplate (z = + h

2 ) is ceramic-rich, while the lower surface (z = − h
2 ) of FG nanoplate

is metal-rich. The Poisson’s ratio ν is generally assumed constant throughout the plate
thickness and equal to 0.3. Based on the two gradation models, the variation of the modulus
of elasticity E across the thickness of FG nanoplate for different values of the parameter β
is shown in Figure 2.
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Figure 1. A rectangular FG nanoplates embedded in an elastic medium.
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Figure 2. Variation of Young’s modulus E through the thickness of the FG nanoplate for various
values of the FG parameter β according to the two gradation models (a) model 1 and (b) model 2.

2.1. Nonlinear Thermal Conditions

For thermal-structural analysis, only linearly varying across the thickness temperature
distribution T (x, y, z) = T1(x, y) + z

hT2(x, y) and nonlinear variation through the thickness
temperature distribution T (x, y, z) = 1

h Ψ(z)T3(x, y) and a combination of both are defined
as [20,21]

T (x, y, z) = T1(x, y) +
z
h
T2(x, y) +

1
h

Ψ(z)T3(x, y), (3)

where Ψ(z) = − z
4

[
1− 5

3

(
z

h/2

)2]
.

2.2. Displacements and Strains

The in-plane displacements, which are denoted as v1 and v2 and the transverse dis-
placement v3 in FG nanoplate are assumed according to a modified four-unknown normal
and shear deformations theory (see in [32–38]):

v1(x, y, z) = u− z∂xw−Ψ(z)∂xφ,

v2(x, y, z) = v− z∂yw−Ψ(z)∂yφ,

v3(x, y, z) = w+
[
1 + ξΦ(z)

]
φ.

(4)

The function Ψ(z) in the present theory should be odd function of z and Φ(z) = 1−Ψ8.
The prime (8) represent differentiation with respect to z. The strain components compatible
with the above displacement are given as

εxx

εyy

γxy

 =


ε0

x

ε0
y

γ0
xy

+ z


ε1

x

ε1
y

γ1
xy

+ Ψ(z)


ε2

x

ε2
y

γ2
xy

,

γiz = (1 + ξ)Φ(z)γ0
iz, εzz = −ξΨ88ε0

z, (i = x, y),

(5)
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where

ε0
x = ∂xu, ε0

y = ∂yv, γ0
xy = ∂xv + ∂yu,

ε1
x = −∂2

xxw, ε1
y = −∂2

yyw, γ1
xy = −2∂2

xyw,

ε2
x = −∂2

xxφ, ε2
y = −∂2

yyφ, γ2
xy = −2∂2

xyφ,

γ0
iz = ∂iφ, ε0

z = φ, (i = x, y).

(6)

2.3. Constitutive Equations

For Eringen nonlocal elasticity theory [39–42], the nonlocal constitutive relations of an
FG nanoplate in thermal environment are given as

(
1− µ2∇2

)
σxx

σyy

σzz

 =

c11 c12 c13

c12 c22 c23

c13 c23 c33




εxx − α(z)T
εyy − α(z)T
εzz − α(z)T

,

(
1− µ2∇2

)
σyz

σxz

σxy

 =

c44 0 0

0 c55 0

0 0 c66




γyz

γxz

γxy

,

(7)

in which < = 1− µ2∇2 is the nonlocal operator and µ = e0` is the small scale effect in
nanostructures (i.e, the nonlocal coefficient), where e0 is a constant and ` is an internal
characteristic length. The constitutive constants cij may be expressed as

c11(z) = c22(z) = c33(z) =
(1− ν)E(z)

(1− 2ν)(1 + ν)
,

c12(z) = c13(z) = c23(z) =
νE(z)

(1− 2ν)(1 + ν)
,

cjj(z) = G(z) =
E(z)

2 + 2ν
, (j = 4, 5, 6).

(8)

2.4. Governing Equations

In this section, we will use the principle of virtual displacements to get the equilibrium
equations, that is,∫ h/2

−h/2

∫
Ω

[
σxxδεxx + σyyδεyy + σzzδεzz + σxyδγxy + σyzδγyz + σxzδγxz

]
dΩdz +

∫
Ω

VdΩ = 0, (9)

where V = (Γ − q)δv3 and Γ = K1v3 − K2

(
∂2

xx + ∂2
yy

)
v3 is the virtual work done by

elastic foundations and K1 and K2 are the Winkler-type and Pasternak-type foundations,
respectively. Substitute Equations (5)–(7) into Equation (9) and integrate Equation (9) over
the thickness of FG nanoplate:∫

Ω

[
Nxδε0

x +Nyδε0
y +Nzδε0

z +Nxyδγ0
xy +Mxδε1

x +Myδε1
y +Mxyδγ1

xy+

Sxδε2
x + Syδε2

y + Sxyδγ2
xy +Qxzδε0

xz +Qyzδε0
yz + V

]
dΩ = 0, (10)

The stress resultants N ,M, S , and Q can be expressed as
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(
1− µ2∇2

)


Nx

Ny

Mx

My

Sx

Sy

Sz


=



D11 D12 D13 D14 D15 D16 D17

D22 D23 D24 D25 D26 D27

D33 D34 D35 D36 D37

D44 D45 D46 D47

D55 D56 D57

D66 D67

symm. D77





ε0
x

ε0
y

ε1
x

ε1
y

ε2
x

ε2
y

ε0
z


−



N Tx
N Ty
MT

x

MT
y

STx
STy
N Tz


,

(
1− µ2∇2

)
Nxy

Mxy

Sxy

 =

 A11 A12 A13

A22 A23

symm. A33




γ0
xy

γ1
xy

γ2
xy

,

(
1− µ2∇2

)
(Qxz,Qyz) = (A44γ0

xz,A55γ0
yz).

(11)

The elements Dij and Aij appeared in Equation (11) are given in Appendix A. The
thermal stress and moment resultants N Ti ,MT

i and STi are defined by

{N Tx ,MT
x ,STx } =

∫ h/2

−h/2
(c11 + c12 + c13)(1, z, Ψ(z))αT dz,

{N Ty ,MT
y ,STy } =

∫ h/2

−h/2
(c12 + c22 + c23)(1, z, Ψ(z))αT dz,

N Tz = −ξ
∫ h/2

−h/2
Ψ88(z)(c13 + c23 + c33)αT dz.

(12)

According to Equation (10) the equilibrium equations can be written as

δu :
∂Nx

∂x
+

∂Nxy

∂y
= 0,

δv :
∂Nxy

∂x
+

∂Ny

∂y
= 0,

δw :
∂2Mx

∂x2 + 2
∂2Mxy

∂xy
+

∂2My

∂y2 +
(

1− µ2∇2
)
(q− Γ) = 0,

δφ :
∂2Sx

∂x2 + 2
∂2Sxy

∂xy
+

∂2Sy

∂y2 +
∂Qyz

∂y
+

∂Qxz

∂x
−Nz +

(
1− µ2∇2

)
(q− Γ) = 0.

(13)

Substituting Equation (11) into Equation (13) yields a system of simultaneous alge-
braic equations:

[K]{δ} = { f }, (14)

where the elements Kij = Kji are the differential operators and given in Appendix B. The
vector { f } = { f1, f2, f3, f4}t, while {δ} = {u, v, w, ψ}t. The components of the force vector
{ f } are given as

f1 = ∂xN Tx , f3 = ∂2
xxMT

x + ∂2
yyMT

y −
(

1− µ2∇2
)

q,

f2 = ∂yN Ty , f4 = ∂2
xxSTx + ∂2

yySTy +N Tz −
(

1− µ2∇2
)

q.
(15)

3. Closed-Form Solution

The external force and the thermal loads proposed by Navier are used to solve the
operator Equation (14), which are given as
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q(x, y) =
∞

∑
m,n=1,3,5,...

qmn sin(λmx) sin(γny), qmn =
16q0

mnπ2 ,

Ts = ts sin(λmx) sin(γny), s = 1, 2, 3,

(16)

and for the simply-supported boundary conditions at the side edges for the FG nanoplate
are imposed as

v = w = ∂yψ = Nx =Mx = Sx = 0 at x = 0, a,

u = w = ∂xψ = Ny =My = Sy = 0 at y = 0, b.
(17)

and λm = mπ
a , γn = nπ

b , ts are constants. At m = n = 1 then the sinusoidal load is
considered and q11 = q0. According to the given boundary conditions, the Navier solution
for u, v, w, and ψ is assumed as

u
v
w
ψ

 =


U1

mn cos(λmx) sin(γny)
U2

mn sin(λmx) cos(γny)
U3

mn sin(λmx) sin(γny)
U4

mn sin(λmx) sin(γny)

, (18)

where U1
mn, U2

mn, U3
mn, and U4

mn are arbitrary parameters. Substituting Equation (18) into
Equation (14) leads to a system of simultaneous algebraic equations, which can be expressed
in a compact form as

[H]{∆} = {F}, (19)

where {∆} and {F} represent the columns:

{∆} = {U1
mn, U2

mn, U3
mn, U4

mn}t,

{F} = {F1,F2,F3,F4}t,
(20)

in which

F1 = λm

3

∑
j=1

[
eT1jtj

][
1 + µ2

(
λ2

m + γ2
n

)]
,

F2 = γn

3

∑
j=1

[
eT2jtj

][
1 + µ2

(
λ2

m + γ2
n

)]
,

F3 = −
{ 3

∑
j=1

[
λ2

m

(
eT3jtj

)
+ γ2

n

(
eT4jtj

)]
+ q0

}[
1 + µ2

(
λ2

m + γ2
n

)]
,

F4 = −
{ 3

∑
j=1

[
λ2

m

(
eT5jtj

)
+ γ2

n

(
eT6jtj

)
−
(

eT7jtj

)]
+ q0

}[
1 + µ2

(
λ2

m + γ2
n

)]
.

(21)

The elementsHij = Hji of the coefficient matrix [H] and eTij are given in Appendix C.

4. Numerical Results

The numerical results are calculated to verify the accuracy of the present theory in
predicting the effects of the nonlocal coefficient on the bending response of the simply-
supported FG nanoplates embedded in elastic foundations under thermal load. The upper
surface (z = + h

2 ) of FG nanoplate is titanium, while the lower surface (z = − h
2 ) of FG

nanoplate is Zirconia. In the case of mechanical bending, only the nanoplate is made
from alumina (Al2O3) and aluminum (Al). Table 1 gives the material properties of the FG
nanoplate. For verification purposes, the present outcomes are compared well to various
plate theories, and a good agreement is observed. It is found that the best value of ξ
that provides accurate and efficient results is ξ = 2/15. The following fixed data are



Mathematics 2022, 10, 234 7 of 19

q0 = 100, β = 1.5, a = 10h, a = b, t1 = 0, a = 10nm (unless otherwise stated). The following
dimensionless deflection, stresses, and foundation parameters are applied as:

w̄ =
102D
q0a4 v3

(
a
2

,
b
2

, 0
)

, w∗ =
10h3Ec

q0a4 v3

(
a
2

,
b
2

, 0
)

, κ1 =
a4

D
K1,

σ1 =
h

q0a
σxx

(
a
2

,
b
2

,
z
h

)
, σ2 =

h
q0a

σyy

(
a
2

,
b
2

,
z
h

)
, κ2 =

a2

D
K2,

σ4 = − h
q0a

σyz

( a
2

, 0, 0
)

, σ5 = − h
q0a

σxz

(
0,

b
2

, 0
)

,

σ6 =
h

q0a
σxy

(
0, 0, −h

2

)
, σ3 = − h

q0a
σzz

(
a
2

,
b
2

,
z
h

)
,

where D = h3E
12(1−ν2)

. The deflection and stresses due to the thermal bending for FG
nanoplates resting on Winkler–Pasternak foundations are presented. Results are reported
in Tables 2–8 and Figures 3–9, where the results in Tables 2–4 and 7 are obtained by using
the first gradation model given in Equation (1); however, the results in Tables 5, 6, and 8
and Figures 3–9 are obtained by using the second gradation model given in Equation (2).

Table 1. Material properties used in the FG nanoplate.

Mechanical Bending Thermal Bending

Properties Aluminum Alumina Titanium Zirconia

E (GPa) 70 380 66.2 117
ν 0.3 0.3 1/3 1/3

α (10−6/°C) — — 10.3 7.11

Table 2. Nondimensionalized deflection w∗(0) of and the in-plane normal stress σ1(h/3) in FG square
plates under sinusoidal loads.

w∗ σ1

β Theory a/h = 4 10 100 a/h = 4 10 100

1

Ref. [43] 0.729 0.589 0.563 0.806 2.015 20.150
Ref. [44] 0.717 0.588 0.563 0.622 1.506 14.969
Ref. [45] 0.700 0.585 0.562 0.593 1.495 14.969
Present 0.6929 0.5685 0.5462 0.5795 1.4647 14.549

4

Ref. [43] 1.113 0.874 0.829 0.642 1.605 16.049
Ref. [44] 1.159 0.882 0.829 0.488 1.197 11.923
Ref. [45] 1.118 0.875 0.829 0.440 1.178 11.932
Present 1.0945 0.8411 0.7933 0.4204 1.1241 11.3919

10

Ref. [43] 1.318 0.997 0.936 0.480 1.199 11.990
Ref. [44] 1.375 1.007 0.936 0.370 0.897 8.908
Ref. [45] 1.349 0.875 0.829 0.323 1.178 11.932
Present 1.3247 0.9786 0.9139 0.3089 0.8438 8.5898
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Table 3. Comparison of non-dimensional deflection and stresses of FG square plate under sinusoidal
distributed load (a = 10h).

β Theory w∗ σ1 σ2 σ6 σ4 σ5

ceramic Ref. [46] 0.2960 1.9955 1.3121 0.7065 0.2132 0.2462
present 0.2936 2.0211 1.3240 0.6932 0.2428 0.2731

1 Ref. [46] 0.5889 3.0870 1.4894 0.6110 0.2622 0.2462
present 0.5684 3.1022 1.4647 0.5618 0.2985 0.2731

2 Ref. [46] 0.7573 3.6094 1.3954 0.5441 0.2763 0.2265
present 0.7224 3.6032 1.3509 0.4944 0.2758 0.2202

3 Ref. [46] 0.8377 3.8742 1.2748 0.5525 0.2715 0.2107
present 0.7977 3.8407 1.2218 0.5028 0.2429 0.1837

4 Ref. [46] 0.8819 4.0693 1.1783 0.5667 0.2580 0.2029
present 0.8411 4.0129 1.1241 0.5184 0.2149 0.1647

5 Ref. [46] 0.9118 4.2488 1.1029 0.5755 0.2429 0.2017
present 0.8720 4.1760 1.0510 0.5292 0.1941 0.1569

6 Ref. [46] 0.9356 4.4244 1.0417 0.5803 0.2296 0.2041
present 0.8974 4.3405 0.9934 0.5365 0.1797 0.1556

7 Ref. [46] 0.9562 4.5971 0.9903 0.5834 0.2194 0.2081
present 0.9199 4.5062 0.9460 0.5419 0.1704 0.1575

8 Ref. [46] 0.9750 4.7661 0.9466 0.5856 0.2121 0.2124
present 0.9407 4.6712 0.9062 0.5462 0.1648 0.1608

9 Ref. [46] 0.9925 4.9303 0.9092 0.5875 0.2072 0.2164
present 0.9602 4.8334 0.8723 0.5501 0.1619 0.1648

10 Ref. [46] 1.0089 5.0890 0.8775 0.5894 0.2041 0.2198
present 0.9786 4.9916 0.8438 0.5536 0.1609 0.1689

metal Ref. [46] 1.6070 1.9955 1.3121 0.7065 0.2132 0.2462
present 1.5938 2.0211 1.3240 0.6932 0.2428 0.2731

Table 4. Comparison of non-dimensional deflection 10w̄ of square plate subjected to uniformly
distributed load.

a/h = 10 a/h = 200

κ1 κ2 Ref. [47] Ref. [26] Present Ref. [47] Ref. [26] Present

1

5 3.3455 3.3455 3.16463 3.2200 3.2200 3.21954
10 2.7505 2.7504 2.60969 2.6684 2.6684 2.66805
15 2.3331 2.3331 2.21865 2.2763 2.2763 2.27599
20 2.0244 2.0244 1.92843 1.9834 1.9834 1.98315

34

5 2.8422 2.8421 2.69617 2.7552 2.7552 2.75481
10 2.3983 2.3983 2.28056 2.3390 2.3390 2.33863
15 2.0730 2.0730 1.97479 2.0306 2.0306 2.03035
20 1.8245 1.8244 1.74054 1.7932 1.7932 1.79296

54

5 1.3785 1.3785 1.32246 1.3688 1.3688 1.36864
10 1.2615 1.2615 1.21104 1.2543 1.2543 1.25412
15 1.1627 1.1627 1.11682 1.1572 1.1572 1.15710
20 1.0782 1.0782 1.03612 1.0740 1.0740 1.07389
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Table 5. Effects of the nonlocal coefficient, FG parameter and foundation parameters on the deflection
10 w∗ of and in-plane normal stress σ1 in the FG square nanoplate (a/h = 10).

(κ1, κ2) * (κ1, κ2) **

β Theory εz (0,0) (100,0) (100,100) (0,0) (100,0) (100,100)

10 w∗ 0 Ref. [48] = 0 2.9603 2.3290 0.4470 5.2977 3.5671 0.4789
present 6= 0 2.9359 2.3183 0.4499 5.2539 3.5577 0.4825

0.5 Ref. [48] = 0 5.4971 3.6564 0.4805 9.8374 5.1752 0.4998
present 6= 0 5.3352 3.5937 0.4828 9.5477 5.1133 0.5029

2.5 Ref. [48] = 0 8.8382 4.8847 0.4969 15.8166 6.4599 0.5096
present 6= 0 8.4675 4.7865 0.4996 15.1532 6.3769 0.5129

5.5 Ref. [48] = 0 10.0219 5.2259 0.5003 17.9350 6.7874 0.5115
present 6= 0 9.7162 5.1633 0.5038 17.3878 6.7447 0.5156

10.5 Ref. [48] = 0 11.1361 5.5135 0.5028 19.9288 7.0545 0.5130
present 6= 0 10.9327 5.4889 0.5069 19.5648 7.0506 0.5175

σ1 0 Ref. [48] = 0 19.9550 15.6991 3.0133 35.7108 24.0455 3.2284
present 6= 0 20.2107 15.9589 3.0973 36.1685 24.4916 3.3219

0.5 Ref. [48] = 0 29.6544 19.7250 2.5922 53.0686 27.9183 2.6962
present 6= 0 29.7803 20.0596 2.6950 53.2939 28.5419 2.8071

2.5 Ref. [48] = 0 41.8345 23.1212 2.3522 74.8658 30.5774 2.4120
present 6= 0 41.3041 23.3484 2.4369 73.9165 31.1065 2.5021

5.5 Ref. [48] = 0 50.4378 26.3004 2.5177 90.2620 34.1591 2.5744
present 6= 0 49.5517 26.3324 2.5691 88.6762 34.3973 2.6293

10.5 Ref. [48] = 0 61.1311 30.2661 2.7599 109.3982 38.7253 2.8160
present 6= 0 60.3469 30.2976 2.7978 107.9948 38.9185 2.8563

The superscript * denotes µ = 0 and ** denotes µ = 2.

Table 6. Effects of the nonlocal coefficient and FG parameter on transverse shear stress σ5 and in-plane
tangential stress σ6 in the FG square nanoplate for different values of the foundation parameters
(a/h = 10).

(κ1, κ2) * (κ1, κ2) **

β Theory εz (0,0) (100,0) (100,100) (0,0) (100,0) (100,100)

σ5 0 Ref. [48] = 0 2.4618 1.9368 0.3717 4.4056 2.9664 0.3983
present 6= 0 2.7311 2.1566 0.4185 4.8876 3.3096 0.4489

0.5 Ref. [48] = 0 2.4559 1.6336 0.2147 4.3950 2.3121 0.2233
present 6= 0 2.7183 1.8309 0.2459 4.8645 2.6052 0.2562

2.5 Ref. [48] = 0 2.1227 1.1732 0.1194 3.7988 1.5515 0.1224
present 6= 0 1.7774 1.0047 0.1049 3.1808 1.3386 0.1077

5.5 Ref. [48] = 0 2.1679 1.1304 0.1082 3.8796 1.4682 0.1107
present 6= 0 1.7118 0.9097 0.0888 3.0634 1.1883 0.0908

10.5 Ref. [48] = 0 2.3001 1.1388 0.1038 4.1162 1.4571 0.1060
present 6= 0 1.9363 0.9721 0.0898 3.4651 1.2487 0.0916

σ6 0 Ref. [48] = 0 10.7450 8.4534 1.6226 19.2289 12.9475 1.7383
present 6= 0 10.5389 8.3218 1.6151 18.8601 12.7712 1.7322

0.5 Ref. [48] = 0 4.4493 2.9595 0.3889 7.9624 4.1888 0.4045
present 6= 0 4.1639 2.8048 0.3768 7.4517 3.9908 0.3925

2.5 Ref. [48] = 0 7.5813 4.1900 0.4263 13.5671 5.5412 0.4371
present 6= 0 7.0295 3.9736 0.4147 12.5797 5.2939 0.4258

5.5 Ref. [48] = 0 8.1777 4.2642 0.4082 14.6345 5.5383 0.4173
present 6= 0 7.7237 4.1045 0.4005 13.8222 5.3616 0.4098

10.5 Ref. [48] = 0 8.5915 4.2537 0.3879 15.3751 5.4425 0.3957
present 6= 0 8.2471 4.1405 0.3824 14.7587 5.3186 0.3903

The superscript * denotes µ = 0 and ** denotes µ = 2.
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Table 7. Effects of the FG parameter β and thermal loads on the transverse normal stress σ3 and
transverse shear stress σ5 of a sinusoidal distributed loaded FG plate resting on elastic foundations
(a = 10h).

σ3 σ5

β t2 t3 κ1 κ2 a = b a = 3b a = b a = 3b

1 10 0 10 0 0.48746 0.38594 0.60708 0.33318
10 10 0.32324 0.34652 0.94541 0.40092

50 0 10 0 1.87987 1.81455 4.18383 1.86379
10 10 1.28029 1.63318 5.41912 2.17549

50 50 10 0 1.87576 1.81042 4.16179 1.82721
10 10 1.27622 1.62833 5.39699 2.14016

3 10 0 10 0 0.38912 0.29807 0.52052 0.30127
10 10 0.23874 0.26176 0.82659 0.36535

50 0 10 0 1.44371 1.38628 3.62410 1.68999
10 10 0.90245 1.22039 4.72572 1.98281

50 50 10 0 1.45633 1.39903 3.61608 1.66221
10 10 0.91362 1.23191 4.72064 1.95719

5 10 0 10 0 0.30534 0.23133 0.50168 0.29444
10 10 0.18281 0.20146 0.80330 0.35847

50 0 10 0 1.12079 1.07195 3.50757 1.65380
10 10 0.68188 0.93579 4.58793 1.94566

50 50 10 0 1.11778 1.06916 3.50444 1.62887
10 10 0.67731 0.93184 4.58865 1.92322

10 10 0 10 0 0.20486 0.15336 0.50286 0.29515
10 10 0.11918 0.13195 0.81804 0.36261

50 0 10 0 0.74464 0.70768 3.54313 1.66206
10 10 0.43925 0.61024 4.66649 1.96915

50 50 10 0 0.71976 0.68308 3.54437 1.63893
10 10 0.41302 0.58472 4.67273 1.94892

Table 8. Effects of the nonlocal coefficient and thermal parameters on the deflection w̄ of and
transverse normal stress σ3 in the FG square nanoplate embedded in an elastic medium (κ1 = κ2 = 10,
a/h = 10, β = 2).

µ

t2 t3 0 0.5 1 1.5 2

w̄ 10 10 1.21750 1.24068 1.30230 1.38399 2.54608
50 2.15900 1.28133 1.34504 1.42952 1.51561

20 10 2.11913 2.15908 2.26507 2.40491 3.35866
50 2.15900 2.19973 2.30779 2.45043 2.59450

50 10 4.82403 4.91429 5.15336 5.46765 5.78275
50 4.86389 4.95494 5.19609 5.51317 5.83117

100 10 9.33219 9.50629 9.96717 10.57220 11.17721
50 9.37206 9.54695 10.00990 10.61773 11.22563

σ3 10 10 0.13637 0.16288 0.24665 0.39753 0.62548
50 0.05472 0.07783 0.15156 0.28608 0.49165

20 10 0.45713 0.51432 0.69335 1.01145 1.48607
50 0.37547 0.42928 0.59826 0.89999 1.35223

50 10 1.41939 1.56865 2.03345 2.85321 4.06783
50 1.33773 1.48360 1.93836 2.74175 3.93399

100 10 3.02316 3.32587 4.26694 5.92280 8.37076
50 2.94150 3.24082 4.17185 5.81135 8.23692
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Figure 3. Effects of (a) FG parameter β and (b) nonlocal coefficient µ on the deflection w̄ through-
the-thickness of the FG square nanoplates embedded in an elastic medium (a = 10h, t2 = t3 = 200,
κ1 = κ2 = 10).
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and (b) t2 = t3 = 50 (z/h = 0, κ1 = 10, κ2 = 0).
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Figure 9. Effects of (a) the nonlocal coefficient µ and (a) thermal loads t2 and t3 on the transverse
shear stress σ5 of FG square nanoplates (a = 10h, κ1 = κ2 = 10).

4.1. Comparison Analyses

To check the reliability and accuracy of the present theory and formulations, five
comparison studies were carried out (see Tables 2–6). The first comparison analysis is
performed between the in-plane normal stress σ1(h/3) and the deflection w∗(0) in the
FG square plates obtained using the proposed theory and those obtained by Carrera
et al. [43,44] and Neves et al. [45], as shown in Table 2. The present model gives good
results compared to Carrera et al. [43,44] and Neves et al. [45].

Table 3 shows the deflection and stresses are compared to those depicted by Thai and
Vo [46]. A good agreement is achieved for all the values of the FG parameter β. As the
third example, the deflection 10w̄ of the square plate under uniformly load is computed
and listed in Table 4. The results of the present theories are compared to those presented in
Han and Liew [47] and Thai and Choi [26].

The final two comparison analyses (see Tables 5 and 6) are performed between the
deflection and stresses obtained by the present theory and the data presented by Sobhy [48]
in two cases (µ = 0) and (µ = 2) for the FG square nanoplate embedded in elastic
foundations for different values β. The local plate is more stiffened than the nonlocal one
so the nonlocal theory always over predicts the magnitude of stresses and deflection.

4.2. Benchmark Results

Table 7 shows the effects of the FG parameter β and thermal loads on stresses of
a sinusoidally distributed loaded FG plate lying on elastic foundations. It can be seen
that the deviation of the deflection caused by the foundation parameter κ2 is greater than
that caused by the spring’s parameter κ1. The deflection is increasing by increasing the
thermal parameters t2 and t3, but it is decreasing by increasing the parameter β. Table 8
demonstrates the impact of nonlocal parameter µ and thermal loads on the deflection w̄
and transverse normal stress σ3 of a sinusoidally distributed loaded FG square nanoplate
embedded in an elastic medium (κ1 = κ2 = 10, a/h = 10). It is established that the
deflection w̄ and stress σ3 increase by increasing the nonlocal coefficient µ and the thermal
parameters. Due to the increase in thermal parameter t3 only the transverse normal stress
σ3 decreases.

Effects of (a) FG parameter β and (b) nonlocal coefficient µ on the deflection w̄ through-
the-thickness of the FG square nanoplates embedded in an elastic medium (a = 10h,
t2 = t3 = 200), (κ1 = κ2 = 10), is shown in Figure 3. It is clear that the deflection increases
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as the nonlocal coefficient µ increases but it is decreasing as the FG parameter β increases.
Figure 4 displays the effects of the nonlocal coefficient and thermal loads versus the side-to-
thickness ratio a/h on the deflection w̄ of the FG square nanoplates embedded in Winkler
elastic medium (a) t2 = t3 = 0 and (b) t2 = t3 = 50 (z/h = 0, κ1 = 10, κ2 = 0). The
deflection w̄ is decreasing with the increase of ratio a/h, and it is rapidly increasing with
inclusion of the thermal parameters. Figure 5 shows the effect of the nonlocal coefficient
µ on the deflection w̄ of the FG nanoplate varsus aspect ratio a/b (a) κ1 = κ2 = 0 and (b)
κ1 = κ2 = 10 (z/h = 0, a/h = 10, t2 = t3 = 50). It is clear that the deflection decreases as
the parameters κ1 and κ2 increase while it increases by increasing the aspect ratio a/b and
the nonlocal coefficient µ. Figure 6 shows (a) the effect of the nonlocal coefficient µ on the
deflection w̄ (z/h = 0) and (b) effect of the thermal loads t2 and t3 on the transverse normal
stress σ3 through the thickness in FG square nanoplates (κ1 = κ2 = 0, a/h = 10). The
deflection is linearly directly proportional to the thermal load t2. In addition, the deflection
increases as the thermal load t2 increases; it also increases with the inclusion of the nonlocal
coefficient µ. Figure 7 shows the effect of the nonlocal coefficient µ on the transverse
normal stress σ3 through-the-thickness of FG square nanoplates (a) t2 = 100, t3 = 0 and (b)
t2 = 0, t3 = 100 (a = 10h, κ1 = κ2 = 10). The tensile stress σ3 occurs along the upper half-
plane, while the compressive stress σ3 occurs along the lower half-plane of the FG nanoplate.
The transverse normal stress σ3 decreases with the increase of the nonlocal coefficient µ in
the lower half-plane while, it increases with the increase of the nonlocal coefficient µ in the
upper half-plane in the case of neglecting the thermal parameter t3. In the case of neglecting
the thermal parameter t2 the maximum value of the transverse normal stress σ3 occurs at the
upper surface of the FG nanoplate. The transverse normal stress σ3 increases by increasing
the nonlocal coefficient µ in the two intervals 0.4 ≤ z/h ≤ 0.5 and −0.4 ≤ z/h ≤ 0.0, while
it decreases by increasing the nonlocal coefficient µ in the two intervals 0.0 ≤ z/h ≤ 0.4 and
−0.5 ≤ z/h ≤ −0.4. Figure 8 displays the Effect of the nonlocal coefficient µ on the in-plane
normal stress σ1 through-the-thickness of FG square nanoplates (a) t2 = 50, t3 = 0 and
(b) t2 = t3 = 50 (a = 10h, κ1 = κ2 = 10). The tensile stress σ1 increases by increasing the
nonlocal coefficient µ in the interval −0.5 ≤ z/h ≤ −0.1, while it decreases by increasing
the nonlocal coefficient µ in the interval −0.1 ≤ z/h ≤ 0.5, in the case of neglecting the
thermal parameter t3. The tensile stress σ1 increases by increasing the nonlocal coefficient µ
in the interval −0.5 ≤ z/h ≤ −0.25 while it decreases by increasing the nonlocal coefficient
µ in the interval −0.25 ≤ z/h ≤ 0.5, in the case of the inclusion of the thermal parameters
t2 and t3.

Finally, Figure 9 shows the effect of (a) the nonlocal coefficient µ and (b) thermal loads
t2 and t3 on the transverse shear stress σ5 of FG square nanoplates (a = 10h, κ1 = κ2 = 10).
It is observed that the shear stress σ5 increases with the increase in all parameters.

5. Conclusions

A refined plate theory is used for the nonlinear and linear thermal analyses of FG
nanoplates resting on an elastic medium under thermal loading using two power-law
distributions. The present theory shows a satisfaction of the stress boundary conditions on
the upper and lower surfaces of the FG nanoplate by considering both normal and shear
deformations by a higher-order variation of all displacements throughout the thickness.
The effects of the nonlocal coefficient on the material properties, temperature, and the
elastic medium parameters are included in the present numerical results. The effects of
several parameters µ, β, a/h, a/b, t2, t3, κ1 and κ2 are all investigated. The present work
shows a good agreement of the results with the ones available in the literature, which
demonstrates the accuracy of the results along with the simplicity of the present model
in solving the static behavior of the FG nanoplates embedded in an elastic medium in a
thermal environment.
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Appendix A

The elements Dij and Aij presented in Equation (11) are given by

{(D11,D13,D15), (D12,D14,D16)} =
∫ h/2

−h/2
(1, z, Ψ(z)){c11, c12}dz,

{D22,D24,D26} =
∫ h/2

−h/2
c22{1, z, Ψ(z)}dz,

{D44,D45,D46} =
∫ h/2

−h/2
z{zc22, Ψ(z)c12, Ψ(z)c22}dz,

{(D33,D35), (D34,D36)} =
∫ h/2

−h/2
z(z, Ψ(z)){c11, c12}dz,

{D55,D56,D66} =
∫ h/2

−h/2
Ψ2(z){c11, c12, c22}dz,

D17 = D37 = D57 = −ξ
∫ h/2

−h/2
c13Ψ88(z)dz,

D27 = D47 = −ξ
∫ h/2

−h/2
zc23Ψ88(z)dz, {D23,D25} =

∫ h/2

−h/2
c12{z, Ψ(z)}dz,

D67 = −ξ
∫ h/2

−h/2
c23Ψ88Ψ(z)dz, D77 = ξ2

∫ h/2

−h/2
c33(Ψ88)2dz,

{A11,A12,A13} =
∫ h/2

−h/2
c66{1, z, Ψ(z)}dz,

{A22,A23,A33} =
∫ h/2

−h/2
c66{z2, zΨ(z), Ψ2(z)}dz,

{A44,A55} = (ξ + 1)2
∫ h/2

−h/2
(Ψ88)2{c55, c44}dz.

Appendix B

The elements Kij = Kji presented in Equation (14) are given by
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K11 =D11∂2
xx +A11∂2

yy,

K12 =(D12 +A11)∂
2yx,

K13 =
[
−D15∂2

xx − (D14 + 2A12)∂
2
yy

]
∂x,

K14 =
[
D17 −D15∂2

xx − (D16 + 2A13)∂
2
yy

]
∂x,

K22 =A11∂2
xx +D22∂2

yy,

K23 =
[
−D24∂2

yy − (D23 + 2A12)∂
2
xx

]
∂y,

K24 =
[
D27 −D26∂2

yy − (D25 + 2A13)∂
2
xx

]
∂y,

K33 =
[
D33∂2

xx + 2(D34 + 2A22)∂
2
yy − K2<

]
∂2

xx+
[
D44∂2

yy − K2<
]
∂2

yy + K1<,

K34 =
[
D35∂2

xx + 2(D36 + 2A23)∂
2
yy −D37 − K2<

]
∂2

xx+[
D46∂2

yy −D47 − K2<
]
∂2

yy + K1<,

K44 =
[
D55∂2

xx + 2(D56 + 2A33)∂
2
yy − (A44 + 2D57)− K2<

]
∂2

xx+[
D66∂2

yy − (A55 + 2D67)− K2<
]
∂2

yy + K1<+D77,

Appendix C

The elementsHij = Hji presented in Equation (19) are given by

H11 =−D11λ2
m −A11γ2

n,

H12 =− λmγn(D12 +A11),

H13 =λm

[
λ2

mD13 + γ2
n(D14 + 2A12)

]
,

H14 =λm

[
λ2

mD15 + γ2
n(D16 + 2A13) +D17

]
,

H22 =− λ2
mA11 − γ2

nD22,

H23 =γn

[
γ2

nD24 + λ2
m(D23 + 2A12)

]
,

H24 =γn

[
γ2

nD26 + λ2
m(D25 + 2A13) +D27

]
,

H33 =− γ2
n

[
K2

(
1 + µ2

(
λ2

m + γ2
n

))
+D44γ2

n + 2λ2
m(D34 + 2A22)

]
− λ2

m

(
D33λ2

m + K2

(
1 + µ2

(
λ2

m + γ2
n

)))
− K1

(
1 + µ2

(
λ2

m + γ2
n

))
,

H34 =− γ2
n

[
K2

(
1 + µ2

(
λ2

m + γ2
n

))
+D47 +D46γ2

n + λ2
m(D36 +D45 + 4A23)

]
− λ2

m

(
D33λ2

m +D37 + K2

(
1 + µ2

(
λ2

m + γ2
n

)))
− K1

(
1 + µ2

(
λ2

m + γ2
n

))
,

H44 =− λ2
m

[
K2

(
1 + µ2

(
λ2

m + γ2
n

))
+A44 + 2D75 +D55λ2

m + 2γ2
n(D56 + 2A33)

]
− γ2

n

[
K2

(
1 + µ2

(
λ2

m + γ2
n

))
+D66γ2

n +A55 + 2D67

]
− K1

(
1 + µ2

(
λ2

m + γ2
n

))
.

The elements eTij presented in Equation (21) are given by
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{eT11, eT12, eT13} =
1
h

∫ h/2

−h/2
(c11 + c12 + c13){h, z, Ψ(z)}α(z)dz,

{eT21, eT22, eT23} =
1
h

∫ h/2

−h/2
(c12 + c22 + c23){h, z, Ψ(z)}α(z)dz,

{eT31, eT32, eT33} =
1
h

∫ h/2

−h/2
z(c11 + c12 + c13){h, z, Ψ(z)}α(z)dz,

{eT41, eT42, eT43} =
1
h

∫ h/2

−h/2
z(c12 + c22 + c23){h, z, Ψ(z)}α(z)dz,

{eT51, eT52, eT53} =
1
h

∫ h/2

−h/2
Ψ(z)(c11 + c12 + c13){h, z, Ψ(z)}α(z)dz,

{eT61, eT62, eT63} =
1
h

∫ h/2

−h/2
Ψ(z)(c12 + c22 + c23){h, z, Ψ(z)}α(z)dz,

{eT71, eT72, eT73} =−
ξ

h

∫ h/2

−h/2
Ψ88(c13 + c23 + c33){h, z, Ψ(z)}α(z)dz.
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