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Abstract: This paper introduces the new annulus body to establish the optimal lower bound for the
anisotropic logarithmic potential as the complement to the theory of its upper bound estimate which
has already been investigated. The connections with convex geometry analysis and some metric
properties are also established. For the application, a polynomial dual log-mixed volume difference
law is deduced from the optimal estimate.
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1. Backgrounds

The Riesz potential Iα(α > 0) operator is defined by

Iα f (x) =
∫
Rn

f (y)
|x− y|α dy,

where f is a measurable function. It has been widely developed in harmonic analy-
sis including function spaces, mathematical physics and partial differential equations
(see [1–4]).

For the endpoint case α = 0, it is trivial to study the limitation

lim
α→0
|x− y|−α = 1 as x 6= y.

Instead, the convolution kernel is usually changed in such a derivative way

∂

∂α
|x− y|−α

∣∣∣∣
α=0

=
log |x− y|−1

|x− y|α

∣∣∣∣
α=0

= log |x− y|−1 as x 6= y.

This logarithmic kernel produces a corresponding logarithmic potential operator,
which represents a the better complement for the endpoint case of Riesz potential operator
by virtue of effective properties and applications. For example, |x|2−n(n ≥ 3) is harmonic
on Rn \ o, while for teh lower dimension n = 2, log |x| is studied since it is harmonic on
Rn \ o (see [5,6]).

Recently, both Riesz potential and logarithmic potential have been studied in an
anisotropic way, which is closely related with convex geometry analysis and mathematical
physics (see [7–11]). Here we first recall some basic concepts and results in convex geometry.

If the intersection of each line through the origin with a set K $ Rn is a compact line
segment, K is called star-shaped with respect to the origin. Let

ρK(x) = max{λ ≥ 0 : λx ∈ K} for x ∈ Rn \ o,

where o is the origin, be the radial function of the star-shaped set K. K is called a star body
with respect to the origin, if ρK is positive and continuous. We assume that K is a star body
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with respect to the origin and E is a bounded measurable set in this paper. Note that the
radial function ρK is positively homogeneous with degree −1, i.e.,

ρA(sx) = s−1ρA(x) for all s > 0.

Let V(E) and Ec denote, respectively, the n-dimensional volume of E and the complement
of E. We assume V(E) 6= 0 in this paper, since when V(E) = 0, some trivial result follows
directly. Let dS(·) denote the natural spherical measure on the boundary Sn−1 of the unit
ball Bn

2 centered at the origin. Then

V(K) =
1
n

∫
Sn−1

ρn
K(u) dS(u).

Let ‖ · ‖K denote by the Minkowski functional of K:

‖x‖K = inf{s > 0 : x ∈ sK} for all x ∈ Rn (1)

where
sK = {sy : y ∈ K}.

Note that ρ−1
K (x) = ‖x‖K and ‖ · ‖Bn

2
= | · |, where | · | denotes the Euclidean norm. We

refer to [12,13] for more information on convex geometry.
Let y ∈ Rn, a > 1 and denote by

RK
a (y) = {x ∈ Rn :

1
a
≤ ‖x− y‖K ≤ a}

the K-annulus body centered at y with outer radius a and inner radius 1
a . Then, by the

definition of the Minkowski functional, it follows that

V(RK
a (y)) =

(
an −

(
1
a

)n)
V(K).

Several anisotropic Riesz potentials are introduced and their optimal extreme values
estimates are systematically studied in [10]. We omit the details here for the brevity of this
paper. Let

Plog,m(K, E; y) =
∫

E

(
log

1
‖x− y‖K

)m
dx

be the anisotropic m-log-potential of measurable set E at y ∈ Rn with respect to K, and

Vlog,m(K, E) = sup
y∈Rn

Plog,m(K, E; y)

be the mixed volume of K and E. We refer to [11] for these definitions and [14,15] for their
relations with engineering and mathematical physics.

Note that Vlog,m(K, E) is obviously an extreme value of the anisotropic m-log-potential.
It is also closely related to convex geometry analysis. In [11], when m is an odd number,
the optimal estimate for Vlog,m(K, E) is established as follows:

Vlog,m(K, E) ≤

V(E)
nm ∑m

i=0
m!

(m−i)!

(
log V(K)

V(E)

)m−i
f or V(E) > 0,

0 f or V(E) = 0.
(2)

When V(E) > 0, the equality in (2) holds if and only if E is a K-ball introduced in [11] up
to the difference of a measure zero set.
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For the application of the sharp estimate in (2), the dual polynomial log-Minkowski
inequality is established in [11]:

m

∑
i=0

nm−im!
(m− i)!

∫
Sn−1

(
log

ρK(u)
ρL(u)

)m−i
dVL(u) ≤

m

∑
i=0

m!
(m− i)!

(
log

V(K)
V(L)

)m−i
(3)

where m is an odd number, K, L are two star bodies and dVL(·) is the normalized cone-
volume measure

dVL(·) =
(

ρn
L(·)

nV(L)

)
dS(·). (4)

The equality in (3) holds if and only if there exists s > 0 such that K = sL.
Note that (3) generalizes the dual log-Minkowski inequality for a mixed volume

of two star bodies (see [12,16]) and produces the polynomial dual for the conjectured
log-Minkowski inequality (see [17]).

In this paper, we study the other extreme value of the anisotropic m-log-potential:

Definition 1. For m ∈ N, define

Wlog,m(K, E) = inf
y∈Rn

Plog,m(K, E; y).

Note that because log ‖x− y‖−1
K may be negative, Wlog,m(K, E) is defined for integer m.

In Section 2, some fundamental properties of Wlog,m(K, E) are established. Then, in
Section 3, we are able to introduce the new annulus body to solve the problem of optimal
estimate for Wlog,m(K, E) in a precise analytic way. For the application, a polynomial dual
log-mixed volume difference law is induced from the optimal estimate.

2. Fundamental Properties

First we recall a metric property in [11] for the Minkowski functional of a star body
with respect to the origin.

Proposition 1. Let Bn
2 be the unit ball and{

IK = sup{r̃ ≥ 0 : r̃Bn
2 ⊆ K},

OK = inf{r̃ ≥ 0 : K ⊆ r̃Bn
2}.

(5)

Then
O−1

K |x| ≤ ‖x‖K ≤ I−1
K |x| for all x ∈ Rn, (6)

and a quasi-triangle inequality holds for ‖ · ‖K

‖x + y‖K ≤ I−1
K OK(‖x‖K + ‖y‖K) for all x, y ∈ Rn.

If m is an even number, the supremum of the anisotropic m-log-potential Vlog,m(K, E) ≡
+∞ (see [11]). For the infimum of the anisotropic m-log-potential Wlog,m(K, E), it follows

Proposition 2. Wlog,m(K, E) ≡ −∞ for m as an odd number.

Proof. Note that K is a star body with respect to the origin and E is a bounded mea-

surable set. Then supx∈E |x| < +∞. For all C > 0, let C1 = e
(

C
V(E)

) 1
m

> 1, |y| >
max

{
2OKC1, 2 supx∈E |x|

}
, where OK is defined in (5). Hence, for all x ∈ E,

‖x− y‖K ≥ OK
−1|x− y| ≥ OK

−1(|y| − |x|) > OK
−1 |y|

2
> C1 > 1.
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Since m is odd, it follows that

Plog,m(K, E; y) =
∫

E

(
log

1
‖x− y‖K

)m
dx

<
∫

E

(
log C−1

1

)m
dx

=
∫

E

(
log e

(
−C

V(E)

) 1
m
)m

dx

= −C,

which implies
Wlog,m(K, E) = −∞ via W = inf

y∈Rn
Plog,m(K, E; y).

Wlog,m(K, E) has the following metric properties for the nontrivial case (m is an even
number).

Proposition 3. Let m be an even number.

(i) Monotonicity: let E1 and E2 are bounded measurable sets and E1 ⊆ E2. Then Wlog,m(K, E1) ≤
Wlog,m(K, E2).

(ii) Translation-invariance: for all z ∈ Rn, let z + E = {z + y : y ∈ E}. Then Wlog,m(K, z +
E) = Wlog,m(K, E).

(iii) Homogeneity: for all s > 0, Wlog,m(sK, sE) = snWlog,m(K, E).

Proof. (i) Since E1 ⊆ E2, then for all y ∈ Rn,∫
E1

(
log

1
‖x− y‖K

)m
dx 6

∫
E2

(
log

1
‖x− y‖K

)m
dx.

Hence,

Wlog,m(K, E1) = inf
y∈Rn

∫
E1

(
log

1
‖x− y‖K

)m
dx

6 inf
y∈Rn

∫
E2

(
log

1
‖x− y‖K

)m
dx = Wlog,m(K, E2).

(ii) For all z ∈ Rn, by changing the variables x = z + x1 and y = z + y1, it follows

Wlog,m(K, z + E) = inf
y∈Rn

∫
z+E

(
log

1
‖x− y‖K

)m
dx

= inf
y∈Rn

∫
E

(
log

1
‖x1 + z− y‖K

)m
dx1

= inf
y1∈Rn

∫
E

(
log

1
‖x1 − y1‖K

)m
dx1

= Wlog,m(K, E).
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(iii) For all ∀ s > 0, by changing the variables x = sx̃ and y = sỹ and the definition of
Minkowski functional in (1), it follows that

Wlog,m(sK, sE) = inf
y∈Rn

∫
sE

(
log

1
‖x− y‖sK

)m
dx

= inf
sỹ∈Rn

∫
E

(
log

1
‖sx̃− sỹ‖sK

)m
dsx̃

= inf
ỹ∈Rn

∫
E

(
log

1
‖x̃− ỹ‖K

)m
dsx̃

= snWlog,m(K, E).

The continuity of the anisotropic m-log-potential Plog,m(K, E; ·) has already been
proven in [11]. From this, it follows that

Lemma 1. Let m be an even number. The infimum in

Wlog,m(K, E) = inf
y∈Rn

Plog,m(K, E; y)

is achieved at some y ∈ Rn.

Proof. We first conclude that

lim
|y|→+∞

Plog,m(K, E; y) = +∞. (7)

Actually, note that E is a bounded measurable set, then supx∈E |x| < +∞. For all M1 > 0, let

|y| ≥ max

{
2 sup

x∈E
|x|, 2OKe

(
M1

V(E)

) 1
m
}

,

where OK is defined in (5). It follows from m being an even number and (6) that

Plog,m(K, E; y) =
∫

E

(
log

1
‖x− y‖K

)m
dx

=
∫

E
(log ‖x− y‖K)

m dx

≥
∫

E

(
log |OK|−1|x− y|

)m
dx

≥
∫

E

(
log |OK|−1(|y| − |x|)

)m
dx

≥
∫

E

(
log(2|OK|)−1|y|

)m
dx

≥
∫

E

(
log e

(
M1

V(E)

) 1
m
)m

dx

≥ M1,

which implies that (7) holds.
In the following, we will show that Plog,m(K, E; ·) 6≡ +∞. As a matter of fact, for

z ∈ Rn and |z| ≥ supx∈E |x|,
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Plog,m(K, E; z) =
∫

E

(
log

1
‖x− z‖K

)m
dx

=
∫

E
(log ‖x− z‖K)

m dx

≤
∫

E

(
log I−1

K |x− z|
)m

dx

≤
∫

E

(
log I−1

K (|z|+ |x|)
)m

dx

≤
∫

E

(
log 2I−1

K |z|
)m

dx

=
(

log 2I−1
K |z|

)m
V(E)

< +∞,

where IK is in (5). Let M2 =
(

log 2I−1
K |z|

)m
V(E). Because of (7), there exists D1 ≥ 0 such

that for all y ∈ {y ∈ Rn : |y| > D1}, Plog,m(K, E; y) > M2, which implies that

z ∈ D = {y ∈ Rn : |y| ≤ D1}.

Since Plog,m(K, E; ·) is continuous and D is compact, it can attain its minimum at a
point y0. Then

Plog,m(K, E; y0) = inf
y∈D

Plog,m(K, E; y) ≤ Plog,m(K, E; z) ≤ M2 ≤ inf
y∈Dc

Plog,m(K, E; y),

which implies
Plog,m(K, E; y0) = inf

y∈Rn
Plog,m(K, E; y).

3. Optimal Estimate and Application

Now we are ready to establish the optimal estimate for the infimum of the anisotropic
m-log-potential.

Theorem 1. Let m be an even number. Then

Wlog,m(K, E) ≥ m!V(K)
nm

m

∑
i=0

1
(m− i)!

log

(( V(E)
2V(K)

)2

+ 1

) 1
2

+
V(E)

2V(K)

m−i

(8)

×

((−1)i − 1
)(( V(E)

2V(K)

)2

+ 1

) 1
2

+
(
(−1)i + 1

) V(E)
2V(K)

,

where the equality holds if and only if E is a K-annulus body with outer radius a and inner radius 1
a

up to a difference of a measure zero set, namely there exists y ∈ Rn such that

V
(

E ∩
(

RK
a (y)

)c
)
= V

(
RK

a (y) ∩ Ec
)
= 0

where a =

(((
V(E)

2V(K)

)2
+ 1
) 1

2
+ V(E)

2V(K)

) 1
n

.
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Proof. Let y ∈ Rn be fixed, and note that a =

(((
V(E)

2V(K)

)2
+ 1
) 1

2
+ V(E)

2V(K)

) 1
n

> 1 and

0 <
1
a
=

(( V(E)
2V(K)

)2

+ 1

) 1
2

− V(E)
2V(K)


1
n

< 1,

which imply

V
(

RK
a (y)

)
=

[
an −

(
1
a

)n]
V(K) = V(E).

Note that

V
(

E ∩
(

RK
a (y)

)c
)
= V

(
E \ RK

a (y)
)

= V(E)−V
(

RK
a (y) ∩ E

)
= V

(
RK

a (y)
)
−V

(
RK

a (y) ∩ E
)

= V
(

RK
a (y) \ E

)
= V

(
RK

a (y) ∩ Ec
)

,

which, together with the following elementary computations‖x− y‖K > a(or < 1
a ) and (log a)m < (log ‖x− y‖K)

m for all x ∈ E ∩
(

RK
a (y)

)c,
1
a 6 ‖x− y‖K ≤ a and 0 6 (log ‖x− y‖K)

m 6 (log a)m for all x ∈ RK
a (y) ∩ Ec,

implies ∫
RK

a (y)∩Ec
(log ‖x− y‖K)

m dx 6 (log a)mV
(

RK
a (y) ∩ Ec

)
(9)

= (log a)mV
(

E ∩
(

RK
a (y)

)c
)

6
∫

E∩
(

RK
a (y)
)c (log ‖x− y‖K)

m dx.

Note that m is an even number, then

Plog,m(K, E; y) (10)

=
∫

E

(
log

1
‖x− y‖K

)m
dx

=
∫

E
(log ‖x− y‖K)

m dx

=
∫(

RK
a (y)
)c
∩E

(log ‖x− y‖K)
m dx +

∫
RK

a (y)∩E
(log ‖x− y‖K)

m dx

≥
∫

RK
a (y)∩Ec

(log ‖x− y‖K)
m dx +

∫
RK

a (y)∩E
(log ‖x− y‖K)

m dx

=
∫

RK
a (y)

(log ‖x− y‖K)
m dx.

= m
∫
{x: 1

a≤‖x−y‖K≤a}

∫ ‖x−y‖K

1
s−1(log s)m−1 ds dx

= m
∫
{x:1≤‖x−y‖K≤a}

∫ ‖x−y‖K

1
s−1(log s)m−1 ds dx

−m
∫
{x: 1

a≤‖x−y‖K≤1}

∫ 1

‖x−y‖K

s−1(log s)m−1 ds dx

:= I1 + I2.
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By Fubini’s theorem, it follows

I1 = m
∫ a

1
s−1(log s)m−1

∫
{x:s≤‖x−y‖K≤a}

dx ds

= m
∫ a

1
s−1(log s)m−1(an − sn)V(K) ds

= mV(K)an
∫ a

1
s−1(log s)m−1 ds−mV(K)

∫ a

1
sn−1(log s)m−1 ds,

and

I2 = −m
∫ 1

1
a

s−1(log s)m−1
∫
{x: 1

a≤‖x−y‖K≤s}
dx ds

= −m
∫ 1

1
a

s−1(log s)m−1
(

sn − 1
an

)
V(K) ds

= −mV(K)
∫ 1

1
a

sn−1(log s)m−1 ds +
mV(K)

an

∫ 1

1
a

s−1(log s)m−1 ds.

Then, by integration by parts, it follows

I1 + I2 (11)

= mV(K)
[

1
an

∫ 1

1
a

s−1(log s)m−1 ds + an
∫ a

1
s−1(log s)m−1 ds

−
∫ a

1
a

sn−1(log s)m−1 ds
]

= mV(K)
[

1
man (log s)m|11

a
+

an

m
(log s)m|a1

−(m− 1)!sn
m

∑
i=1

(−1)i−1(log s)m−i

ni(m− i)!

∣∣∣∣∣
a

1
a


= m!V(K)

m

∑
i=0

1
ni(m− i)!

(log a)m−i
[
−
(

1
a

)n
− (−1)i−1an

]

=
m!V(K)

nm

m

∑
i=0

1
(m− i)!

log

(( V(E)
2V(K)

)2

+ 1

) 1
2

+
V(E)

2V(K)

m−i

×

((−1)i − 1
)(( V(E)

2V(K)

)2

+ 1

) 1
2

+
(
(−1)i + 1

) V(E)
2V(K)

.
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Hence, by (10) and (11), it follows that

Wlog,m(K, E) = inf
y∈Rn

Plog,m(K, E; y)

= inf
y∈Rn

∫
E

(
log

1
‖x− y‖K

)m
dx

= inf
y∈Rn

∫
E
(log ‖x− y‖K)

m dx

≥ inf
y∈Rn

∫
RK

a (y)
(log ‖x− y‖K)

m dx

=
m!V(K)

nm

m

∑
i=0

1
(m− i)!

log

(( V(E)
2V(K)

)2

+ 1

) 1
2

+
V(E)

2V(K)

m−i

×

((−1)i − 1
)(( V(E)

2V(K)

)2

+ 1

) 1
2

+
(
(−1)i + 1

) V(E)
2V(K)

.

To prove the equality in (8) , if E is almost a K-annulus body up to a difference of a
measure zero set, which means there exists z1 ∈ Rn and a such that

V
(

E ∩
(

RK
a (z1)

)c
)
= V

(
RK

a (z1) ∩ Ec
)
= 0,

which, together with (9), implies∫
RK

a (z1)∩Ec
(log ‖x− z1‖K)

m dx =
∫

E∩
(

RK
a (z1)

)c(log ‖x− z1‖K)
m dx = 0,

and hence ∫
E

(
log

1
‖x− z1‖K

)m
dx =

∫
RK

a (z1)

(
log

1
‖x− z1‖K

)m
dx, (12)

from (10).
By (10)–(12), it follows

Plog,m(K, E; z1) =
∫

RK
a (z1)

(
log

1
‖x− z1‖K

)m
dx

=
m!V(K)

nm

m

∑
i=0

1
(m− i)!

log

(( V(E)
2V(K)

)2

+ 1

) 1
2

+
V(E)

2V(K)

m−i

×

((−1)i − 1
)(( V(E)

2V(K)

)2

+ 1

) 1
2

+
(
(−1)i + 1

) V(E)
2V(K)

,

which means the equality in (8) holds.
On the other hand, by Lemma 1, there exists z2 ∈ Rn, Wlog,m(K, E) = Plog,m(K, E; z2).

If E is not a K-annulus body up to a difference of a measure zero set, it follows

V
(

E ∩ RK
a (z2)

c
)
6= 0 and V

(
RK

a (z2) ∩ Ec
)
6= 0.

Then the following strict inequality holds from (9):∫
RK

a (z2)∩Ec
(log ‖x− z2‖K)

m dx <
∫

E∩
(

RK
a (z2)

)c(log ‖x− z2‖K)
m dx,



Mathematics 2022, 10, 261 10 of 13

which implies the inequality in (10) is also strict, and hence

Wlog,m(K, E)

= Plog,m(K, E; z2)

=
∫

E

(
log

1
‖x− z2‖K

)m
dx

=
∫

E
(log ‖x− z2‖K)

m dx

>
∫

RK
a (z2)

(log ‖x− z2‖K)
m dx

=
m!V(K)

nm

m

∑
i=0

1
(m− i)!

log

(( V(E)
2V(K)

)2

+ 1

) 1
2

+
V(E)

2V(K)

m−i

×

((−1)i − 1
)(( V(E)

2V(K)

)2

+ 1

) 1
2

+
(
(−1)i + 1

) V(E)
2V(K)

,

which means, if the equality in (8) holds, E must be almost a K-annulus body up to a
difference of a measure zero set.

Remark 1. We claim that there is no such upper bound for Wlog,m(K, E) by using V(K) and V(E)
as in Theorem 1 when m is an even number.

Proof. Actually, let V(E) be fixed. For all M > 0, let E = E1
⋃

E2, where V(E1) = V(E2) =
2−1V(E) and

dist{E1, E2} = inf{|x1 − x2||x1 ∈ E1, x2 ∈ E2} > 2OKe
(

2M
V(E)

) 1
m

.

Then, for all y ∈ Rn, dist{{y}, E1} > OKe
(

2M
V(E)

) 1
m

or dist{{y}, E2} > OKe
(

2M
V(E)

) 1
m

. Without

loss of generality, suppose dist{{y}, E1} > OKe
(

2M
V(E)

) 1
m

, then, by (6), it follows

Plog,m(K, E; y) =
∫

E

(
log

1
‖x− y‖K

)m
dx,

=
∫

E
(log ‖x− y‖K)

m dx

≥
∫

E

(
log O−1

K |x− y|
)m

dx

>
∫

E1

(
log O−1

K |x− y|
)m

dx

> M,

which implies
Wlog,m(K, E) = inf

y∈Rn
Plog,m(K, E; y) ≥ M.

This completes the proof of the remark.

The infimum of the anisotropic m-log-potential is closely related with the convex
geometry analysis. For this, a polynomial dual log-mixed volume difference law can be
deduced from the optimal estimate for Wlog,m(K, E) in Theorem 1.
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Theorem 2. Let m be an even number, L1, L2, K be star bodies with respect to the origin, L1 ⊆ L2,
and dVL1(u), dVL2(u) be the normalized cone-volume measures defined in (4), then

V(L2)
∫
Sn−1

m

∑
i=0

m!
ni(m− i)!

log
(

ρK(u)
ρL2(u)

)m−i
dVL2(u) (13)

−V(L1)
∫
Sn−1

m

∑
i=0

m!
ni(m− i)!

log
(

ρK(u)
ρL1(u)

)m−i
dVL1(u) ≥

m!V(K)
nm

m

∑
i=0

1
(m− i)!

log

((V(L2)−V(L1)

2V(K)

)2

+ 1

) 1
2

+
V(L2)−V(L1)

2V(K)

m−i

×

((−1)i − 1
)((V(L2)−V(L1)

2V(K)

)2

+ 1

) 1
2

+
(
(−1)i + 1

)V(L2)−V(L1)

2V(K)

,

where the equality holds if and only if L2 \ L1 is a K-annulus body centered at origin with outer
radius a and inner radius 1

a (a > 0) up to a difference of a measure zero set.

Proof. Note that ρ−1
K (·) = ‖ · ‖K, then, by changing to the polar coordinates and integration

by parts, it follows that

Plog,m(K, L2 \ L1; 0) (14)

=
∫

L2\L1

(
log

1
‖x‖K

)m
dx

=
∫

L2

(
log

1
‖x‖K

)m
dx−

∫
L1

(
log

1
‖x‖K

)m
dx

=
∫

L2

(log ρK(x))m dx−
∫

L1

(log ρK(x))m dx

=
∫
Sn−1

∫ ρL2 (u)

0
sn−1(log ρK(su))m dsdu

−
∫
Sn−1

∫ ρL1 (u)

0
sn−1(log ρK(su))m dsdu

= n−1
∫
Sn−1

∫ ρL2 (u)

0

(
log
(

s−1ρK(u)
))m

dsndu

− n−1
∫
Sn−1

∫ ρL1 (u)

0

(
log
(

s−1ρK(u)
))m

dsndu

= n−1
∫
Sn−1

ρL2(u)
n
(

log
ρK(u)
ρL(u)

)m
du

+ n−1m
∫
Sn−1

∫ ρL2 (u)

0
sn−1

(
log
(

s−1ρK(u)
))m−1

dsdu

− n−1
∫
Sn−1

ρL1(u)
n
(

log
ρK(u)
ρL(u)

)m
du

− n−1m
∫
Sn−1

∫ ρL1 (u)

0
sn−1

(
log
(

s−1ρK(u)
))m−1

dsdu

...

= V(L2)
∫
Sn−1

m

∑
i=0

m!
ni(m− i)!

log
(

ρK(u)
ρL2(u)

)m−i
dVL2(u)

−V(L1)
∫
Sn−1

m

∑
i=0

m!
ni(m− i)!

log
(

ρK(u)
ρL1(u)

)m−i
dVL1(u),
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where dVL1 and dVL2 are defined as in (4).
By Theorem 1, it follows that

Plog,m(K, L2 \ L1; 0)

=
∫

L2\L1

(
log

1
‖x‖K

)m
dx

≥ inf
y∈Rn

∫
L2\L1

(
log

1
‖x− y‖K

)m
dx

≥ m!V(K)
nm

m

∑
i=0

1
(m− i)!

log

((V(L2 \ L1)

2V(K)

)2

+ 1

) 1
2

+
V(L2 \ L1)

2V(K)

m−i

×

((−1)i − 1
)((V(L2 \ L1)

2V(K)

)2

+ 1

) 1
2

+
(
(−1)i + 1

)V(L2 \ L1)

2V(K)


=

m!V(K)
nm

m

∑
i=0

1
(m− i)!

log

((V(L2)−V(L1)

2V(K)

)2

+ 1

) 1
2

+
V(L2)−V(L1)

2V(K)

m−i

×

((−1)i − 1
)((V(L2)−V(L1)

2V(K)

)2

+ 1

) 1
2

+
(
(−1)i + 1

)V(L2)−V(L1)

2V(K)

,

which, together with (14), implies (13) holds with the equality holds if and only if L2 \ L1 is
a K-annulus body centered at origin with outer radius a and inner radius 1

a (a > 0) up to a
difference of a measure zero set.

4. Conclusions

Theorem 1 and its Remark 1 complete the systematic study of the optimal upper
and lower bounds of the extreme value of the anisotropic m-log-potential on a bounded
measurable set (for the part of its supremum, we refer to [11]). Note that the anisotropic
m-log-potential extends the classical logarithmic potential two-fold in anisotropic and
higher order of m ways. By virtue of the wide development of Riesz potential with
its better complement logarithmic potential for the end point case in harmonic analy-
sis including function spaces, mathematical physics and partial differential equations
(see [1–6]), these optimal estimates can be further applied to these related topics.

On the other hand, Brunn–Minkowski inequality and Minkowski inequality includ-
ing their dual versions and generalizations are main topics in convex geometry analysis
(see [12,13,16,17] and their references). The dual log-Minkowski inequality deals with
the optimal estimate for mixed volume of two star bodies (see [12,16]), which exists as
the dual version for the conjectured log-Minkowski inequality (see [17]). The polynomial
dual log-mixed volume difference law in Theorem 2 deduced from the optimal estimate in
Theorem 1, deals with the optimal estimate for the difference of mixed volumes of two star
bodies, which is totally new and contributes to these theories.
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