
����������
�������

Citation: Hu, C.; Gao, Y.; Tian, F.; Ma,

S. A Relaxed and Bound Algorithm

Based on Auxiliary Variables for

Quadratically Constrained Quadratic

Programming Problem. Mathematics

2022, 10, 270. https://doi.org/

10.3390/math10020270

Academic Editors: Mihai Postolache,

Jen-Chih Yao and Yonghong Yao

Received: 22 December 2021

Accepted: 14 January 2022

Published: 16 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Relaxed and Bound Algorithm Based on Auxiliary Variables
for Quadratically Constrained Quadratic Programming Problem
Chenyang Hu 1,2, Yuelin Gao 2,3,* , Fuping Tian 1 and Suxia Ma 1,3

1 School of Mathematics and Information Sciences, North Minzu University, Yinchuan 750021, China;
huchenyang1997@163.com (C.H.); fptian808@163.com (F.T.); suxiama0220@163.com (S.M.)

2 Ningxia Province Cooperative Innovation Center of Scientific Computing and Intelligent
Information Processing, North Minzu University, Yinchuan 750021, China

3 Ningxia Province Key Laboratory of Intelligent Information and Data Processing, North Minzu University,
Yinchuan 750021, China

* Correspondence: gaoyuelin@263.net; Tel.: +86-139-9510-0900

Abstract: Quadratically constrained quadratic programs (QCQP), which often appear in engineering
practice and management science, and other fields, are investigated in this paper. By introducing
appropriate auxiliary variables, QCQP can be transformed into its equivalent problem (EP) with non-
linear equality constraints. After these equality constraints are relaxed, a series of linear relaxation
subproblems with auxiliary variables and bound constraints are generated, which can determine
the effective lower bound of the global optimal value of QCQP. To enhance the compactness of
sub-rectangles and improve the ability to remove sub-rectangles, two rectangle-reduction strategies
are employed. Besides, two ε-subproblem deletion rules are introduced to improve the convergence
speed of the algorithm. Therefore, a relaxation and bound algorithm based on auxiliary variables are
proposed to solve QCQP. Numerical experiments show that this algorithm is effective and feasible.

Keywords: global optimization; quadratically constrained quadratic program; branch and bound
method; relaxation technique

1. Introduction

In this paper, we investigate the following quadratically constrained quadratic pro-
gram (QCQP):

min f0(x) = xTQ0x + cT
0 x

s.t. fs(x) = xTQsx + cT
s x ≤ ds, s = 1, 2, · · · , N,

x ∈ D,

where Qs = (qsij)n×n ∈ Rn×n is real symmetric, cs = (csi)n×1 ∈ Rn, ds ∈ R, D = {x ∈
Rn|Ax ≤ b} with A ∈ Rm×n, b ∈ Rm. Furthermore, we assume that the set D is non-empty
bounded and that the feasible region F = {x ∈ D| fs(x) = xTQsx + cT

s x ≤ ds, s = 1, 2, · · · , N}
has at least one interior point (i.e., Slater condition holds). Clearly, F ⊆ D.

Problem QCQP has a wide range of applications in such fields as wireless communica-
tion, network, radar, signal processing [1,2] and so on. Besides, some of the solutions of
this problem can also be applied to solve the nonlinear singular models [3] and nonlinear
mathematical based medical smoking model [4,5]. It is also often employed to construct
many models of management problems, such as portfolio selection problem [6,7], mini-
mum distance problem [8], location problem [9], 0–1 quadratic programming problem [10],
maximum cut problem [11], trust-region subproblem [12,13], etc. If all the matrices Qs,
s = 0, 1, 2, · · · , N are semi-positive definite, QCQP is a convex quadratic program with con-
vex quadratic constraints (CQPCQC), which can be reconstructed into a second-order cone
programming problem (SOCP) that can be solvable in polynomial time [14,15]. In other
words, the problem CQPCQC is solvable in polynomial time. Of course, other special

Mathematics 2022, 10, 270. https://doi.org/10.3390/math10020270 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10020270
https://doi.org/10.3390/math10020270
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2021-2097
https://doi.org/10.3390/math10020270
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10020270?type=check_update&version=3

Mathematics 2022, 10, 270 2 of 18

QCQP problems in reference [11,16–18] can also be solved in polynomial time. Generally
speaking, QCQP is NP-hard, and its complexity is mainly reflected in the non-convexity of
quadratic objective function and the feasible region with non-connectivity. Therefore, most
of these problems cannot be solved in polynomial time, and it is difficult to search for its
global optimal solution.

Over the decades, many scholars have studied QCQP problems and proposed global
optimization methods which generally include branch-and-bound methods [19–21], outer
approximation method [22], Lagrangian decomposition [23], Benders decomposition [24,25]
and their hybrid methods. Branch-and-bound (BB) algorithm is a typical enumeration
method [19,20,26], which usually obtains a new lower bound for the optimal value of the
original problem and tries to update the upper bound by solving the relaxation subproblem
in each enumeration. During the enumeration, the compactness of the relaxation subprob-
lem is one of the main factors. Therefore, BB Algorithms embedded with different types
of relaxation problems have been investigated in many pieces of literature about QCQP.
Among them, the semidefinite programming (SDP) [27] relaxation method, which can be
solved in polynomial time by the interior point method, has attracted the attention of many
researchers. Besides, another relaxation method widely studied is linear programming
relaxation such as reconstruction linearization technique (RLT) [26], which was adopted
in [28,29]. Based on the idea of RLT, a branch and cut algorithm for solving QCQP were pro-
posed in [30]. To find the global approximate optimal solution for QCQP, the author of [31]
developed a branch and bound algorithm by mixing the outer approximation method
with the linear relaxation approximation subproblem. In [20,32], two branch-and-bound
algorithms with linear relaxation, which are based on the method of simply dividing the
feasible region, can also solve QCQP globally. By adopting the quadratic proxy function,
literature [33] convexifies all quadratic inequality constraint functions, and thus presents a
new algorithm based on the quadratic convex reconstruction method. All these methods
mentioned above can solve QCQP and its variants well.

In this paper, by introducing the auxiliary variable Y = xxT , the problem QCQP is
equivalently converted into an equivalent problem with non-linear equality constraints.
After the equality constraint is relaxed, a linear relaxation subproblem with auxiliary
variables and bounded constraints is generated for QCQP, and then the lower bound of the
global optimal value of QCQP is determined. Then, by combining two rectangle-reduction
strategies and two ε-subproblem-deletion rules, a relaxation and bound algorithm for
QCQP are proposed. Numerical experiments and analysis of the results show that the
proposed algorithm is feasible and effective, and its computational performance is better
than the software package BARON [34], so it is also a promising algorithm.

The follow-up arrangement of this paper is as follows. In Section 2, the construction
method of linear relaxation subproblem with auxiliary variables and bound constraints
are given. The rectangle-reduction strategies are presented respectively in Section 3. In
Section 4, the proposed algorithm is described and its finite convergence is proved un-
der given precision. Section 5 lists the numerical results and reveals the feasibility and
effectiveness of the proposed algorithm. The last section is the conclusion.

2. Bounded Relaxation Technique

By introducing variable Y = xxT = (xixj)n×n, QCQP can be reformulated as

(EP) :

min g0(Y, x) = Q0 ·Y + cT
0 x

s.t. gs(Y, x) = Qs ·Y + cT
s x ≤ ds, s = 1, 2, · · · , N,

Y = xxT = (xixj)n×n,

x ∈ D,

where “·” denotes the inner product of two matrices. Further, for each j = 1, 2, · · · , n, let
x0

j = minx∈X xj, x0
j = maxx∈X xj, j = 1, 2, · · · , n, then we can construct an initial rectangle

Mathematics 2022, 10, 270 3 of 18

H0 = {x ∈ Rn|x0
j ≤ xj ≤ x0

j , j = 1, 2, · · · , n} = ∏n
j=1[x

0
j , x0

j] that satisfies H0 ⊇ X ⊇ F.

Of course, x0
j and x0

j can be obtained by solving linear programs. Also, if D is a bounded

convex set, x0
j and x0

j must be obtained by solving convex programs.
Next, we mainly study the problem EP, whose non-convexity is mainly reflected in the

nonlinear equality constraint Y = xxT . Suppose H = ∏n
j=1[xj, xj] is denoted as H0 or any

subrectangle of H0, then each element of Y = (yij)n×n, yij, satisfies y
ij
≤ yij = xixj ≤ yij,

where y
ij
= min{xixj, xixj, xjxi, xjxj}, yij = max{xixj, xixj, xjxi, xjxj}. Thus, we obtain the

linear relaxation problem of EP over H:

(LRPH) :

min g0(Y, x) = Q0 ·Y + cT
0 x

s.t. gs(Y, x) = Qs ·Y + cT
s x ≤ ds, s = 1, 2, · · · , N,

y
ij
≤ yij ≤ yij, i, j = 1, 2, · · · , n,

x ∈ D ∩ H,

which of course also relaxes the following subproblem of QCQP on H:

(QCQPH) :

min f0(x) = xTQ0x + cT
0 x

s.t. fs(x) = xTQsx + cT
s x ≤ ds, s = 1, 2, · · · , N,

x ∈ D ∩ H.

Obviously, any feasible solution of QCQPH is feasible for QCQP.
For convenience, we denote the feasible regions of QCQPH and LRPH as FH and FH

respectively. In addition, throughout this paper, ε > 0 denotes the convergence accuracy of
the proposed algorithm, ‖ · ‖ denotes the Euclidean norm of “·”.

The following five lemmas illustrate the relationship between feasible solutions and
optimal solutions of LRPH and QCQPH .

Lemma 1. If (Ȳ, x̄) is a feasible solution of LRPH with Ȳ = x̄x̄T , then x̄ is feasible for QCQPH .

Proof. Since (Ȳ, x̄) is a feasible solution of LRPH with Ȳ = x̄x̄T , it follows that x̄TQs x̄ +
cT

s x̄ = Qs · Ȳ + cT
s x̄ ≤ ds for s = 1, 2, · · · , N. This means x̄ ∈ FH .

Lemma 2. If (Ȳ, x̄) is an optimal solution of LRPH with Ȳ = x̄x̄T , then x̄ is a global optimal
solution of QCQPH .

Proof. Since (Ȳ, x̄) is an optimal solution of LRPH with Ȳ = x̄x̄T , then we have g0(Y, x) ≥
g0(Ȳ, x̄) = f0(x̄) for any (Y, x) ∈ FH . Let Ỹ = x̃x̃T for any x̃ ∈ FH , then (Ỹ, x̃) ∈ FH is
obvious. Thus, for any x̃ ∈ FH , it follows that f0(x̃) = g0(Ỹ, x̃) ≥ g0(Ȳ, x̄) = f0(x̄), which
means x̄ is an optimal solution to QCQPH .

Definition 1. If there is a (Ȳ, x̄) ∈ FH such that x̄ ∈ FH and f0(x̄) ≤ min
x∈FH

f0(x) + ε, then x̄ is

called an ε-globally optimal solution for QCQPH .

Definition 2. If there is a (Ȳ, x̄) ∈ FH such that | fs(x̄)− gs(Ȳ, x̄)| ≤ ε for s = 1, · · · , N and
satisfies f0(x̄) ≤ min

x∈FH
f0(x) + ε, then x̄ is called a forced ε-globally optimal solution for QCQPH .

Definition 3. If (Ȳ, x̄) is an optimal solution of LRPH with | fs(x̄) − gs(Ȳ, x̄)| ≤ ε for s =
0, 1, · · · , N, then LRPH is called a forced ε-approximation problem for QCQPH .

In Definition 1, (Ȳ, x̄) is a feasible solution of LRPH . In fact, there is no absolute optimal
solution in practice, so we just need to find the approximate optimal solution under the

Mathematics 2022, 10, 270 4 of 18

required tolerance ε > 0. If a feasible point x̄ satisfies the inequality f0(x̄) ≤ min
x∈FH

f0(x) + ε,

it means that f0(x̄) is close enough to the optimal value min
x∈FH

f0(x) of the problem QCQPH

to be usable under the given tolerance. In Definition 2, if | fs(x̄)− gs(Ȳ, x̄)| ≤ ε for every
s = 1, · · · , N, which means that x̄ is very close to the feasible domain FH of QCQPH . On
this basis, if there is such a solution x̄ that also satisfies the inequality f0(x̄) ≤ min

x∈FH
f0(x)+ ε,

we call it a forced ε-globally optimal solution, which is inferior to the ε-global optimal
solution. For some problems with more complex feasible regions, feasible solutions may
not always be available, so it may be a better choice to have an infeasible forced ε-globally
optimal solution to save more computation. It can be seen from Definition 3 that when
| fs(x̄) − gs(Ȳ, x̄)| ≤ ε for s = 0, 1, · · · , N, not only x̄ is close to the feasible region of
QCQPH , but also the optimal value of the relaxation problem LRPH is close to the objective
function value f0(x̄) of the problem QCQPH . In addition, it is not too difficult to deduce
that f0(x̄) ≤ g0(Ȳ, x̄) + ε = min

(Y,x)∈FH

g0(Y, x) + ε ≤ min
(Y,x)∈GH

g0(Y, x) + ε = min
x∈FH

f0(x) + ε,

where the feasible region of EPH is GH that satisfies GH ⊆ FH .

Lemma 3. Let (Ȳ, x̄) be an optimal solution to LRPH . If ‖Ȳ− x̄x̄T‖ ≤ ε
max{max{‖Qs‖:s=0,1,··· ,N},1} ,

then LRPH is a forced ε-approximation problem for QCQPH .

Proof. Since ‖Ȳ− x̄x̄T‖ ≤ ε
max{max{‖Qs‖:s=0,1,··· ,N},1} , then for each s = 0, 1, · · · , N, we have

| fs(x̄)− gs(Ȳ, x̄)| = |Qs · x̄x̄T + cT
s x̄−Qs · Ȳ− cT

s x̄|
= |Qs · x̄x̄T −Qs · Ȳ|
= |Qs · (x̄x̄T − Ȳ)|
≤ ‖Qs‖‖x̄x̄T − Ȳ‖

≤ ε‖Qs‖
max{max{‖Qs‖ : s = 0, 1, · · · , N}, 1}

≤ ε‖Qs‖
max{‖Qs‖, 1}

≤ ε.

(1)

Therefore, LRPH is a forced ε-approximation problem for QCQPH .

Lemma 4. Let (Ȳ, x̄) be an optimal solution to LRPH . If ‖Ȳ− x̄x̄T‖ ≤ ε
max{max{‖Qs‖:s=0,1,··· ,N},1} ,

then x̄ is a forced ε-globally optimal solution for QCQPH .

Proof. Since ‖Ȳ− x̄x̄T‖ ≤ ε
max{max{‖Qs‖:s=0,1,··· ,N},1} , it follows from Formula (1) that

| fs(x̄)− gs(Ȳ, x̄)| = |Qs · (x̄x̄T − Ȳ)| ≤ ε‖Qs‖
max{‖Qs‖, 1} ≤ ε, s = 0, 1, · · · , N. (2)

Let xH ∈ min
x∈FH

f0(x) and YH = xH(xH)
T , then g0(YH , xH) = f0(xH) and (YH , xH) ∈

FH are obvious. It follows from the optimality of (Ȳ, x̄) on LRPH that

f0(xH) = g0(YH , xH) ≥ g0(Ȳ, x̄). (3)

Besides, it knows from Formula (2) that

− ε ≤ f0(x̄)− g0(Ȳ, x̄) ≤ ε. (4)

Mathematics 2022, 10, 270 5 of 18

By combining Formulas (3) and (4), we have

f0(x̄) ≤ g0(Ȳ, x̄) + ε ≤ f0(xH) + ε = min
x∈FH

f0(x) + ε. (5)

Thus, the formulas (2) and (5) indicate that x̄ is a strong ε-globally optimal solution
for QCQPH .

Lemma 3 gives a sufficient condition that LRPH is a forced ε-approximation problem
of QCQPH ; under this condition, Theorem 4 states that the optimal solution of problem
LRPH can also provide a forced ε-globally optimal solution for QCQPH .

Lemma 5. Let (Ȳ, x̄) be an optimal solution to LRPH . If ‖Ȳ− x̄x̄T‖ ≤ ε
max{‖Q0‖,1}

and x̄ ∈ FH ,
then x̄ is an ε-globally optimal solution for QCQPH .

Proof. Since ‖Ȳ− x̄x̄T‖ < ε
max{‖Q0‖,1}

and x̄ ∈ FH , it easily deduced that

f0(x̄)− g0(Ȳ, x̄) = Q0 · (x̄x̄T − Ȳ) ≤ ε‖Q0‖
max{‖Q0‖, 1} ≤ ε. (6)

Let xH ∈ min
x∈FH

f0(x) and YH = xH(xH)
T , then g0(YH , xH) = f0(xH) and (YH , xH) ∈

FH . It follows from the optimality of (Ȳ, x̄) on LRPH that

f0(xH) = g0(YH , xH) ≥ g0(Ȳ, x̄). (7)

Therefore, by combining formulas (6) and (7), it once again derives (5), which also
means x̄ is an ε-globally optimal solution for QCQPH .

Lemma 5 gives a sufficient condition that the optimal solution of LRPH can provide
an ε-globally optimal solution for QCQPH .

Remark 1. In our proposed algorithm(see Algorithm 3), over a certain rectangle H, when the
ε-globally optimal solution or forced ε-globally optimal solution of the subproblem QCQPH is found,
if H is deleted, some computational costs will be saved, because such two kinds of solutions are
already very close to the global optimal solution of QCQPH .

3. Rectangle-Reduction Strategy

In this section, two rectangle-reduction strategies are given, which can improve the
computational efficiency of the algorithm as much as possible.

3.1. Rectangle Reduction Technique Based on Linear Constraints

For any sub-rectangle H = ∏n
j=1[xj, xj] ⊆ H0, we assume that all linear constraints of

the problem QCQPH can be expanded as:

n

∑
j=1

al jxj ≤ bl , l ∈ {1, 2, · · · , m}.

Below, the pseudo-code for rectangle-reduction technique based on linear constraints
(RRTLC) (see Algorithm 1) in [21] is given.

Mathematics 2022, 10, 270 6 of 18

Algorithm 1 Rectangle-Reduction Technique based on Linear Constraints
Require: H = ∏n

j=1[xj, xj].
1: Set I := {1, 2, · · · , m}.
2: for l = 1→ m do
3: Compute rUl := ∑n

j=1 max{al jxj, al jxj} and rLl := ∑n
j=1 min{al jxj, al jxj}.

4: if rLl > bl then
5: Problem QCQPH has no feasible solution and the algorithm stops; delete the rectangle H.
6: end if
7: if rUl ≤ bl then
8: Set I := I \ {l} and delete the lth linear inequality constraint for QCQPH .
9: end if

10: if rUl > bl ≥ rLl then
11: for j = 1→ n do
12: if al j > 0 then

13: xj := min{xj,
bl−rLl+min{al j xj ,al j xj}

al j
}

14: end if
15: if al j < 0 then

16: xj := max{xj,
bl−rUl+max{al j xj ,al j xj}

al j
}

17: end if
18: end for
19: end if
20: end for
21: return H = ∏n

j=1[xj, xj] or ∅.

3.2. Rectangle Reduction Technique Based on Quadratic Constraints

To further reduce or delete H = ∏n
j=1[xj, xj], the following rectangle-reduction Theo-

rem based on quadratic constraints is given.

Theorem 1. Let γsi = ds − ηs + min{csixi, csixi} for s = 1, 2, · · · , N, i = 1, 2, · · · , n, then for
any s = 1, 2, · · · , N, if γsi < min{csixi, csixi}, there is no optimal solution to problem QCQP
over H; otherwise, if there is an index i ∈ {1, 2, · · · , n} such that csi > 0 and γsi < csixi, there
is no optimal solution for problem QCQP over Ĥ; if there is an index i ∈ {1, 2, · · · , n} such that
csi < 0 and γsi < csixi, there is no optimal solution for problem QCQP over H̃, where

ηs =
n

∑
i=1

n

∑
j=1

min{qsijyij
, qsijyij}+

n

∑
i=1

min{csixi, csixi},

y
ij
= min{xixj, xixj, xjxi, xjxj}, yij = max{xixj, xixj, xjxi, xjxj},

Ĥ =
n

∏
j=1

Ĥj with Ĥj =

[xj, xj], j 6= i

(
γsi
csi

, xi] ∩ [xi, xi], j = i,

H̃ =
n

∏
j=1

H̃j with H̃j =

[xj, xj], j 6= i

[xi,
γsi
csi

) ∩ [xi, xi], j = i.

Proof. If γsi < min{csixi, csixi}, the inequality ηs > ds is obvious. Therefore, problem
QCQPH is unsolvable.

For any x ∈ Ĥ and a s ∈ {1, 2, · · · , N}, there must be an index i ∈ {1, 2, · · · , n} such
that γsi

csi
< xi ≤ xj. It follows from csi > 0 that γsi < csixi. Therefore, by using the Definition

of γsi and ηs, it can be concluded that ds < ηs− csixi + csixi < ∑n
i=1 ∑n

j=1 qsijxixj +∑n
i=1 csixi,

which means that for any x ∈ Ĥ, the sth quadratic constraint of problem QCQP is violated.
For any x ∈ H̃ and a s ∈ {1, 2, · · · , N}, there must be an i ∈ {1, 2, · · · , n} such that

xj ≤ xi <
γsi
csi

. It follows from csi < 0 that γsi < csixi. we also have ds < ηs − csixi + csixi <

∑n
i=1 ∑n

j=1 qsijxixj + ∑n
i=1 csixi, which means that for any x ∈ H̃, the sth quadratic constraint

of problem QCQP is violated.

Mathematics 2022, 10, 270 7 of 18

Next, by using Theorem 1, the following pseudo-code for the rectangle-reduction
technique based on quadratic constraints (RRTQC) (see Algorithm 2) is also given.

Algorithm 2 Rectangle-Reduction Technique based on Quadratic Constraints
Require: H = ∏n

j=1[xj, xj].
1: for i = 1→ n do
2: for j = 1→ n do
3: Compute ωij = {xixj, xixj, xjxi , xixj}, y

ij
= min ωij, yij = max ωij.

4: end for
5: end for
6: for s = 1→ N do
7: Compute ηs = ∑n

i=1 ∑n
j=1 min{qsijyij

, qsijyij}+ ∑n
i=1 min{csixi , csixi}.

8: if ηs > ds then
9: Problem QCQPH has no feasible solution and the algorithm stops; delete the rectangle H.

10: else
11: for i = 1→ n do
12: if csi > 0 then
13: xi = min{ γsi

csi
, xi}

14: end if
15: if csi < 0 then
16: xi = max{ γsi

csi
, xi}

17: end if
18: end for
19: end if
20: end for
21: return H = ∏n

j=1[xj, xj] or ∅.

4. Algorithm and Its Convergence

By embedding the two rectangular reduction algorithms given in the previous section
into the branch-and-bound scheme, we develop a new global optimization algorithm
for solving QCQP. In addition, in each iteration of the branch-and-bound algorithm, one
or two new linear relaxation subproblems are generated, whose optimal values are not
lower than the current lower bound. Therefore, the lower bound does not decrease in the
current iteration. The update of the upper bound is performed by solving linear relaxation
subproblems, and it is not difficult to conclude that the upper bound will not increase in the
current iteration. Based on this idea, we give the pseudo-code of the relaxation-and-bound
algorithm (RBA) in Algorithm 3 below.

Lemma 6. In the above algorithm RBA, let (Yk, xk) be an optimal solution to problem LRPHk with
Hk ⊆ H0, there are three conclusions as follows:

(a) if ‖Yk − xk(xk)T‖ = 0, xk is a global optimal solution to problem QCQPHk ;
(b) if ‖Yk− xk(xk)T‖ ≤ ε

max{‖Q0‖,1}
and xk ∈ FHk , xk is an ε-global optimal solution to problem

QCQPHk ;
(c) if ‖Yk − xk(xk)T‖ ≤ ε

max{max{‖Qs‖:s=0,1,··· ,N},1} , xk is a forced ε-globally optimal solution
to problem QCQPHk .

Proof. (a) Since ‖Yk − xk(xk)T‖ = 0, then Yk = xk(xk)T . It follows from Lemma 2 that xk is
a global optimal solution to problem QCQPHk . Besides, conclusions (b) and (c) are derived
from Lemmas 4 and 5 respectively, which are not stated here.

A further explanation of the pseudo-code of the algorithm RBA is given in
Remarks 2–8 below.

Remark 2. The above algorithm is based on the branch and bound algorithm framework, and all
branching operations are performed according to the standard bisection method described in line 18.

Mathematics 2022, 10, 270 8 of 18

Remark 3. The termination criterion of the algorithm adopts Uk − Lk ≤ ε with upper bound Uk

and lower bound Lk. When line 16 is violated, the algorithm does not iterate and the termination
criterion is established.

Remark 4. If line 28 of the algorithm is violated, it indicates that the node in the branch and bound
tree corresponding to sub-problem LRPHkι is empty, so it is meaningless to consider LRPHkι further.

Remark 5. If line 30 of the algorithm is violated, it indicates that the optimal value Lkι of sub-
problem LRPHkι is larger than the current upper bound Uk, and the node corresponding to LRPHkι

is not further considered, which also implies the execution of the pruning operation; besides, even
if xkι is feasible(i.e. xkι ∈ F), it cannot be adopted to update the upper bound Uk, because in this
subproblem, there is f0(xkι) ≥ Lkι > Uk.

Algorithm 3 Relaxation-and-Bound Algorithm
Require: Given a QCQP instance and an error tolerance ε > 0.

1: Construct the initial rectangle H0 = ∏n
j=1 [x

0
j , x0

j] by solving 2n linear programs x0
j = minx∈X xj and x0

j = maxx∈X xj for each j = 1, 2, · · · , n; in this process, all feasible

solutions of problem QCQP obtained are stored in the set W; if there is no feasible solution for QCQP, set W = ∅.

2: if W = ∅ then Set U0 = +∞,
3: else Set U0 = min{ f0(x) : x ∈W}, x̂0 ∈ {x ∈ Rn | f0(x) = U∗ , x ∈W}, Ŷ0 = x̂0(x̂0)T .

4: end if
5: for i = 1→ n do
6: for j = 1→ n do

7: Compute ω0
ij = {x

0
i x0

j , x0
i x0

j , x0
j x0

i , x0
i x0

j }, y0
ij = min ω0

ij , y0
ij = max ω0

ij .

8: end for
9: end for
10: Solve LRP

H0 to obtain its optimal solution (Y0, x0) and its optimal value L0.

11: if x0 ∈ F then Ū = f0(x0).

12: if Ū < U0 then Set U0 = Ū, x̂0 = x0, Ŷ0 = Y0.
13: end if
14: end if
15: Set T = ∅, k := 0.
16: while Uk − Lk > ε do
17: Set id = arg max{xk

j − xk
j : j = 1, 2, · · · , n} and let ẍid = 1

2 (xk
id + xk

id).

18: Construct two subrectangles:

Hk1 =
id−1
∏
j=1

[xk
j , xk

j]× [xk
id , ẍid]×

n
∏

j=id+1
[xk

j , xk
j], Hk2 =

id−1
∏
j=1

[xk
j , xk

j]× [ẍid , xk
id]×

n
∏

j=id+1
[xk

j , xk
j].

19: for ι = 1→ 2 do
20: Compress or delete rectangle Hkι by using algorithms RRTLC and RRTQC.

21: if Hkι 6= ∅ then
22: for i = 1→ n do
23: for j = 1→ n do

24: Compute ωkι
ij = {xkι

i xkι
j , xkι

i xkι
j , xkι

j xkι
i , xkι

i xkι
j }, ykι

ij = min ωkι
ij , ykι

ij = max ωkι
ij .

25: end for
26: end for
27: Solve LRP

Hkι to identify the feasibility of this problem.

28: if LRP
Hkι is feasible then

29: its optimal solution (Ykι , xkι) and optimal value Lkι must be obtained.

30: if Lkι ≤ Uk then
31: if xkι ∈ F then let Ū = f0(xkι).

32: if Ū < Uk then set Uk = Ū, x̂k = xkι , Ŷk = Ykι .
33: end if
34: if ‖Ykι − xkι (xkι)T‖ > ε

max{‖Q0‖,1}
then

35: Put {Hkι , Lkι , (Ykι , xkι)} into T.

36: end if
37: else
38: if ‖Ykι − xkι (xkι)T‖ > ε

max{max{‖Qs‖:s=0,1,··· ,N},1} then

39: Put {Hkι , Lkι , (Ykι , xkι)} into T.

40: else
41: let Ũ = f0(xkι)

42: if Ũ < Uk then set Uk = Ũ, x̂k = xkι , Ŷk = Ykι .
43: end if
44: end if
45: end if
46: end if
47: end if
48: end if
49: end for
50: Set k← k + 1; Lk = min{L|{·, L, ·} ∈ T}.
51: Choose a subproblem {Hk , Lk , (Yk , xk)} such that Hk = ∏n

j=1 [x
k
j , xk

j] ∈ {H|{H, Lk , (Yk , xk)} ∈ T}.

52: Set T = T\{Hk , Lk , (Yk , xk)}.
53: end while
54: return (Ŷk , x̂k), Uk .

Remark 6. According to lines 34–35 of the above algorithm RBA, only all nodes with ε-globally
optimal solutions are deleted; also, lines 38-39 imply that only nodes with forced ε-globally optimal

Mathematics 2022, 10, 270 9 of 18

solutions are deleted. It can be found that when these two stages are not executed, it is actually what
we call the “ε-subproblem-deletion rule” in action.

Remark 7. If line 32 or 42 is satisfied, the updating of the upper bound is performed, and the
updating of the lower bound is performed online 50.

Remark 8. Line 51 is the node selection operation of the next iteration. Here, we adopt
the node corresponding to the first subproblem {Hk, Lk, (Yk, xk)} with Hk = ∏n

j=1[x
k
j , xk

j] ∈
{H|{H, Lk, (Yk, xk)} ∈ T}.

To ensure that the two ε-subproblem-deletion rules mentioned in Remark 6 can be
realized, it is necessary that as rectangle Hk ⊆ H0 is gradually thinned, ‖Yk − xk(xk)T‖
gradually approaches zero, where (Yk, xk) is an optimal solution to problem LRPHk . For this
reason, the following Lemma is given.

Lemma 7. For any Hk ⊆ H0, let 4(Hk) = max{xk
j − xk

j : j = 1, 2, · · · , n} for k ∈ N. Let

(Yk, xk) be an optimal solution to problem LRPHk , then ‖Yk − xk(xk)T‖ → 0 as4(Hk)→ 0.

Proof. Since (Yk, xk) is an optimal solution to problem LRPHk with Hk ⊆ H0. Let ωk
ij =

{xk
i xk

j , xk
i xk

j , xk
j xk

i , xk
i xk

j } for any i, j ∈ {1, 2, · · · , n}, it follows that

max{xk
i xk

j −ωk
ij} = max{xk

i xk
j − {xk

i xk
j , xk

i xk
j , xk

j xk
i , xk

i xk
j }}

= max{xk
i xk

j − xk
i xk

j , xk
i xk

j − xk
i xk

j , xk
i xk

j − xk
j xk

i , xk
i xk

j − xk
i xk

j }

= max{0, xk
i (xk

j − xk
j), xk

j (xk
i − xk

i), xk
i (xk

j − xk
j) + xk

j (xk
i − xk

i)}

≤ max{0, xk
i (xk

j − xk
j), xk

j (xk
i − xk

i), xk
i (xk

j − xk
j) + xk

j (xk
i − xk

i)}

≤ |xk
i ||xk

j − xk
j |+ |xk

j ||xk
i − xk

i |,

(8)

max{xk
i xk

j −ωk
ij} = max{xk

i xk
j − xk

i xk
j , xk

i xk
j − xk

i xk
j , xk

i xk
j − xk

j xk
i , xk

i xk
j − xk

i xk
j }

= max{xk
i (xk

j − xk
j), 0, xk

i (xk
j − xk

j) + xk
j (xk

i − xk
i), xk

j (xk
i − xk

i)}

≤ max{xk
i (xk

j − xk
j), 0, xk

i (xk
j − xk

j) + xk
j (xk

i − xk
i), xk

j (xk
i − xk

i)}

≤ |xk
i ||xk

j − xk
j |+ |xk

j ||xk
i − xk

i |,

(9)

max{xk
j xk

i −ωk
ij} = max{xk

j xk
i − xk

i xk
j , xk

j xk
i − xk

i xk
j , xk

j xk
i − xk

j xk
i , xk

j xk
i − xk

i xk
j }

= max{xk
j (xk

i − xk
i), xk

j (xk
i − xk

i) + xk
i (xk

j − xk
j), 0, xk

i (xk
j − xk

j)}

≤ max{xk
j (xk

i − xk
i), xk

j (xk
i − xk

i) + xk
i (xk

j − xk
j), 0, xk

i (xk
j − xk

j)}

≤ |xk
i ||xk

j − xk
j |+ |xk

j ||xk
i − xk

i |

(10)

and

max{xk
i xk

j −ωk
ij} = max{xk

i xk
j − xk

i xk
j , xk

i xk
j − xk

i xk
j , xk

i xk
j − xk

j xk
i , xk

i xk
j − xk

i xk
j }

= max{xk
j (xk

i − xk
i) + xk

i (xk
j − xk

j), xk
j (xk

i − xk
i), xk

i (xk
j − xk

j), 0}

≤ max{xk
j (xk

i − xk
i) + xk

i (xk
j − xk

j), xk
j (xk

i − xk
i), xk

i (xk
j − xk

j), 0}

≤ |xk
i ||xk

j − xk
j |+ |xk

j ||xk
i − xk

i |.

(11)

Now, let yk
ij
= min ωk

ij, yk
ij = max ωk

ij for any i, j ∈ {1, 2, · · · , n}, it follows that

yk
ij
≤ yk

ij = xk
i xk

j ≤ yk
ij for Yk = (yk

ij)n×n. (12)

Mathematics 2022, 10, 270 10 of 18

Upon formulas (8)–(12), it can be deduced that

yk
ij − xk

i xk
j ≤ yk

ij − yk
ij

= max ωk
ij −min ωk

ij

= max{ωk
ij −min ωk

ij}

= max{{xk
i xk

j , xk
i xk

j , xk
j xk

i , xk
i xk

j } −min ωk
ij}

= max max{xk
i xk

j −ωk
ij, xk

i xk
j −ωk

ij, xk
j xk

i −ωk
ij, xk

i xk
j −ωk

ij}

= max{max{xk
i xk

j −ωk
ij}, max{xk

i xk
j −ωk

ij},

max{xk
j xk

i −ωk
ij}, max{xk

i xk
j −ωk

ij}}

≤ max{|xk
i ||xk

j − xk
j |+ |xk

j ||xk
i − xk

i |, |xk
i ||xk

j − xk
j |+ |xk

j ||xk
i − xk

i |,

|xk
i ||xk

j − xk
j |+ |xk

j ||xk
i − xk

i |, |xk
i ||xk

j − xk
j |+ |xk

j ||xk
i − xk

i |}

≤ max{|xk
i |, |xk

i |}4(Hk) + max{|xk
j |, |xk

j |}4(Hk)

= max{|xk
i |, |xk

i |, |xk
j |, |xk

j |}4(Hk).

(13)

By (13), it follows that

‖Yk − xk(xk)T‖ = ‖(yk
ij)n×n − (xk

i xk
j)n×n‖

= ‖(yk
ij − xk

i xk
j)n×n‖

≤ ‖(max{|xk
i |, |xk

i |, |xk
j |, |xk

j |}4(Hk))n×n‖

= ‖(max{|xk
i |, |xk

i |, |xk
j |, |xk

j |})n×n‖4(Hk).

(14)

Thus, ‖Yk − xk(xk)T‖ → 0 as4(Hk)→ 0.

Theorem 2. (a) If the algorithm terminates within finite iterations, an approximately optimal
solution for QCQP is found. (b) If the algorithm generates an infinite sequence of iterations, then
any accumulation point of the sequence {x̂k}k∈N is a globally optimal solution to QCQP.

Proof. (a) If the algorithm is finite, assume it stops at the kth iteration. From the termination
rule of line 16, we know that

Uk − Lk = f0(x̂k)− Lk ≤ ε. (15)

Assuming that the global optimal solution is x∗, we know that

Uk = f0(x̂k) ≥ f0(x∗) ≥ Lk. (16)

Hence, it follows from inequalities (15) and (16) that

f0(x∗) + ε ≥ Lk + ε ≥ f0(x̂k). (17)

and then part (a) has been proven.
(b) If the algorithm is infinite, and an infinite sequence {x̂k}k∈N is generated for the

QCQP problem by solving the linear relaxation problem LRPHk , the sequence of optimal
solutions for the corresponding problem LRPHk is {(Ŷk, x̂k)}k∈N. Without loss of generality,
assume that the rectangular sequence {Hk = [xk, xk]}k∈N satisfies x̂k ∈ Hk and Hk+1 ⊂ Hk.
In our algorithm, the rectangles are divided continuously into two parts of equal width,

Mathematics 2022, 10, 270 11 of 18

then
∞⋂

k=1
Hk = {x̂k}k∈N. Thus lim

k→∞
Hk = lim

k→∞
x̂k. Let lim

k→∞
Hk = lim

k→∞
x̂k = x∗, it follows

from Lemma 7 that lim
k→∞
‖Ŷk − x̂k(x̂k)T‖ = 0, which means

Y∗ := lim
k→∞

Ŷk = lim
k→∞

x̂k(x̂k)T = x∗(x∗)T . (18)

Based on the process of determining upper and lower bounds of the algorithm, we
have

Lk = g0(Ŷk, x̂k) ≤ f0(x∗) ≤ f0(x̂k) = Uk, k = 1, 2, · · · . (19)

Since the sequence {Lk = g0(Ŷk, x̂k)} is nondecreasing and bounded, and {Uk =
f0(x̂k)} is decreasing and bounded, they are convergent sequences. Taking the limit on
both sides of (19), we have

lim
k→∞

Lk = lim
k→∞

g0(Ŷk, x̂k) ≤ f0(x∗) ≤ lim
k→∞

f0(x̂k) = lim
k→∞

Uk. (20)

Upon the continuity of function f (x), it follows from (18)-(20) that

lim
k→∞

Lk = g0(Y∗, x∗) = f0(x∗) = lim
k→∞

f0(x̂k) = lim
k→∞

Uk.

So, the sequence {x̂k}, of which any accumulation point x∗ is a global optimal solution
of the QCQP problem.

In Theorem 2, conclusion (a) merely proves that the proposed algorithm, at the ter-
mination of finite iterations, returns an approximately global optimal solution related to
ε > 0 of the problem QCQP. It is not certain which of the two classes of solutions given in
Definitions 1 and 2 is the returned solution. In fact, for a given precision ε > 0, the algorithm
RBA eventually terminates infinite iterations and returns either an ε-global optimal solution
or a forced ε-globally optimal solution to the problem QCQP. The following Theorem 3
is specified.

Theorem 3. For a given ε > 0, if the subproblem {Hk, Lk, (Yk, xk)} satisfies

4(Hk) ≤ ε

max{max{‖Qs‖ : s = 0, 1, · · · , N}‖(max{|xk
i |, |x

k
i |, |xk

j |, |x
k
j |})n×n‖, 1}

, (21)

the algorithm RBA terminates at line 16; at the same time, if x̂k ∈ F, x̂k is an ε-globally optimal
solution of QCQP; otherwise, x̂k is a forced ε-globally optimal solution of QCQP.

Proof. When BBA runs to line 16, the subproblem {Hk, Lk, (Yk, xk)} satisfies

0 ≤ f0(xk)− g0(Yk, xk)

= Q0 · (xk(xk)T −Yk)

≤ ‖Q0‖‖xk(xk)T −Yk‖
≤ ‖Q0‖‖(max{|xk

i |, |xk
i |, |xk

j |, |xk
j |})n×n‖4(Hk)

≤ max{‖Q0‖‖(max{|xk
i |, |xk

i |, |xk
j |, |xk

j |})n×n‖, 1}4(Hk)

≤ max{max{‖Qs‖ : s = 0, 1, · · · , N}‖(max{|xk
i |, |xk

i |, |xk
j |, |xk

j |})n×n‖, 1}4(Hk).

(22)

Note that the third-to-last inequality of Formula (22) follows from Formula (14) above.
By combining Formulas (21) and (22), we have

0 ≤ f0(xk)− g0(Yk, xk) ≤ ε, (23)

Mathematics 2022, 10, 270 12 of 18

Moreover, the subproblem {Hk, Lk, (Yk, xk)} also satisfies

g0(Yk, xk) = Lk ≤ Uk = f0(x̄k) ≤ f0(xk). (24)

Further, it follows from Formulas (23) and (24) that 0 ≤ Uk− Lk ≤ f0(xk)− g0(Yk, xk) ≤
ε, which means that the algorithm terminates at line 16. Since Lk is the smallest lower bound
at the current iteration, then min

x∈F
f0(x) + ε ≥ Lk + ε ≥ Uk = f0(x̂k), which shows that x̂k is

an ε-globally optimal solution of QCQP for x̂k ∈ F. Besides, if x̂k /∈ F, x̂k must come from
line 42 of the algorithm RBA, so it knows that ‖Ŷk − x̂k(x̂k)T‖ ≤ ε

max{max{‖Qs‖:s=0,1,··· ,N},1} .
Then, it follows from (2) that

| fs(x̂k)− gs(Ŷk, x̂k)| = |Qs · (x̂k(x̂k)T − Ŷk)| ≤ ε‖Qs‖
max{‖Qs‖, 1} ≤ ε for each s = 1, · · · , N.

which means that x̂k is a forced ε-globally optimal solution of QCQP for x̂k /∈ F.

Theorem 4. Given an error tolerance ε > 0, the algorithm RBA returns a forced ε-globally optimal
solution for QCQP in at most

n

∏
j=1

⌈
max{max{‖Qs‖ : s = 0, 1, · · · , N}‖(max{|x0

i |, |x
0
i |, |x0

j |, |x
0
j |})n×n‖, 1}

ε
(x0

j − x0
j)

⌉

times, where dae represents the smallest integer greater than a.

Proof. Based on Theorem 3, the specific proof is similar to Theorem 3 in [27] and is
thus omitted.

Remark 9. If 4(Hk) ≤ ε
max{‖Q0‖‖(max{|xk

i |,|x
k
i |,|xk

j |,|x
k
j |})n×n‖,1}

and x̂k ∈ F, the penultimate

inequality of formula (22) has been satisfied, so it is not difficult to verify that x̂k is already an
ε-globally optimal solution to QCQP; at the same time, the algorithm RBA returns x̂k in at most

n

∏
j=1

⌈
max{‖Q0‖‖(max{|x0

i |, |x
0
i |, |x0

j |, |x
0
j |})n×n‖, 1}

ε
(x0

j − x0
j)

⌉

times.

5. Numerical Experiment and Analysis

In this section, we adopt several test examples to verify the feasibility of the proposed
algorithm. Note that all examples are non-convex problems. We compile and execute
the code on MATLAB9.0.0.341360(R2016a), respectively. All experimental procedures
were performed on a desktop computer with Inter(R) Core(TM) i7-6700, @3.40GHz power
processor, 16.00GB memory, and Microsoft Win7 operating system. In the numerical
experiment, all linear programs are solved by using the linprog solver in Matlab. Besides,
CVX 2.2 [35] is adopted to execute and solve all convex optimization problems in Matlab.

To demonstrate the practical application of the proposed algorithm, we first consider
the following balanced transportation problem presented in [36].

min

m
∑

i=1

n
∑

i=1
cijxij

m
∑

i=1

n
∑

i=1
dijxij

, s.t.
n

∑
j=1

xij = ai,
m

∑
i=1

xij = bj, xij ≥ 0,

Mathematics 2022, 10, 270 13 of 18

where,
m
∑

i=1
ai =

n
∑

j=1
bj, ai denotes the ith source, bj denotes the jth destination, cij denotes

the unit cost from ith source to jth destination, dij denotes the unit preference from ith
source to jth destination and the variable xij denotes the amount of source that the ith
source supplies to the jth destination, where i = 1, 2, · · · , m, j = 1, 2, · · · , n. By adopting
the data in [36], a known mathematical model of the balanced transport problem can be
formulated as

min
9x11 + 12x12 + 7x13 + 6x14 + 11x21 + 9x22 + 17x23 + 6x24 + 5x31 + 4x32 + 3x33 + 9x34

8x11 + 10x12 + 12x13 + 9x14 + 6x21 + 4x22 + 8x23 + 11x24 + 9x31 + 13x32 + 11x33 + 7x34
,

s.t. x11 + x12 + x13 + x14 = 12, x21 + x22 + x23 + x24 = 19,

x31 + x32 + x33 + x34 = 17, x11 + x21 + x31 = 3,

x12 + x22 + x32 = 22, x13 + x23 + x33 = 18,

x14 + x24 + x34 = 5, xij ≥ 0, i = 1, 2, 3, j = 1, 2, 3, 4.

Clearly, it follows from the model above that
4
∑

i=1
ai = 48 =

4
∑

j=1
bj.

Further, let

x = (x11, x12, x13, x14, x21, x22, x23, x24, x31, x32, x33, x34)
T ,

C = (9, 12, 7, 6, 11, 9, 17, 6, 5, 4, 3, 9)T , D = (8, 10, 12, 9, 6, 4, 8, 11, 9, 13, 11, 7)T ,

b = (12, 19, 17, 3, 22, 18, 5)T , A = (A1, A2, A3, A4, A5, A6, A7)
T ,

A1 = (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)T , A2 = (0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0)T ,

A3 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1)T , A4 = (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0)T ,

A5 = (0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0)T , A6 = (0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0)T ,

A7 = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1)T .

Then, the above model can be rewritten into the following form:

min
CTx
DTx

, s.t. Ax = b, xi ≥ 0, i = 1, 2, · · · , 12.

which is equivalent to the following quadratic programming problem with a quadratic
constraint [37]:

min t, s.t. x ∈ X, CTx− tDTx ≤ 0, t ≤ t ≤ t,

where X = {x ∈ R12|Ax = b, xi ≥ 0, i = 1, 2, · · · , 12}, t = min
x∈X

CTx/ max
x∈X

DTx, t =

max
x∈X

CTx/ min
x∈X

DTx. Then, after solving the balanced transport problem by the proposed al-

gorithm with ε = 5× 10−4, we obtain the global optimal solution x∗ = (0.0, 0.0, 12.0, 0.0, 3.0,
11.0, 5.0, 0.0, 11.0, 6.0, 0.0)T and the optimal value 0.6553 in 1822.4674 s after
12,549 iteration.

To further test the proposed algorithm, the following 10 test examples are solved
by this algorithm and the algorithms in [38,39], and the numerical results are listed in
Table 1. The numerical results recorded in Table 2 are obtained by solving a series of
random instances generated by Example 11 in four methods(our algorithm, the algorithms
in [38,39], and the commercial software package BARON [34]).

In Tables 1 and 2, the meanings of the symbols in the headers of these two tables are
as follows: Iter: number of iterations or the average number of iterations; ε: tolerance; CPU:
CPU running time or average CPU running time; m: number of quadratic constraints; n:
Number of variables; r: The number of negative eigenvalues in the matrix Q0; ”−”: Some
algorithms cannot solve the problem within 3600 s in all cases. Moreover, the tolerance ε is
set to 5× 10−4 in Examples 1-10 and 5× 10−3 in Example 11, respectively.

Mathematics 2022, 10, 270 14 of 18

Table 1. Numerical results in Examples 1–10.

Ex. Ref. Solution Optimum Iter CPU

1 ours (5.0000, 1.0000) −16 24 0.7985
[38] (5.0000, 1.0000) −16 4 0.0312
[39] (5.0000, 1.0000) −16 2 0.0234

2 ours (1.1772, 2.1769) 1.1771 159 7.5143
[38] (1.1771, 2.1771) 1.1771 28 0.2141
[39] (1.1771, 2.1771) 1.1771 17 0.1459

3 ours (2.0000, 1.0000) −1 87 2.7883
[38] (2.0000, 1.0000) −1 19 0.1523
[39] (2.0000, 1.0000) −1 1 0.0295

4 ours (2.0000, 1.6667) 6.7778 222 7.8239
[38] (2.0000, 1.6667) 6.7778 8 0.1621
[39] (2.0000, 1.6667) 6.7778 26 0.4421

5 ours (0.5003, 0.4996) 0.5 154 5.1439
[38] (0.5000, 0.5000) 0.5 34 0.6258
[39] (0.5000, 0.5000) 0.5 22 0.4287

6 ours (2.5540, 3.1323) 118.3835 992 56.5885
[38] (2.5557, 3.1303) 118.3837 52 0.7591
[39] (2.5554, 3.1307) 118.3837 43 0.6657

7 ours (1.5, 1.4998) −1.1629 1941 78.1576
[38] (1.5, 1.5) −1.1629 18 0.3905
[39] (1.5, 1.5) −1.1629 13 0.3524

8 ours (2, 0) −2 1 0.1018
[38] (2, 0) −2 1 0.1118
[39] (2, 0) −2 1 0.1073

9 ours (2, 0) −2 21 0.7572
[38] (2, 0) −2 17 0.3026
[39] (2, 0) −2 10 0.1906

10 ours (1.0000, 0.1817, 0.9829)−11.3636 17,319 770.00
[38] (1.0000, 0.1817, 0.9829)−11.3636 1882 83.5967
[39] (1.0000, 0.1817, 0.9829)−11.3636 1063 71.3283

Example 1. [38,39]

min − x2
1 + x1x2 + x2

2 + x1 − 2x2, s.t.

x1 + x2 ≤ 6,

− 2x2
1 + x2

2 + 2x1 + x2 ≤ −4,

1 ≤ x1, x2 ≤ 6.

Example 2. [38,39]

min x1, s.t.

− 1/16x2

1 − 1/16x2
2 + 1/4x1 + 1/2x2 ≤ 1,

1/14x2
1 + 1/14x2

2 − 3/7x1 − 3/7x2 ≤ −1,

1 ≤ x1, x2 ≤ 5.5.

Example 3. [38,39]

min x1x2 − 2x1 + x2 + 1, s.t.

8x2

1 − 6x1 − 16x2 ≤ −11,

− x2
2 + 3x1 + 2x2 ≤ 7,

1 ≤ x1 ≤ 2.5, 1 ≤ x2 ≤ 2.225.

Example 4. [38,39]

min x2
1 + x2

2, s.t.

{
0.3x1x2 ≥ 1,

2 ≤ x1 ≤ 5, 1 ≤ x2 ≤ 3.

Mathematics 2022, 10, 270 15 of 18

Example 5. [38,39]

min x1, s.t.

4x2 − 4x2

1 ≤ 1,

− x1 − x2 ≤ −1,

0.01 ≤ x1, x2 ≤ 15.

Example 6. [38,39]

min 6x2
1 + 4x2

2 + 5x1x2, s.t.

6x2

1 + 4x2
2 + 5x1x2

− 6x1x2 ≤ −48,

0 ≤ x1, x2 ≤ 10.

Example 7. [38,39]

min − x1 + x1x0.5
2 − x2, s.t.

− 6x2

1 + 8x2 ≤ 3,

3x1 − x2 ≤ 3,

1 ≤ x1, x2 ≤ 1.5.

Example 8. [38,39]

min − x2
1 + x1 + x2

2, s.t.

x2

1 + x2
2 ≤ 4,

(x1 + x2)
2 + x2

2 − 2x1 ≤ 0,

0 ≤ x1, x2 ≤ 2.

Example 9.

min − x2
1 + x1 + x2

2, s.t.

x2

1 + x2
2 ≤ 4,

x2
1 + 1/4x2

2 − 4x1 ≤ 0,

x1 + x2 ≤ 2,

0 ≤ x1, x2 ≤ 5.

Example 10.

min − 4x2 + (x1 − 1)2 + x2
2 − 10x2

3, s.t.

x2

1 + x2
2 + x2

3 ≤ 2,

(x1 − 1)2 + x2
2 + x2

3 ≤ 2,

2−
√

2 ≤ x1 ≤
√

2, 0 ≤ x2, x3 ≤
√

2.

From Table 1, it can be observed that all the optimal values obtained by our algorithm
in solving these 10 examples are at least consistent with those of the algorithms in [38,39],
while the optimal value obtained in solving Example 6 is superior to the other two algo-
rithms. Furthermore, it is not difficult to know that our algorithm consumes the most
computing resources, mainly because the linear relaxation subproblem of our algorithm is
the worst among these algorithms. Nevertheless, these results are sufficient to demonstrate
that the proposed algorithm is effective and feasible for solving QCQP.

For convenience, we represent the algorithm in [38] as JCBB, and the algorithm in [39]
as JLBB.

Example 11.

min f0(x) = xTQ0x, s.t. fs(x) = xTQsx + cT
s x ≤ ds, s = 1, 2, · · · , m,

where, Q0, Qs, cs and ds are generated as follows:

• For each s = 0, 1, · · · , m, the matrix Ws is generated, in which each element is randomly
generated in the interval [−1,1].

Mathematics 2022, 10, 270 16 of 18

• Set Rs = 0.5(Ws + (Ws)T) for each s = 0, 1, · · · , m.
• For each s = 0, 1, · · · , m, by using eigenvalue decomposition, Rs = (Ps)T DsPs is generated.

Also, it can be noted that Ds is a diagonal matrix.
• The first r(r ≤ n) diagonal elements of matrix D0 are replaced by the r numbers randomly

generated in the interval [−10,0], and the last n− r diagonal elements of D0 are replaced by
the numbers randomly generated in [0,10].

• For each s = 1, · · · , m, replace all diagonal elements of the matrix Ds by randomly generating
n numbers in [1,100].

• For each s = 0, 1, · · · , m, let Qs = (Ps)T DsPs.
• For each s = 1, · · · , m, all elements of the n-dimensional vector cs are generated randomly in

[−100, 100], and the real number ds is generated randomly in [1,50].

The above construction method of Example 11 shows that the feasible region of this
problem consists of m convex quadratic constraints. Therefore, the feasible region of
Example 11 is convex, so 2n convex optimizations with linear objective functions need
to be solved to construct the initial rectangle H0. By using Example 11 and each set of
parameters (n, m, r), 10 random examples are generated and solved by algorithms RBA,
JCBB, JLBB, and BARON, and then their average results are recorded in Table 2.

From Table 2, it can be observed that our algorithm can be applied to QCQP problems
with different forms of objective functions. The CPU running time and iterations of the
algorithm are positively correlated with the number n of decision variables. For fixed pa-
rameters m and n, the more the number r of negative eigenvalues of matrix Q0, the number
of iterations and CPU running time increase accordingly. Unfortunately, the computa-
tional performance of algorithm RBA is indeed inferior to the algorithms JCBB and JLBB,
and when (m, n, r) = (15, 10, 5), (20, 20, 6), our algorithm cannot solve the problem within
3600 s. However, our algorithm has a better numerical result than BARON. In particular,
BARON can no longer solve the problem in 3600 s at (m, n, r) = (7, 5, 3), but our algorithm
can solve four more groups of problems. By comparing the relaxation techniques of algo-
rithms JCBB and JLBB, it is not difficult to find that these two algorithms adopt a tighter
relaxation strategy than our algorithm, which is the main reason why the two algorithms
are better than our algorithm. In fact, our linear relaxation subproblem is only obtained by
simply relaxing the boundary of the introduced variables, which shows that our algorithm
is promising, and maybe we can incorporate some relaxation techniques(e.g., SDP or RLT)
into our relaxation method to develop better algorithms.

Table 2. Numerical results in Example 11.

(m, n, r)
Iter CPU

RBA JCBB JLBB BARON RBA JCBB JLBB BARON

(5,3,1) 2659.5 839.5 445.4 22,551.3 73.9537 8.7589 7.0782 893.1392
(5,3,2) 3676.4 731.2 378.7 23,815.4 109.0161 7.8601 6.9026 952.2138
(5,3,3) 7546.9 1163.7 581.2 23,322.3 227.1233 11.9196 9.9312 887.3607
(5,5,1) 2968.2 11,938.3 5945.1 182,711.7 1303.9179 149.3092 111.3539 1776.7202
(5,5,3) 30,895.5 11,209.5 6148.6 151,395.5 1335.6709 133.7491 113.0717 1837.5112
(5,5,5) 47,219.6 18,681.0 8296.7 203,510.9 2247.0565 237.5699 157.5038 3228.4427
(7,5,1) 14,117.3 11,017.9 4859.4 205,995.1 687.3498 228.5107 148.5903 3348.2776
(7,5,3) 12,538.2 12,736.9 6232.3 − 579.1162 264.7193 198.5944 −
(10,3,3) 12,657.3 2548.1 1296.4 − 440.3908 27.5611 20.9512 −
(10,10,3) 35,602.1 36,255.8 16,117.3 − 2302.4471 1456.7120 972.1402 −
(10,10,5) 49,875.4 27,257.3 14,686.2 − 3343.4321 1271.3252 985.0749 −
(15,10,5) − 69,293.8 36,052.9 − − 3215.0414 2846.0178 −
(20,20,6) − − 36,693.8 − − − 3544.4622 −

In summary, the above numerical experiments are sufficient to prove the effectiveness
and feasibility of the proposed algorithm, and although it is not as good as the algorithms
in [38,39], it is better than the commercial software package BARON.

Mathematics 2022, 10, 270 17 of 18

6. Conclusions and Discussion

This paper mainly develops a global optimization algorithm that can solve quadrat-
ically constrained quadratic programs. A new linear relaxation technique is proposed
by simply extending the feasible domain of the equivalent problem. To speed up the
convergence of the algorithm, a new rectangular reduction technique based on quadratic
constraint is proposed on the basis of the existing linear constraint-rectangular reduction
technique. It is proved that the proposed algorithm converges finitely, and an ε-global
optimal solution or a forced ε-globally optimal solution of the original problem is obtained.
Numerical results demonstrate the effectiveness and feasibility of the algorithm. Other tech-
niques that can be integrated into this algorithm are also being investigated. In the future,
we will try to generalize and apply the Definitions 1–3 in Section 2 to other optimization
problems with quadratic functions, such as the sum of quadratic ratios.

Author Contributions: C.H. carried out the methodology, investigation, and writing the draft. Y.G.
supervised the research, gave the methodology, and edited and reviewed the fifinal draft. F.T. and
S.M. performed the experiments, and reviewed the fifinal draft. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China un-
der Grant (11961001), the Construction Project of first-class subjects in Ningxia higher Educa-
tion (NXYLXK2017B09), and the Major proprietary funded project of North Minzu University
(ZDZX201901).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: We declare there is no conflict of interest.

References
1. He, S.; Luo, Z.Q.; Nie, J.; Zhang, S.Z. Semidefinite relaxation bounds for indefinite homogeneous quadratic optimization. SIAM J.

Optim. 2008, 19, 503–523. [CrossRef]
2. Matskani, E.; Sidiropoulos, N.D.; Luo, Z.; Tassiulas, L. Convex approximation techniques for joint multiuser downlink beamform-

ing and admission control. IEEE Trans. Wirel. Commun. 2008, 7, 2682–2693. [CrossRef]
3. Sabir, Z.; Wahab, H.A.; Guirao, J.L.G. A novel design of Gudermannian function as a neural network for the singular nonlinear

delayed, prediction and pantograph differential models. Math. Biosci. Eng. 2022, 19, 663–687. [CrossRef] [PubMed]
4. Sabir, Z.; Raja, M.A.Z.; Alnahdi, A.S.; Jeelani, M.B.; Abdelkawy, M.A. Numerical investigations of the nonlinear smoke model

using the Gudermannian neural networks. Math. Biosci. Eng. 2021, 19, 351–370. [CrossRef]
5. Saeed, T.; Sabir, Z.; Alhodaly, M.S.; Alsulami, H.H.; Sánchez, Y.G. An advanced heuristic approach for a nonlinear mathematical

based medical smoking model. Results Phys. 2022, 32, 105137. [CrossRef]
6. Kolbert, F.; Wormald, L. Robust portfolio optimization using second-order cone programming. Optim. Optim. 2010, 1, 3–22.
7. Gower, J.C. Euclidean distance geometry. Math. Sci. 1982, 7, 1–14.
8. Klose, A.; Drexl, A. Facility location models for distribution system design. Eur. J. Oper. Res. 2005, 162, 4–29. [CrossRef]
9. Vandenbussche, D.; Nemhauser, G.L. A polyhedral study of nonconvex quadratic programs with box constraints. Math. Program.

2005, 102, 531–557. [CrossRef]
10. Fortin, C.; Wolkowicz, H. The trust region subproblem and semidefinite programming. Optim. Methods Softw. 2004, 19, 41–67.

[CrossRef]
11. Goemans, M.X.; Williamson, D.P. Improved approximation algorithms for maximum cut and satisfiability problems using

semidefinite programming. J. ACM 1995, 42, 1115–1145. [CrossRef]
12. Jeyakumar, V.; Li, G.Y. Trust-region problems with linear inequality constraints: Exact SDP relaxation, global optimality and

robust optimization. Math. Program. 2014, 147, 171–206. [CrossRef]
13. Bomze, I.M.; Locatelli, M.; Tardella, F. New and old bounds for standard quadratic optimization: Dominance, equivalence and

incomparability. Math. Program. 2008, 115, 31–64. [CrossRef]
14. Vandenberghe, L.; Boyd, S. Semidefinite programming. SIAM Rev. 1996, 38, 49–95. [CrossRef]
15. Beck, A.; Eldar, Y.C. Strong duality in nonconvex quadratic optimization with two quadratic constraints. SIAM J. Optim. 2006, 17,

844–860. [CrossRef]
16. Lu, C.; Deng, Z.B.; Zhou, J.; Guo, X.L. A sensitive-eigenvector based global algorithm for quadratically constrained quadratic

programming. J. Glob. Optim. 2019, 73, 371–388. [CrossRef]

http://doi.org/10.1137/070679041
http://dx.doi.org/10.1109/TWC.2008.070104
http://dx.doi.org/10.3934/mbe.2022030
http://www.ncbi.nlm.nih.gov/pubmed/34903007
http://dx.doi.org/10.3934/mbe.2022018
http://dx.doi.org/10.1016/j.rinp.2021.105137
http://dx.doi.org/10.1016/j.ejor.2003.10.031
http://dx.doi.org/10.1007/s10107-004-0549-0
http://dx.doi.org/10.1080/10556780410001647186
http://dx.doi.org/10.1145/227683.227684
http://dx.doi.org/10.1007/s10107-013-0716-2
http://dx.doi.org/10.1007/s10107-007-0138-0
http://dx.doi.org/10.1137/1038003
http://dx.doi.org/10.1137/050644471
http://dx.doi.org/10.1007/s10898-018-0726-y

Mathematics 2022, 10, 270 18 of 18

17. Kim, S.; Kojima, M. Exact solutions of some nonconvex quadratic optimization problems via SDP and SOCP relaxations. Comput.
Optim. Appl. 2003, 26, 143–154. [CrossRef]

18. Vandenbussche, D.; Nemhauser, G.L. A branch-and-cut algorithm for nonconvex quadratic programs with box constraints. Math.
Program. 2005, 102, 559–575. [CrossRef]

19. Burer, S.; Vandenbussche, D. A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite
relaxations. Math. Program. 2008, 113, 259–282. [CrossRef]

20. Linderoth, J. A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs. Math. Program.
2005, 103, 251–282. [CrossRef]

21. Gao, Y.; Wei, F. A new bound-and-reduce approach of nonconvex quadratic programming problems. Appl. Math. Comput. 2015,
250, 298–308. [CrossRef]

22. Reemtsen, R. Some outer approximation methods for semi-infinite optimization problems. J. Comput. Appl. Math. 1994, 53, 87–108.
[CrossRef]

23. Elloumi, S.; Faye, A.; Soutif, E. Decomposition and Linearization for 0–1 Quadratic Programming. Ann. Oper. Res. 2000, 99, 79–93.
[CrossRef]

24. Benders, J.F. Partitioning Procedures for Solving Mixed-Variables Programming Problems. Numer. Math. 1962, 4, 238–252.
[CrossRef]

25. Geoffrion, A.M. Generalized Benders decomposition. J. Optimiz. Theory Appl. 1972, 10, 237–260. [CrossRef]
26. Sherali, H.D.; Adams, W.P. A reformulation-linearization technique for solving discrete and continuous nonconvex problems.

Comput. Math. Appl. 1999, 38, 288.
27. Lu, C.; Deng, Z.B.; Jin, Q. An eigenvalue decomposition based branch-and-bound algorithm for nonconvex quadratic program-

ming problems with convex quadratic constraints. J. Glob. Optim. 2017, 67, 475–493. [CrossRef]
28. Sherali, H.D.; Adams, W.P. A hierarchy of relaxations between the continuous and convex hull representations for zero-one

programming problems. SIAM J. Discret. Math. 1990, 3, 411–430. [CrossRef]
29. Sherali, H.D. Reformulation-Linearization Methods for Global Optimization. In Encyclopedia of Optimization; Floudas, C.A.,

Pardalos, P.M. Eds.; Springer: Boston, FL, USA, 2001; pp. 2182–2186.
30. Audet, C.; Hansen, P.; Jaumard, B.; Savard, G. A branch and cut algorithm for nonconvex quadratically constrained quadratic

programming. Math. Program. 2000, 87, 131–152. [CrossRef]
31. Al-Khayyal, F.A.; Larsen, C.; Van, V.T. A relaxation method for nonconvex quadratically constrained quadratic programs. J. Glob.

Optim. 1995, 6, 215–230. [CrossRef]
32. Raber, U. A simplicial branch-and-bound method for solving nonconvex all-quadratic programs. J. Glob. Optim. 1998, 13, 417–432.

[CrossRef]
33. Zheng, X.; Pan, Y.; Cui, X. Quadratic convex reformulation for nonconvex binary quadratically constrained quadratic program-

ming via surrogate constraint. J. Glob. Optim. 2018, 70, 719–735. [CrossRef]
34. Sahinidis, N. BARON User Manual v.21.1.13[EB/OL]. 2021. Available online: Http://minlp.com (accessed on 6 January 2022).
35. Grant, M.; Boyd, S. CVX: Matlab Software for Disciplined Convex Programming, Version 2.2. Available online: http://cvxr.com/

cvx/download (accessed on 15 December 2021).
36. Sivri, M.; Emiroglu, I.; Guler, C.; Tasci, F. A solution proposal to the transportation problem with the linear fractional objective

function. In Proceedings of the Fourth International Conference on Modelling, Simulation and Applied Optimization, Kuala
Lumpur, Malaysia, 19–21 April 2011.

37. Jiao, H.W.; Liu, S.Y. A new linearization technique for minimax linear fractional programming. Intern. J. Comp. Math. 2014, 91,
1730–1743. [CrossRef]

38. Jiao, H.W.; Chen, Y.Q. A Global Optimization Algorithm for Generalized Quadratic Programming. J. Appl. Math. 2013, 2013, 1–9.
[CrossRef]

39. Jiao, H.W.; Liu, S.Y.; Lu, N. A parametric linear relaxation algorithm for globally solving nonconvex quadratic programming.
Appl. Math. Comput. 2015, 250, 973–985. [CrossRef]

http://dx.doi.org/10.1023/A:1025794313696
http://dx.doi.org/10.1007/s10107-004-0550-7
http://dx.doi.org/10.1007/s10107-006-0080-6
http://dx.doi.org/10.1007/s10107-005-0582-7
http://dx.doi.org/10.1016/j.amc.2014.10.077
http://dx.doi.org/10.1016/0377-0427(92)00122-P
http://dx.doi.org/10.1023/A:1019236832495
http://dx.doi.org/10.1007/BF01386316
http://dx.doi.org/10.1007/BF00934810
http://dx.doi.org/10.1007/s10898-016-0436-2
http://dx.doi.org/10.1137/0403036
http://dx.doi.org/10.1007/s101079900106
http://dx.doi.org/10.1007/BF01099462
http://dx.doi.org/10.1023/A:1008377529330
http://dx.doi.org/10.1007/s10898-017-0591-0
Http://minlp.com
http://cvxr.com/cvx/download
http://cvxr.com/cvx/download
http://dx.doi.org/10.1080/00207160.2013.860449
http://dx.doi.org/10.1155/2013/215312
http://dx.doi.org/10.1016/j.amc.2014.11.032

	Introduction
	Bounded Relaxation Technique
	Rectangle-Reduction Strategy
	Rectangle Reduction Technique Based on Linear Constraints
	Rectangle Reduction Technique Based on Quadratic Constraints

	Algorithm and Its Convergence
	Numerical Experiment and Analysis
	Conclusions and Discussion
	References

