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Abstract: The aim of this paper is to propose a new faster iterative scheme (called AA-iteration) to
approximate the fixed point of (b, η)-enriched contraction mapping in the framework of Banach
spaces. It is also proved that our iteration is stable and converges faster than many iterations existing
in the literature. For validity of our proposed scheme, we presented some numerical examples.
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1. Introduction and Preliminaries

The proof of the Banach contraction principle (BCP) [1] is based on convergence of
the most simplest iterative process named as the sequence of successive approximations
or Picard iterative process. This principle solves a fixed point problem for contraction
mapping defined on a complete metric space and has become an important tool to prove
the existence and approximation of solutions of nonlinear functional equations such as
differential equations, integral equations and partial differential equations. In certain cases,
the existence of solution of fixed point problem is guaranteed, but finding the exact solution
is not possible. In such a situation, an approximation of the solution of the given problem
is much desired, which gave rise to development of the different iterative processes [2–7].

Many authors have proposed and applied different fixed point iterative schemes for
approximation of the solution of linear and nonlinear equations and inclusion. It is always
preferred to develop an iterative scheme, which is better than others in the sense that the
solution is approximated in a fewer number of steps. In this paper, we shall develop an
iterative process and compare it with some well-known iterative processes existing in the
literature. Throughout this paper, the set {0, 1, 2, . . . } is denoted by Z+. Let U be a normed
space, Ω a nonempty closed convex, Ω

′
a nonempty bounded closed convex subsets of U

and T a self mapping on Ω. The set {p∗ ∈ Ω : p∗ = Tp∗} of all fixed points of T is denoted
by F(T).

In 1991, Sahu [8] proved the following:
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Lemma 1 ([8]). Suppose that U is a uniformly convex Banach space and 0 < a ≤ kn ≤ b < 1 for
all n ∈ N. Let {pn} and {qn} be two sequences in U such that

lim sup
n→∞

‖pn‖ ≤ l, lim sup
n→∞

‖qn‖ ≤ l and

lim sup
n→∞

‖(1− kn)pn + knqn‖ = l

hold for some l ≥ 0. Then limn→∞ ‖pn − qn‖ = 0.

Recall that a mapping T is called Lipschitzian if there exists a constant L > 0 such that

‖Tp− Tq‖ ≤ L‖p− q‖

holds for all p, q ∈ Ω. If we take L ∈ (0, 1) in the above inequality, then T is called a
contraction. The mapping T is called nonexpansive if we set L = 1 in the above inequality.

Berinde [9] introduced the concept of enriched nonexpansive mapping on a normed
space as follows:

A self mapping T on Ω is said to be an enriched nonexpansive if for all p, q ∈ Ω, there
exists b ∈ [0, ∞) such that

||b(p− q) + Tp− Tq|| ≤ (b + 1)||p− q||. (1)

To highlight the parameter b in (1), T is termed as b-enriched nonexpansive mapping.
A mapping T : Ω → Ω is said to be an enriched contraction [10] if for all p, q ∈ Ω,

there exists b ∈ [0, ∞) and η ∈ (0, b + 1) such that

||b(p− q) + Tp− Tq|| ≤ η||p− q||. (2)

Again to highlight the parameter b in (2), T is called a (b, η)-enriched contraction. It
was shown that (b, η)-enriched contraction mapping on Ω has a unique fixed point, which
can be approximated by means of the Krasnoselskii’s iterative scheme [11].

Definition 1 ([12]). A mapping T : Ω→ U is said to be demiclosed at q∗, if whenever a sequence
pn ⇀ p∗ in Ω and Tpn → q∗ in U, it follows that Tp∗ = q∗.

Lemma 2 ([13]). Let Ω be nonempty closed convex subset of a uniformly convex Banach space U
and T a nonexpansive mapping on Ω. Then I − T is demiclosed at zero.

Remark 1 ([14]). Let T be a self mapping on Ω. For any λ ∈ [0, 1], the averaged mapping Tλ on
Ω given by

Tλ p = (1− λ)p + λTp

has the property that F(T) = F(Tλ). Clearly, T0 = I and T1 = T are the trivial cases.

There are several iterative processes which are used to approximate fixed point of
a certain nonlinear operator. One of the most important factors to decide the preference
of one iterative process over the other is the rate of convergence. In order to compare
convergence rates between two iteration processes, we use the following useful definition
of Berinde [15].

Definition 2. Suppose that sequences {αn} and {βn} converge to the same point l∗ with the
following error estimates

‖αn − l∗‖ ≤ pn,

‖βn − l∗‖ ≤ qn.
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If limn→∞
pn
qn

= 0, then {αn} converges faster than {βn}.

Let us recall that for the given p(0)0 in Ω, the sequence {p(0)n : n ∈ Z+} defined by

p(0)n+1 = Tp(0)n , n ∈ Z+ (3)

is known as the sequence of successive approximations or Picard iteration [16]. The well-
known Banach contraction principle states that {p(0)n } converges to a unique fixed point
of T for any choice of a starting point p(0)0 in Ω provided that T is a contraction mapping.
However, the Picard iteration does not need to converge to fixed point of nonexpansive
mapping. For instance, the self mapping Tx = 1− x on [0, 1] does not converge to its fixed
point 1

2 , for any choice of x ∈ [0, 1] other than 1
2 . On the other hand, averaged operator for

any λ ∈ (0, 1) converges to fixed point of T for any choice of x and hence in certain cases, it
is useful to consider an averaged operator in an iterative scheme than a mapping T itself.

Let us choose an initial guess p(1)0 in Ω. The sequence {p(1)n : n ∈ Z+} defined by

p(1)n+1 = (1− kn)p(1)n + knTp(1)n , n ∈ Z+ (4)

is called Mann iteration sequence [17], where the sequence {kn} of parameters in (0, 1)
satisfies certain conditions.

The sequence {p(2)n : n ∈ Z+} defined by
p(2)0 ∈ Ω

p(2)n+1 = (1− kn)p(2)n + knTq(2)n

q(2)n = (1− on)p(2)n + onTp(2)n , n ∈ Z+

(5)

is known as Ishikawa iteration scheme [18], where {on} and {kn} are some appropriate
sequences in (0, 1).

Noor [19] proposed a three step iteration scheme to construct a sequence {p(3)n : n ∈ Z+}
as follows: 

p(3)0 ∈
p(3)n+1 =

Ω

(1− kn)p(3)n + knTq(3)n

q(3)n = (1− on)p(3)n + onTr(3)n

r(3)n = (1− wn)p(3)n + wnTp(3)n ∀ n ∈ Z+

(6)

where {wn}, {on}, {kn} in (0, 1) satisfy certain conditions.
In 2007, Agarwal et al. [20] defined a sequence {p(4)n : n ∈ Z+} known as S-iteration

scheme given by 
p(4)0 ∈
p(4)n+1 =

Ω

(1− kn)Tp(4)n + knTq(4)n

q(4)n = (1− on)p(4)n + onTp(4)n , n ∈ Z+

(7)

where {on}, {kn} are appropriate sequences in (0, 1).
It was proved that the rate of convergence of iteration scheme (7) is same as the

Picard iteration scheme but faster than Mann iteration scheme for the class of contraction
mappings [20].
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An iterative scheme {p(5)n : n ∈ Z+} introduced in [21] has a faster rate of convergence
than S− iteration for approximating the fixed points of contraction mappings. This scheme
is given as: 

p(5)0 ∈ Ω

p(5)n+1 = (1− kn)Tq(5)n + knTr(5)n

q(5)n = (1− on)Tp(5)n + onTr(5)n

r(5)n = (1− wn)p(5)n + wnTp(5)n , ∀ n ∈ Z+

(8)

where {wn}, {on} and {kn} in (0, 1) satisfy certain appropriate conditions.
An iterative sequence {p(6)n : n ∈ Z+}

p(6)0 ∈ Ω

p(6)n+1 = (1− kn)Tr(6)n + knTq(6)n

q(6)n = (1− on)r
(6)
n + onTr(6)n

r(6)n = (1− wn)p(6)n + wnTp(6)n , ∀ n ∈ Z+

(9)

proposed by Thakur et al. [6] has a better rate of convergence than iterative sequence in [21],
where the sequences {wn}, {on} and {kn} are given sequences in (0, 1).

In 2018, Ullah et al. [22] introduced M-iteration sequence {p(7)n : n ∈ Z+} as follows
p(7)0 ∈ Ω

p(7)n+1 = Tq(7)n

q(7)n = Tr(7)n

r(7)n = (1− wn)p(7)n + wnTp(7)n , ∀ n ∈ Z+

(10)

for approximating the fixed points of Suzuki’s generalized nonexpansive mappings, where
{wn} ⊂ (0, 1).

Ali et al. [2] modified an M-iteration sequence by introducing F-iteration sequence
{p(8)n : n ∈ Z+} given by

p(8)0 ∈ Ω

p(8)n+1 = Tq(8)n

q(8)n = Tr(8)n

r(8)n = T((1− wn)p(8)n + wnTp(8)n ), ∀ n ∈ Z+

(11)

where {wn} ⊂ (0, 1). They showed that F-iteration sequence has a better rate of conver-
gence than M-iteration and all other iterative schemes presented in [2].

For practical purposes, we deal with an approximate sequence {an}; we obtain it
because of numerical approximation of operator and round off errors, instead of a theoreti-
cal sequence {pn} obtained through an iterative process pn+1 = f (T, pn) for some given
function f .

The approximate sequence {an} converges to fixed point of T if and only if the given
fixed point iterative scheme is stable. The notion of the stability for a fixed point iterative
scheme was introduced by Ostrowski [23].

Definition 3. Let {an} be an approximate sequence of {pn} in a subset Ω of a Banach space
U. Then a given iterative process pn+1 = f (Tλ, pn) for some function f , converging to a fixed
point p∗ of self mapping T on Ω, is said to be T-stable or stable with respect to T provided that
limn→∞ en = 0 if and only if limn→∞ an = p∗, where {en} is given by

en = ‖an+1 − f (T, an)‖, ∀ n ∈ Z+.
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Following results are needed in the sequel.

Lemma 3 ([15]). Let {un} and {en} be sequences of positive real numbers satisfying the following
inequality:

un+1 ≤ (1− υn)un + en

where υn ∈ (0, 1) for all n ∈ Z+ with Σ∞
n=0υn = ∞. If limn→∞

en
υn

= 0, then limn→∞ un = 0.

Question: Continuing in this direction, we pose the following question:
Is it possible to construct an iterative scheme which is faster than iterative schemes (3)–(11).
To answer the above question in affirmative, we introduce an AA-iterative scheme

{pn : n ∈ Z+} for an averaged mapping to approximate the fixed points of enriched
contraction mappings as follows:

p0 ∈ Ω
pn+1 = Tλqn

qn = Tλ((1− kn)Tλsn + knTλrn)

rn = Tλ((1− on)sn + onTλsn)

sn = (1− wn)pn + wnTλ pn, ∀ n ∈ Z+

(12)

where {wn}, {on} and {kn} are sequences of parameters in (0, 1).
The aim of this paper is to show that an AA-iterative scheme has a faster rate of

convergence than (3)–(11). Strong and week convergence results are also established for
a b-enriched nonexpansive mapping. Numerical examples are presented to compare the
rate of convergence with Ishikawa, Noor, Agarwal et al., Abbas et al. and Thakur et al., M-
iteration and F-iteration for classes of contraction and (b, η)-enriched contraction mappings.
As an application, we approximate the solution of delay fractional differential equations by
using our proposed scheme.

2. Convergence and Stability Results

In this section, we establish convergence and stability of AA-iterative scheme (12)
constructed with (b, η)-enriched contractions mapping in arbitrary Banach space.

Theorem 1. Let Ω be a nonempty closed and convex subset of a Banach space U and T : Ω→ Ω
a (b, η)-enriched contraction mapping with F(T) 6= ∅. Then, the sequence {pn} defined by (12)
converges to a fixed point of T.

Proof. Take b = 1
λ − 1, it follows that λ ∈ (0, 1). Then (2) becomes

‖( 1
λ
− 1)(p− q) + Tp− Tq‖ ≤ η‖p− q‖,

which can be written in an equivalent form as follows:

‖Tλ p− Tλq‖ ≤ ε‖p− q‖, (13)

where ε = λη. As η ∈ (0, b + 1), ε ∈ (0, 1). Thus an averaged operator Tλ is a contraction
with contractive constant ε. Let p∗ ∈ F(T). Then, we have

‖sn − p∗‖ = ‖(1− wn)pn + wnTλ pn − p∗‖
≤ (1− wn)‖pn − p∗‖+ wnε‖pn − p∗‖
= (1− (1− ε)wn)‖pn − p∗‖.
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Further,

‖rn − p∗‖ = ‖Tλ((1− on)sn + onTλsn)− p∗‖
≤ ε[(1− on)‖sn − p∗‖+ onε‖sn − p∗‖
= ε[1− on + onε]‖sn − p∗‖
≤ ε[1− (1− ε)on)][1− (1− ε)wn)]‖pn − p∗‖.

Moreover,

‖qn − p∗‖ = ‖Tλ((1− kn)Tλsn + knTλrn)− p∗‖
≤ ε‖(1− kn)Tλsn + knTλrn − p∗‖
≤ ε[(1− kn)ε‖sn − p∗‖+ knε‖rn − p∗‖]
≤ ε2[(1− kn)‖sn − p∗‖+ kn‖rn − p∗‖]. (14)

Note that

(1− kn)‖sn − p∗‖ ≤ (1− kn)(1− (1− ε)wn)‖pn − p∗‖
= [(1− (kn + wn) + (wn − knwn)ε]‖pn − p∗‖,

and

kn‖rn − p∗‖ ≤ kn[ε[1− (1− ε)on)][1− (1− ε)wn)]‖pn − p∗‖]
= ε[kn − knon − knwn + ε(knon + knwn) + knonwn

− 2εknonwn + ε2knonwn]‖pn − p∗‖.

Now by (14), we have

‖qn − p∗‖ ≤ ε2(1− kn − wn + knwn + ε[kn + wn − 2knwn − knon + knonwn]

+ ε2[knon + knwn − 2knonwn] + ε3[knonwn]
)
‖pn − p∗‖

≤ ε2(1− kn − wn + knwn + ε[kn + wn − 2knwn − knon + knonwn]

+ ε[knon + knwn − 2knonwn] + ε[knonwn]
)
‖pn − p∗‖

= ε2[1− kn − wn + knwn + εkn + εwn − εknwn]‖pn − p∗‖
= ε2[1− (1− ε)(kn + wn − knwn)]‖pn − p∗‖.

Thus,

‖pn+1 − p∗‖ = ‖Tλqn − p∗‖
≤ ε‖qn − p∗‖
≤ ε
[
ε2[1− (1− ε)(kn + wn − knwn)]

]
‖pn − p∗‖

≤ ε3[1− (1− ε)(kn + wn − knwn)]‖pn − p∗‖. (15)

Inductively, we can obtain that

‖pn+1 − p∗‖ ≤ ε3n[1− (1− ε)(kn + wn − knwn)]‖p0 − p∗‖. (16)

As 0 < ε3n(1− (1− ε)(kn + wn − knwn)
)
< 1, {pn} converges to p∗.

Theorem 2. Let Ω be a closed convex subset of a uniformly convex Banach space U and T a
(b, η)-enriched contraction with F(T) 6= ∅. Suppose that the sequences {p(1)n }, {p(2)n }, {p(3)n },
{p(4)n }, {p(5)n }, {p(6)n }, {p(7)n }, {p(8)n }, {pn} given by iterative schemes (4), (5), (6), (7), (8), (9),
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(10), (11), (12), respectively, converge to p∗ ∈ F(T). Then, {pn} converges at a rate faster than the
other schemes.

Proof. Let p∗ ∈ F(T). As proved in Theorem 3 of [21], we have

‖p(4)n+1 − p∗‖ ≤ εn(1− (1− ε)knonwn
)n‖p(4)1 − p∗‖ ∀n ∈ N.

‖p(4)n+1 − p∗‖ ≤ εn(1− (1− ε)knonwn
)n‖p(4)1 − p∗‖ = an (say). (17)

Now, by (16) in above theorem, we have

‖pn+1 − p∗‖ = ε3n(1− (1− ε)(kn + wn − knwn)
)n‖p1 − p∗‖ = bn (say).

Then,

bn

an
=

ε3n(1− (1− ε)(kn + wn − knwn)
)n‖p1 − p∗‖

εn
(
1− (1− ε)knonwn

)n‖p(4)1 − p∗‖

= ε2n
(

1− (1− ε)(kn + wn − knwn)

1− (1− ε)knonwn

)n ‖p1 − p∗‖
‖p(4)1 − p∗‖

. (18)

So, we have bn
an
→ 0 as n→ ∞. Definition (2) implies that {pn} converges faster than

{p(4)n } to the fixed point p∗. Now, the inequality proved in Theorem 3.1 of Thakur et al. [6]

‖p(5)n+1 − p∗‖ ≤ εn(1− (1− ε)wn)
n‖p(5)1 − p∗‖.

Let
‖p(5)n+1 − p∗‖ = εn(1− (1− ε)wn)

n‖p(5)1 − p∗‖ = cn.

So,
bn
cn

=
ε3n
(

1−(1−ε)(kn+wn−knwn)
)n
‖p1−p∗‖

εn(1−(1−ε)wn)n‖p(5)1 −p∗‖

= ε2n
(

1−(1−ε)(kn+wn−knwn)
1−(1−ε)wn

)n
‖p1−p∗‖
‖p(5)1 −p∗‖

.
(19)

So, we have bn
cn
→ 0 as n→ ∞. It implies that {pn} converges faster than {p(5)n } to the

fixed point p∗.
Similarly, we can show that the sequence {pn} has better rate of convergence than all

other sequences define above.

Theorem 3. Let Ω be a nonempty closed and convex subset of a Banach space U and T : Ω→ Ω
a (b, η)-enriched contraction mapping. Then, the iterative scheme defined in (12) is Tλ-stable for
λ = 1

b+1 .

Proof. Let {an} be an approximate sequence of {pn} in Ω. The sequence defined by
iteration (12) is:

pn+1 = f (Tλ, pn) and en = ‖an+1 − f (Tλ, an)‖, n ∈ N.
We need to show that limn→∞ en = 0 if and only if limn→∞ an = p∗.
If limn→∞ en = 0, it follows from (12) that

‖an+1 − p∗‖ ≤ ‖an+1 − f (Tλ, an)‖+ ‖ f (Tλ, an)− p∗‖
= en + ‖pn+1 − p∗‖. (20)

By Theorem 1, we have

‖an+1 − p∗‖ ≤ en + ε3[1− (1− ε)(kn + wn − knwn)]‖an − p∗‖.
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Let
αn = ‖an − p∗‖ and βn = (1− ε)(kn + wn − knwn).

Then,
αn ≤ ε3(1− βn)αn + en.

Since, limn→∞ en = 0, en
βn
→ 0 as n→ ∞.

Now, by Lemma 3, we have limn→∞ αn = 0 and hence limn→∞ an = p∗.
Conversely, if limn→∞ an = p∗, then we have

en =‖an+1 − f (Tλ, an)‖
≤ ‖an+1 − p∗‖+ ‖ f (Tλ, an)− p∗‖
≤ ‖an+1 − p∗‖+ ε3[1− (1− ε)(kn + wn − knwn)]‖an − p∗‖. (21)

This implies that limn→∞ en = 0. Hence, the iterative scheme (12) is Tλ-stable.

We now present an example to support our assertion that our iterative process (12)
converges faster than all other iterative schemes considered herein for the class of (b, η)-
enriched contraction mappings.

Example 1. Let U = R and Ω = [0, 10]. Let T : Ω→ Ω be a mapping given by T(p) = 10− p
for all p ∈ Ω. Choose kn = 10

11 , on = 10
13 and wn = 5

6 , with the initial value of p1 = 8.
Note that T is ( 3

5 , 5
8 )-enriched contraction with fixed point 5. So T5

8
(p) = 25−p

4 .

Our iteration (12), F-iteration (11), M-iteration (10), Thakur et al. (9), Abbas and
Nazir (8), Agarwal et al. (7) and Noor (6) iterative processes are given in Table 1.

Table 1. Convergence comparison of iterative schemes for (b, η)-enriched contraction mapping.

Steps Our Scheme F-Iteration M-Iteration Thakur Abbas Agarwal (S) Noor

1 8.0000000000 8.0000000000 8.0000000000 8.0000000000 8.0000000000 8.0000000000 8.0000000000
2 5.0676378241 5.3769675444 4.4076224301 4.8998176879 3.2590564957 5.2755013581 4.5632864505
3 5.0015249584 5.0473681765 5.1169703950 5.0033454985 6.0102947616 5.0253003327 5.0635729080
4 5.0000343816 5.0059520883 4.9769031205 4.9998882800 4.4137112990 5.0023234253 4.9907456165
5 5.0000007751 5.0007479147 5.0045606911 5.0000037307 5.3402318351 5.0002133689 5.0013471715
6 5.0000000174 5.0000939798 4.9990994496 4.9999998754 4.8025585322 5.0000195944 4.9998038906
7 5.0000000003 5.0000118091 5.0001778219 5.0000000041 5.1145781469 5.0000017994 5.0000285478
8 5.0000000000 5.0000014838 4.9999648874 4.9999999998 4.9335086397 5.0000001652 4.9999958442
9 5.0000000000 5.0000001864 5.0000069333 5.0000000000 5.0385859005 5.0000000151 5.0000006049
10 5.0000000000 5.0000000234 4.9999986309 4.9999999999 4.9776080423 5.0000000013 4.9999999119
11 5.0000000000 5.0000000029 5.0000002703 5.0000000000 5.0129943777 5.0000000001 5.0000000128
12 5.0000000000 5.0000000003 4.9999999466 5.0000000000 4.9924591741 5.0000000000 4.9999999981
13 5.0000000000 5.0000000000 5.0000000105 5.0000000000 5.0043760505 5.0000000000 5.0000000002
14 5.0000000000 5.0000000000 4.9999999979 5.0000000000 4.9974605143 5.0000000000 4.9999999999
15 5.0000000000 5.0000000000 5.0000000004 5.0000000000 5.0014737003 5.0000000000 5.0000000000

Note that all sequences converge to p∗ = 5. The comparison shows that our iteration
scheme (12) converges faster than all the other schemes.

Here we present another numerical example to support our claim.

Example 2. Let U = R, and Ω = [1, 50]. Let T : Ω→ Ω be defined as

T(p) =
√

p2 − 6p + 48

for all p ∈ Ω. Choose kn = 3
4 , on = 1

2 and wn = 1
4 , with the initial value of p1 = 32.
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Our iteration scheme (12) along with other iterative schemes for λ = 1 are given in
Table 2.

All sequences converge to p∗ = 8. The comparison shows that our iteration scheme (12)
has a better rate of convergence than other schemes.

In Table 1 we have the following observations regarding the convergence of fixed point
of (b, η)-enriched contraction mapping mapping by taking initial point x1 = 8. Observe
that our iterative scheme converges to the fixed point p∗ = 5 in eight iterations while other
described iterative schemes took more than 10 iterations for convergence.

In Table 2 we have the following observations regarding the convergence of fixed
point of contraction mapping mapping by taking initial point x1 = 32. Observe that
our iterative scheme converges to the fixed point p∗ = 8 in 12 iterations, F−Iteration
in 14 iterations, M-iteration in 17 iterations and other iterative schemes took more than
30 iterations for convergence.

Table 2. Convergence comparison of iterative schemes for contraction mapping.

Steps Our Scheme F-Iteration M-Iteration Thakur Abbas Agarwal (S) Noor Ishikawa
1 32.000000 32.000000 32.000000 32.000000 32.000000 32.000000 32.000000 32.000000
2 22.278205 23.567093 25.724609 28.244764 28.597925 28.809511 29.184632 29.393312
3 14.413304 16.360701 20.010430 24.655942 25.328526 25.733352 26.459743 26.862041
4 9.773593 11.249118 15.144634 21.277941 22.223234 22.796602 23.842420 24.419226
5 8.306540 8.830832 11.514396 18.169031 19.322437 20.031078 21.353609 22.080669
6 8.044444 8.101773 9.373660 15.402469 16.676705 17.476424 19.018608 19.865335
7 8.006238 8.028979 8.445143 13.061008 14.345486 15.179932 16.867035 17.795540
8 8.000871 8.005104 8.131183 11.216802 12.389581 13.192971 14.931542 15.896548
9 8.000122 8.000896 8.037368 9.894756 10.853750 11.561186 13.244292 14.195061
10 8.000017 8.000157 8.010535 9.042566 9.742503 10.307701 11.830495 12.715924
11 8.000002 8.000027 8.002961 8.545043 9.006551 9.416511 10.700014 11.476899
12 8.000000 8.000004 8.000832 8.275745 8.557262 8.830642 9.840935 10.482609
13 8.000000 8.000001 8.000234 8.136916 8.299859 8.470871 9.219950 9.720547
14 8.000000 8.000000 8.000065 8.067312 8.158591 8.260996 8.790497 9.162136
15 8.000000 8.000000 8.000018 8.032926 8.083060 8.142693 8.503861 8.768990
16 8.000000 8.000000 8.000005 8.016066 8.043271 8.077396 8.317512 8.501076
17 8.000000 8.000000 8.000001 8.007829 8.022479 8.041793 8.198569 8.322954
18 8.000000 8.000000 8.000000 8.003813 8.011660 8.022512 8.123571 8.206601
19 8.000000 8.000000 8.000000 8.001857 8.006044 8.012111 8.076659 8.131513
20 8.000000 8.000000 8.000000 8.000904 8.003131 8.006510 8.047462 8.083445
21 8.000000 8.000000 8.000000 8.000440 8.001622 8.003498 8.029349 8.052835
22 8.000000 8.000000 8.000000 8.000214 8.000840 8.001879 8.018135 8.033409
23 8.000000 8.000000 8.000000 8.000104 8.000435 8.001010 8.011200 8.021107
24 8.000000 8.000000 8.000000 8.000051 8.000225 8.000542 8.006915 8.013328
25 8.000000 8.000000 8.000000 8.000025 8.000117 8.000291 8.004269 8.008413
26 8.000000 8.000000 8.000000 8.000012 8.000060 8.000156 8.002635 8.005309
27 8.000000 8.000000 8.000000 8.000006 8.000031 8.000084 8.001626 8.003350
28 8.000000 8.000000 8.000000 8.000003 8.000016 8.000045 8.001004 8.002114
29 8.000000 8.000000 8.000000 8.000001 8.000008 8.000024 8.000619 8.001334
30 8.000000 8.000000 8.000000 8.000000 8.000004 8.000013 8.000382 8.000841
31 8.000000 8.000000 8.000000 8.000000 8.000002 8.000007 8.000236 8.000531
32 8.000000 8.000000 8.000000 8.000000 8.000001 8.000003 8.000146 8.000335
33 8.000000 8.000000 8.000000 8.000000 8.000000 8.000002 8.000090 8.000211
34 8.000000 8.000000 8.000000 8.000000 8.000000 8.000001 8.000055 8.000133
35 8.000000 8.000000 8.000000 8.000000 8.000000 8.000000 8.000034 8.000084
36 8.000000 8.000000 8.000000 8.000000 8.000000 8.000000 8.000021 8.000053
37 8.000000 8.000000 8.000000 8.000000 8.000000 8.000000 8.000013 8.000033
38 8.000000 8.000000 8.000000 8.000000 8.000000 8.000000 8.000008 8.000021
39 8.000000 8.000000 8.000000 8.000000 8.000000 8.000000 8.000004 8.000013
40 8.000000 8.000000 8.000000 8.000000 8.000000 8.000000 8.000003 8.000008
41 8.000000 8.000000 8.000000 8.000000 8.000000 8.000000 8.000001 8.000005
42 8.000000 8.000000 8.000000 8.000000 8.000000 8.000000 8.000000 8.000003
43 8.000000 8.000000 8.000000 8.000000 8.000000 8.000000 8.000000 8.000002
44 8.000000 8.000000 8.000000 8.000000 8.000000 8.000000 8.000000 8.000001
45 8.000000 8.000000 8.000000 8.000000 8.000000 8.000000 8.000000 8.000000
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In Figures 1 and 2, we test the convergence of different iteration processes for (b, η)-
enriched contraction and contraction, respectively. Observe that in both cases our iterative
scheme is more stable and converges faster to their fixed points than other iterative scheme.
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Figure 1. Convergence behavior of our scheme, F-Iteration, M-Iteration, Thakur, Abbas, Agarwal
and Noor iterations for (b, η)-enriched contraction mapping given in Example 1.
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Figure 2. Convergence behavior of our scheme, F-Iteration, M-Iteration, Thakur, Abbas, Agarwal,
Noor and Ishikawa iterations for contraction mapping given in Example 2.
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3. Convergence Results for b-Enriched Nonexpansive Mappings

This section deals with some convergence results of an iterative process (12).

Theorem 4. Let Ω
′

be a nonempty closed bounded convex subset of a uniformly convex Banach
space U and T : Ω

′ → Ω
′

a b-enriched nonexpansive mapping. Then F(T) 6= ∅.

Proof. Since T is a b-enriched nonexpansive mapping, take b = 1
λ − 1.It follows that

λ ∈ (0, 1). Then by (1) we have

‖( 1
λ
− 1)(p− q) + Tp− Tq‖ ≤ (b + 1)‖p− q‖,

which can be written in equivalent form as

‖Tλ p− Tλq‖ ≤ ‖p− q‖. (22)

That is the averaged operator Tλ is nonexpansive. By means of the Browder’s fixed point
theorem, it follows that Tλ has at least one fixed point. By remark 1, F(Tλ) = F(T) 6= ∅.

Lemma 4. Let Ω
′

be a nonempty bounded closed convex subset of a uniformly convex Banach space
U and T : Ω

′ → Ω
′

a b-enriched nonexpansive mapping. If {pn} is a sequence defined in (12) and
F(T) 6= ∅, then limn→∞ ‖pn − p∗‖ exists for all p∗ ∈ F(T).

Proof. By Theorem 4, an averaged operator Tλ is nonexpansive. Let p∗ ∈ F(Tλ). Then,

‖sn − p∗‖ = ‖(1− wn)pn + wnTλ pn − p∗‖
≤ (1− wn)‖pn − p∗‖+ wn‖Tλ pn − p∗‖
≤ (1− wn)‖pn − p∗‖+ wn‖pn − p∗‖
≤ ‖pn − p∗‖. (23)

Thus,

‖rn − p∗‖ = ‖Tλ((1− on)sn + onTλsn)− p∗‖
≤ ‖(1− on)sn + onTλsn − p∗‖
≤ (1− on)‖sn − p∗‖+ on‖Tλsn − p∗‖
≤ (1− on)‖sn − p∗‖+ on‖sn − p∗‖
≤ ‖sn − p∗‖
≤ ‖pn − p∗‖, (24)

and

‖qn − p∗‖ = ‖Tλ((1− kn)Tλsn + knTλrn)− p∗‖
≤ ‖(1− kn)Tλsn + knTλrn − p∗‖
≤ (1− kn)‖Tλsn − p∗‖+ kn‖Tλrn − p∗‖
≤ (1− kn)‖sn − p∗‖+ kn‖rn − p∗‖
≤ (1− kn)‖sn − p∗‖+ kn‖sn − p∗‖
≤ ‖sn − p∗‖
≤ ‖pn − p∗‖. (25)
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Now,

‖pn+1 − p∗‖ = ‖Tλqn − p∗‖
≤ ‖qn − p∗‖
≤ ‖pn − p∗‖. (26)

So, {‖pn− p∗‖} is a bounded monotone decreasing sequence. Therefore, limn→∞ ‖pn−
p∗‖ exists for all p∗ ∈ F(Tλ) = F(T).

Lemma 5. Let T, Ω
′

and U be as given in Lemma 4 and {pn} a sequence defined by (12) and
F(T) 6= ∅. Then limn→∞ ‖pn − Tλ pn‖ = 0, where λ = 1

b+1 .

Proof. Let p∗ ∈ F(T). Then, by Lemma 4, limn→∞ ‖pn − p∗‖ exists. Suppose that

lim
n→∞

‖pn − p∗‖ = l. (27)

By taking limit supremum as n→ ∞ on both sides of (23)–(25), we have

lim sup
n→∞

‖sn − p∗‖ ≤ l, lim sup
n→∞

‖rn − p∗‖ ≤ l, and

lim sup
n→∞

‖qn − p∗‖ ≤ l. (28)

Since, Tλ is nonexpansive mapping, we have

‖Tλ pn − p∗‖ ≤ ‖pn − p∗‖,
‖Tλrn − p∗‖ ≤ ‖rn − p∗‖, and

‖Tλqn − p∗‖ ≤ ‖qn − p∗‖.

By taking limit supremum on both sides, we obtain

lim sup
n→∞

‖Tλ pn − p∗‖ ≤ l (29)

lim sup
n→∞

‖Tλsn − p∗‖ ≤ l

lim sup
n→∞

‖Tλrn − p∗‖ ≤ l

lim sup
n→∞

‖Tλqn − p∗‖ ≤ l.

Since,

l = lim inf
n→∞

‖pn+1 − p∗‖

= lim inf
n→∞

‖Tqn − p∗‖

≤ lim inf
n→∞

‖qn − p∗‖. (30)

So, from (28) and (30), we have

lim
n→∞

‖qn − p∗‖ = l

and

l = lim
n→∞

‖qn − p∗‖

= lim
n→∞

‖qn − p∗‖.



Mathematics 2022, 10, 273 13 of 20

So,

‖qn − p∗‖ = ‖Tλ((1− kn)Tλsn + knTλrn)− p∗‖
≤ ‖(1− kn)Tλsn + knTλrn − p∗‖
≤ (1− kn)‖sn − p∗‖+ kn‖rn − p∗‖
≤ ‖sn − p∗‖. (31)

Taking lim inf as n→ ∞ on both sides of the above, we obtain

l ≤ lim inf
n→∞

‖sn − p∗‖.

This implies that

l = lim
n→∞

‖sn − p∗‖

= lim
n→∞

‖(1− wn)pn + wnTλ pn − p∗‖

= lim
n→∞

‖(1− wn)(pn − p∗) + wn(Tλ pn − p∗)‖. (32)

from (27), (29) and (32) and by Lemma 1, we have

lim
n→∞

‖pn − Tλ pn‖ = 0.

Theorem 5. Let Ω
′

be a nonempty closed bounded convex subset of a real uniformly convex Banach
space U which satisfies the Opial’s condition [24], and T : Ω

′ → Ω
′

a b-enriched nonexpansive
mapping with F(T) 6= ∅. If {pn} is a sequence defined by (12), then {pn} converges weakly to a
fixed point of T.

Proof. Let p∗ ∈ F(T). Then limn→∞ ‖pn − p∗‖ exists. We prove that {pn} has a unique
subsequential limit in F(T). Let a and b be two weak limits of the subsequences {pni} and
{pnj} of {pn}, respectively. As, limn→∞ ‖pn − Tλ pnk‖ = 0 and I − Tλ is demiclosed with
respect to zero, where λ = 1

b+1 , by Lemma 2 we obtain that Tλa = a. Similarly, we can show
that b ∈ F(Tλ). From Lemma 4, limn→∞ ‖pn − b‖ exists. Next, we prove the uniqueness. If
a 6= b, then by the Opial’s condition, we have

lim
n→∞

‖pn − a‖ ≤ lim
ni→∞

‖pni − a‖

< lim
ni→∞

‖pni − b‖

= lim
n→∞

‖pn − b‖

= lim
nj→∞

‖pnj − b‖

< lim
nj→∞

‖pnj − a‖

= lim
n→∞

‖pn − a‖, (33)

a contradiction, so a = b and hence {pn} converges weakly to a fixed point of Tλ = F(T).

Theorem 6. Let Ω
′

be a nonempty closed bounded convex subset of a uniformly convex Banach
space U and T : Ω

′ → Ω
′

a b-enriched nonexpansive mapping. If {pn} is a sequence defined by (12)
and F(T) 6= ∅, then {pn} converges to a point in F(T) if and only if lim infn→∞ d(pn, F(T)) = 0
or lim supn→∞ d(pn, F(T)) = 0, where d(pn, F(T)) = inf{‖pn − p∗‖ : p∗ ∈ F(T)}.
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Proof. Necessity is obvious.
Conversely, Since p∗ ∈ F(Tλ), so d(pn, F(T)) = d(pn, F(Tλ)).
Suppose that lim infn→∞ d(pn, F(Tλ)) = 0. As proved in Lemma 5, limn→∞ ‖pn − p∗‖

exists for all p∗ ∈ F(Tλ), by the given assumption we have lim infn→∞ d(pn, F(Tλ)) = 0,
therefore limn→∞ d(pn, F(Tλ)) = 0. We now show that {pn} is a Cauchy sequence in Ω

′
. As

limn→∞ d(pn, F(Tλ)) = 0, for given ε > 0 there is m0 ∈ N such that for all n ≥ m0, we have

d(pn, F(Tλ)) <
ε

2
,

which implies that

inf{‖pn − p∗‖ : p∗ ∈ F(Tλ)} <
ε

2
.

In particular, inf{‖pm0 − p∗‖ : p∗ ∈ F(Tλ)} < ε
2 . Hence there exists p∗ ∈ F(Tλ) such

that
‖pm0 − p∗‖ < ε

2
.

Now, for m, n ≥ m0

‖pm+n − pn‖ ≤ ‖pm+n − p∗‖+ ‖pn − p∗‖
≤ ‖pm0 − p∗‖+ ‖pm0 − p∗‖
≤ 2‖pm0 − p∗‖
≤ ε. (34)

This shows that {pn} is a Cauchy sequence in Ω
′
. As Ω

′
is closed and bounded

subset of the Banach space U, there exists a point q∗ ∈ Ω
′

such that limn→∞ pn = q∗. Now,
limn→∞ d(pn, F(Tλ)) = 0 gives that

d(pn, F(Tλ)) = 0⇒ q∗ ∈ F(Tλ) = F(T).

Sentor and Dotson [25] introduced the notion of mapping satisfying Condition (I)
which is given as follows:

Definition 4. A mapping T : Ω
′ → Ω

′
is said to satisfy Condition (I), if there is a nondecreasing

function h : [0, ∞)→ [0, ∞) with h(0) = 0 and h(r) > 0, ∀ r > 0 such that

d(p, Tp) ≥ h(d(p, F(T))),

for all p ∈ Ω
′
, where d(p, F(T)) = inf{d(p, p∗) : p∗ ∈ F(T)}.

We now prove a strong convergence result by using the Condition (I).

Theorem 7. Let Ω
′

be a nonempty closed bounded convex subset of a uniformly convex Banach
space U and T : Ω

′ → Ω
′

a b-enriched nonexpansive mapping. Let {pn} be a sequence defined
by (12) and F(T) 6= ∅. If Tλ satisfies Condition (I) for the value of λ = 1

b+1 , then {pn} converges
strongly to a fixed point of T.

Proof. We proved in Lemma 5 that

lim
n→∞

‖pn − Tλ pn‖ = 0.

From condition (I), we get

lim
n→∞

h(d(pn, F(Tλ))) ≤ lim
n→∞

‖pn − Tλ pn‖ = 0.
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That is, limn→∞ h(d(pn, F(Tλ))) = 0. Since, h : [0, ∞) → [0, ∞) is a nondecreasing
function with h(0) = 0 and h(r) > 0, ∀r ∈ (0, ∞), we have limn→∞ d(pn, F(Tλ)) = 0. By
Theorem 6, the sequence {pn} converges strongly to a point in F(Tλ) = F(T).

4. Application: Solution of Delay Fractional Differential Equations

In 1967, Caputo proposed a new form of fractional differentiation called Caputo’s
fractional derivatives, which is defined as:

CDα
t f (t) =

1
Γ(α− n)

∫ t

a
f (n)(τ)(t− τ)n−α−1dτ, (n− 1 < α < n).

Under natural conditions on the function f (t), for α→ n the Caputo derivative becomes a
conventional n-th derivative of the function f (t). The main advantage of Caputo’s approach
is that the initial conditions for fractional differential equations with Caputo derivatives
take on the same form as for integer-order differential equations, i.e., contain the limit value
of integer-order derivatives of unknown functions at the lower terminal t = a.

In 2017, Cong and Tuan [26] obtained the existence and uniqueness of global solution
of delay fractional differential equations by using properties of Mittag–Leffler functions
and BCP. Many authors have solved the delay differential equations of fractional order
using different approaches. For more details, we refer to [27–31].

Here, we estimate the solution of a delay fractional differential equation [26] by using
an iterative scheme (12) with α ∈ (0, 1). Let h > 0 be any constant and ρ ∈ C([j− h, j] : Rn)
be a continuous mapping.

Consider the following delay Caputo fractional differential equation

cDα p(t) = f (t, p(t), p(t− h)), t ∈ [j, M] (35)

with initial condition
p(t) = ρ(t), t ∈ [j− τ, j], (36)

where p ∈ Rn, f : [j, M]×Rn ×Rn → Rn is continuous, τ > 0 and M > 0. Suppose that
the following conditions are fulfilled.

(c1) f satisfies the Lipschitz condition with respect to 2nd and 3rd variables: That is, there
exists a positive constant L f (depending on f ) such that

‖ f (t, p, q)− f (t, p̂, q̂)‖ ≤ L f (‖p− p̂‖+ ‖q− q̂‖)

for all t ∈ R+ and p, p̂, q, q̂ ∈ Rn.
(c2) There exists a positive constant βL depending upon L such that βL > 2L, that is,

2L
βL

< 1.

A function p∗ ∈ C([j− h, M] : Rn) ∩ C1([j, M] : Rn) is called solution of the initial
value problem if it satisfies (35) and (36).

It is known that [32] finding the solution of (35) and (36) is equivalent to finding the
solution of the following integral equation

p(t) = ρ(t) +
1

Γ(α)

∫ t

j
(t− τ)(α−1) f (τ, p(τ), p(τ − h))dτ ∀t ∈ [j, M],

with p(t) = ρ(t), ∀t ∈ [j− h, M]. Define a norm ‖.‖βL on C([j− h, j] : Rn) by

‖ρ‖βL =
sup ‖ρ(t)‖
Eα(βLtα)

, for any ρ ∈ C([j− h, j] : Rn)
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where Eα : R→ R is a Mittag–Leffler function defined as:

Eα(t) = Σ∞
n=0

tn

Γ(αn + 1)
, ∀ t ∈ R.

Note that C([j− h, j] : Rn, ‖.‖βL) is a Banach space.
Wang et al. [27] proved the existence and uniqueness of solution of delay differential

Equations (35) and (36) provided that the condition (c1) holds. In the following theorem,
we obtain an approximation of the solution using an iterative scheme (12) for λ = 1.

Theorem 8. Let ρ and f be functions as given above. If the conditions (c1) and (c2) are satisfied,
then the problem (35) and (36) has a unique solution p∗ ∈ C([j− h, M] : Rn) ∩ C1([j, M] : Rn)
and the sequence {pn} defined by (12) converges to p∗.

Proof. The existence of unique solution p∗ is followed from [26]. Let {pn} be a sequence of
defined by (12). Define an operator T on C([j− h, M] : Rn) ∩ C1([j, M] : Rn) by:

Tp(t) =

{
ρ(j) + 1

Γ(α)

∫ t
j (t− τ)(α−1) f

(
τ, p(τ), p(τ − h)

)
dτ, t ∈ [j, M],

ρ(t) t ∈ [j− τ, j].

We now prove that pn → p∗ as n→ ∞.
For t ∈ [j− τ, j], it is easy to see that pn → p∗ as n→ ∞.
Now, if t ∈ [j, M], then using the proposed iterative process and conditions (c1) and

(c2), we obtain

‖sn − p∗‖ = ‖(1− wn)pn + wnT1 pn − p∗‖
≤ (1− wn)‖pn − p∗‖+ wn‖T1 pn − p∗‖. (37)

Taking supremum over [j− h, M] on both sides of the above inequality, we have

sup
t∈[j−h,M]

‖sn − p∗‖ =(1− wn) sup
t∈[j−h,M]

‖pn − p∗‖+ wn sup
t∈[j−h,M]

‖T1 pn − T1 p∗‖

=(1− wn) sup
t∈[j−h,M]

‖pn − p∗‖+ wn sup
t∈[j−h,M]

‖ρ(j)+

1
Γ(α)

∫ t

j
(t− τ)(α−1) f (τ, pn(τ), pn(τ − h))dτ − ρ(j)−

1
Γ(α)

∫ t

j
(t− τ)(α−1) f (τ, p∗(τ), p∗(τ − h))dτ‖

=(1− wn) sup
t∈[j−h,M]

‖pn − p∗‖+ wn sup
t∈[j−h,M]

‖

1
Γ(α)

∫ t

j
(t− τ)(α−1) f (τ, pn(τ), pn(τ − h))dτ−

1
Γ(α)

∫ t

j
(t− τ)(α−1) f (τ, p∗(τ), p∗(τ − h))dτ‖

≤(1− wn) sup
t∈[j−h,M]

‖pn − p∗‖+ wn sup
t∈[j−h,M]

1
Γ(α)

∫ t

j
(t− τ)(α−1)

L f (‖pn(τ)− p∗(τ)‖+ ‖pn(τ − h))− p∗(τ − h)‖)dτ

≤(1− wn) sup
t∈[j−h,M]

‖pn − p∗‖+ wn
L f

Γ(α)

∫ t

j
(t− τ)(α−1)dτ(

sup
t∈[j−h,M]

(‖pn(τ)− p∗(τ)‖+ sup
t∈[j−h,M]

‖pn(τ − h))− p∗(τ − h)‖
)
. (38)
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Dividing by Eα(βLtα) on both sides of the above equality, we obtain

supt∈[j−h,M] ‖sn − p∗‖
Eα(βLtα)

=
(1− wn) supt∈[j−h,M] ‖pn − p∗‖

Eα(βLtα)
+ wn

L f

Γ(α)

∫ t

j
(t− τ)(α−1)dτ( supt∈[j−h,M] ‖pn(τ)− p∗(τ)‖

Eα(βLtα)
(39)

+
supt∈[j−h,M] ‖pn(τ − h))− p∗(τ − h)‖

Eα(βLtα)

)
‖sn − p∗‖βL =(1− wn)‖pn − p∗‖βL +

wn

Γ(α)

∫ t

j
(t− τ)(α−1)dτ

L f (‖pn(τ)− p∗(τ)‖βL + ‖pn(τ − h)− p∗(τ − h)‖βL)

=(1− wn)‖pn − p∗‖βL + wn(2L f )‖pn − p∗‖βL

1
Γ(α)

∫ t

j
(t− τ)(α−1)dτ

multiply and divide the right end term by Eα(βLtα), then we have

=(1− wn)‖pn − p∗‖βL +
wn(2L f )

Eα(βLtα)
‖pn − p∗‖βL

1
Γ(α)∫ t

j
(t− τ)(α−1)Eα(βLtα)dτ

=(1− wn)‖pn − p∗‖βL +
wn(2L f )

Eα(βLtα)
‖pn − p∗‖βL . c Iα

(
cDα(

Eα(βLtα)

βL
)

)
(40)

=(1− wn)‖pn − p∗‖βL +
wn(2L f )

Eα(βLtα)
.
Eα(βLtα)

βL
‖pn − p∗‖βL

=(1− wn)‖pn − p∗‖βL +
wn(2L f )

βL
‖pn − p∗‖βL .

As
2L f
βL

< 1, we obtain

‖sn − p∗‖βL ≤ ‖pn − p∗‖βL . (41)

Let un = (1− on)sn + onTλsn. Then by following similar arguments to those given
above, we have

‖un − p∗‖βL ≤ ‖sn − p∗‖βL ≤ ‖pn − p∗‖βL . (42)

Thus,

‖rn − p∗‖ =‖Tun − Tp∗‖

=‖ρ(j) +
1

Γ(α)

∫ t

j
(t− τ)(α−1) f (τ, un(τ), un(τ − h))dτ − ρ(j)−

1
Γ(α)

∫ t

j
(t− τ)(α−1) f (τ, p∗(τ), p∗(τ − h))dτ‖ (43)

≤ 1
Γ(α)

∫ t

j
(t− τ)(α−1)L f

(
‖u(τ)− p∗(τ)‖+ ‖u(τ − h)− p∗(τ − h)‖

)
dτ.
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Taking supremum over [j− h, M] and dividing by Eα(βLtα) on both sides of the above
inequality, we obtain

sup
t∈[j−h,M]

‖rn − p∗‖
Eα(βLtα)

=
1

Γ(α)

∫ t

j
(t− τ)(α−1)L f

[
sup

t∈[j−h,M]

‖U(τ)− p∗(τ)‖
Eα(βLtα)

+ sup
t∈[j−h,M]

‖U(t− h)− p∗(t− h)‖
Eα(βLtα)

]
dt

‖rn − p∗‖βL ≤
2L f

Eα(βLtα)
‖un − p∗‖βL

1
Γ(α)

∫ t

j
(t− τ)(Γ−1)Eα(βLtα)dτ (44)

=
2L f

Eα(βLtα)
‖un − p∗‖βL . c Iα

(
cDα(

Eα(βLtα)

βL
)

)
=

2L f

Eα(βLtα)
.
Eα(βLtα)

βL
‖un − p∗‖βL

=
2L f

βL
‖un − p∗‖βL .

Again by
2L f
βL

< 1 , we obtain

‖rn − p∗‖βL ≤ ‖un − p∗‖βL . (45)

So,
‖rn − p∗‖βL ≤ ‖pn − p∗‖βL . (46)

Similarly,

‖qn − p∗‖βL ≤‖pn − p∗‖βL . (47)

‖pn+1 − p∗‖βL ≤‖pn − p∗‖βL . (48)

If we set, ‖pn − p∗‖βL = νn, then we have

νn+1 ≤ νn ∀ n ∈ N. (49)

Thus {νn} is a monotone decreasing sequence of positive real numbers. Further, it is
bounded sequence, we obtain

lim
n→∞

νn = inf{νn} = 0.

So,
lim

n→∞
‖pn − p∗‖βL = 0.

5. Conclusions

In this paper we approximate the fixed point of (b, η)-enriched contraction mapping
by using a new iterative scheme (define by Abbas and Asghar) in the frame work of Banach
spaces. It is also proved that the proposed iterative scheme is stable and converges faster
than Picard, Mann, Ishikawa, Noor, Agarwal, Abbas, Thakur, M-iteration and F-iteration.
We presented some numerical examples to support our claim. Further, we proved some
strong and weak convergence results for b-enriched nonexpansive mapping in uniformly
convex Banach space. In the end, using our proposed iterative scheme we approximated
the solution of delay fractional differential equations.
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