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Abstract: Broadcasting problems in graph theory play a significant role in solving many complicated
physical problems. However, in real life there are many vague situations that sometimes cannot be
modeled using usual graphs. Consequently, the concept of a fuzzy graph GF : (V, σ, µ) has been
introduced to deal with such problems. In this study, we are interested in defining the notion of
dominating broadcasts in fuzzy graphs. We also show that, in a connected fuzzy graph containing
more than one element in σ∗, a dominating broadcast always exists, where σ∗ is {v ∈ V|σ(v) > 0}.
In addition, we investigate the relationship between broadcast domination numbers, radii, and
domination numbers in a fuzzy graph as follows; γb(GF) ≤ min{r(GF), γ(GF)}, where γb(GF) is the
broadcast domination number, r(GF) is the radius, and γ(GF) is domination numbers in fuzzy graph
GF, with |σ∗| > 1.

Keywords: dominating broadcast; broadcast domination number; domination number; fuzzy graph

1. Introduction

In mathematics, a graph, G, is a mathematical structure consisting of a nonempty set,
V(G), of vertices and a set, E(G), of edges. If there is an edge between two vertices, u and v,
in V(G), then we say that u and v are adjacent. Additionally, if u and v are distinct vertices in
G, then a u− v path of length n is a finite sequence of distinct vertices u = u0, u1, u2, . . ., un = v,
such that vertices ui−1 and ui are adjacent where i ∈ {1, 2, 3, . . ., n}. A u− v path with the
minimum possible length is called the shortest path from u to v, and its length is denoted
by d(u, v). If there is no path from u to v, then d(u, v) is ∞. In addition to this, d(u, u) = 0
for all u ∈ V(G). A graph, G, is said to be connected if there is a path between any two
distinct vertices in G. Otherwise, G is said to be disconnected. In a connected graph G,
the eccentricity of a vertex, v ∈ V(G), is defined as e(v) = max{d(u, v)|u ∈ V(G)}, and
the diameter of G is defined as diam(G) = max{e(v)|v ∈ V(G)}. Moreover, a function
f : V(G) → {0, 1, 2, . . ., diam(G)} is called a broadcast if f (v) ≤ e(v) for each vertex v
in V(G).

Graph theory was first developed by Euler [1] in 1736 who studied the Königsberg
bridge problem. Since then, graph theory has become widely known. A graph can be
applied to a model in communication, data network, and the science, such as biology,
chemistry, and computer science [2,3]. Graph theory is considered to be a tool that can
be used to solve optimization problems such as selecting routes which may be longer
but less cost in a communication network. Broadcasts [4,5] in graphs have played an
important role in solving these problems. For example, the least number of Wi-Fi routers
must be set in a building, so that every room in the building can receive a Wi-Fi signal
while minimizing expenses. This problem can be represented by a graph whose vertices
represent the locations of the Wi-Fi routers in the building. If the distance between any
two vertices does not exceed the limit of signal transportation, then there is an edge joining
them. The suitable positions of Wi-Fi routers in this problem can be determined using
broadcasts in graphs. However, broadcasts in usual graphs cannot solve certain real life
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problems, because, sometimes, there are some vague data that have to be considered in
constructing a graph model for a problem. Uncertainty theories have been developed to
find an answer to such problems. One concept developed in such theories that has been
studied and applied to various physical problems is known as the “fuzzy set”.

Fuzzy sets were firstly introduced by Zadeh [6] in 1965. He noticed that the member-
ships of some classes of objects in the real world are not exactly imposed. For instance, dogs,
cats, and birds obviously fall under the class of ’animals’, whereas starfish and bacteria
cannot be characterized. Similarly, the class of ’beautiful women’ or the class of ’tall men’
cannot be identified as classes in mathematical terms. However, these characterizations can
be completed by human thinking rules. Firstly, the notion of a fuzzy graph was introduced
by Kauffman [7] in 1973, that study used the fuzzy relations, defined by Zadeh [8] in 1971,
on classical sets. Later, in 1975, Rosenfeld [9] showed that fuzzy relations defined on fuzzy
sets can have practical uses with graphs, and this led to generalizing the definition of fuzzy
graphs. He combined his knowledge about fuzzy sets and graph theory to introduce the
notion of a fuzzy graph. A fuzzy graph is a triple (V, σ, µ), where V is a nonempty set,
σ : V → [0, 1] and µ : V×V → [0, 1], such that for any u, v ∈ V, µ(u, v) ≤ min{σ(u), σ(v)}.
He also developed the theory of fuzzy graphs. After that, fuzzy graph theory became an
important area of mathematical research, presenting networks with ambiguity. The benefits
of fuzzy graphs are widely studied in various aspects and applied in various fields. In 2013,
Dey and Pal [10] designed a traffic network using a fuzzy graph model. This traffic network
helps to reduce the waiting time of conveyance on the road. In 2015, Lytvynenko et al. [11]
used a fuzzy graph theory to find the traveling times over short distances of an army. They
determined the values of the slope of the road and the obstacles to travel as a membership
function and solved the problem of finding the optimal route using fuzzy graphs. In 2011,
Gani [12] studied domination, independent domination, and irredundance using a fuzzy
graph, GF. In addition, she demonstrated the relationship between parameters ir(GF),
γ(GF), and i(GF), where ir(GF) is the minimum cardinality taken over all maximal irre-
dundant sets of GF, γ(GF) is the minimum cardinality taken from all minimal dominating
sets of GF, and i(GF) is the minimum cardinality taken over all maximal independent
dominating sets of GF, respectively. Later, in 2014, Tom and Sunitha [13] proposed the
notion of a fuzzy graph for measuring eccentricity, radius, diameter, and some of their
properties. Afterward, in 2015, Manjusha and Sunitha [14] discovered the notion of strong
domination using membership values of strong arcs in fuzzy graphs.

In this study, we are interested in defining the notion of dominating broadcasts in
fuzzy graphs. We show that, in a connected fuzzy graph containing more than one element
in σ∗, a dominating broadcast always exists. In addition, we investigate the relationship
between γb(GF), γ(GF), and r(GF), where γb(GF), γ(GF), and r(GF) are defined as the
broadcast domination number, domination number, and radius in GF, respectively.

2. Preliminaries

In this section, we provide fundamental definitions used when discussing fuzzy
graphs and their related essentials. Throughout this paper, let GF : (V, σ, µ) be a fuzzy
graph, where V is a nonempty set, σ : V → [0, 1] is a membership function of V, and
µ : V × V → [0, 1] is a fuzzy relation of V, such that µ(u, v) ≤ min{σ(u), σ(v)}, for all
u, v ∈ V. We assume that V is finite and nonempty and that µ is anti-reflexive and
symmetric. An ordered pair, (u, v) ∈ V × V, is called an arc. When the value of a
membership function is zero, it shows nonexistence. So, the vertices v whose σ(v) = 0
and the arc (u, v) whose µ(u, v) = 0 will not be considered in a fuzzy graph, as discussed
in [13]. For simplicity, a fuzzy graph, GF : (V, σ, µ), is written referred to as GF throughout
this paper, unless explicitly stated otherwise. For example, let V = {u1, u2, . . . , u7} and
σ : V → [0, 1] be defined by

σ(ui) =

{
i

10 if i is odd,
0 otherwise,
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for all 1 ≤ i ≤ 7. Let µ : V ×V → [0, 1] be defined by µ(ui, uj) = min {σ(ui), σ(uj)} for all
1 ≤ i < j ≤ 7. The picture of this fuzzy graph is shown in Figure 1. The underlying crisp
graph of a fuzzy graph GF is denoted by G∗F : (σ∗, µ∗), where σ∗ = {u ∈ V|σ(u) > 0} and
µ∗ = {(u, v) ∈ V ×V|µ(u, v) > 0}.

A path of length n in a fuzzy graph GF : (V, σ, µ) is a sequence of distinct elements,
u0, u1, u2, . . ., un in V, such that µ(ui−1, ui) > 0 for all i ∈ {1, 2, 3, . . ., n}. The strength of a
sequence of distinct elements u0, u1, . . ., un in V is min{µ(ui−1, ui)|i ∈ {1, 2, 3, . . ., n}}.

The strength of connectedness between two vertices, u and v, in a fuzzy graph GF,
denoted by CONNGF (u, v), is defined as the maximum of the strengths of all the sequences
of distinct elements u0, u1, u2, . . ., un in V, such that u0 = u and un = v. For example, let
GF be a fuzzy graph as shown in Figure 1. Then, CONNGF (u3, u7) = 0.3. The fuzzy graph
GF is said to be connected if CONNGF (u, v) > 0 for all u, v ∈ σ∗. Otherwise, GF is said to
be disconnected. Notice that the fuzzy graph in Figure 1 is connected.

u1(0.1) u3(0.3)

u5(0.5)u7(0.7)

0.1

0.1

0.1
0.3

0.3

0.5

Figure 1. An example of a fuzzy graph.

In this study, we focus only on connected fuzzy graphs. So we assume throughout that
GF is a connected fuzzy graph. The distance between two vertices u and v in GF, denoted
by ds(u, v), is defined by

ds(u, v) = min

{
n

∑
i=1

µ(ui−1, ui)|u = u0, u1, u2, . . ., un = v is a path in GF

}
.

In particular, ds(u, u) = 0 for all u ∈ σ∗. One can regard ds as a function from σ∗ × σ∗

to [0, ∞). The eccentricity of a vertex v ∈ σ∗ is defined as eF(v) = max{ds(u, v)|u ∈ σ∗}.
In other words, the eccentricity is the maximum distance from v to any vertex in σ∗. The
radius and diameter of GF are defined as r(GF) = min{eF(v)|v ∈ σ∗} and diamF(GF) =
max{eF(v)|v ∈ σ∗}, respectively. One can see that the concepts of distance, eccentricity,
radius, and diameter are similar to the usual ones defined in graph theory. As mentioned
in the previous section, we are interested in studying the concepts of broadcasts and
dominating broadcasts in fuzzy graphs. However, the definition of broadcasts in fuzzy
graphs has not yet been defined. So, we will introduce the notion of broadcasts and study
their properties in the next section.

3. Results

In this section, we introduce the definitions of broadcasts and dominating broadcasts
of fuzzy graphs in Section 3.1. We show the relationship between γ(GF), γb(GF), and r(GF),
where γ(GF) is the domination numbers, γb(GF) is the broadcast domination number, and
r(GF) is the radius in GF, in Section 3.2.

3.1. Broadcasts and Dominating Broadcasts in Fuzzy Graphs

Definition 1. Let GF be a fuzzy graph containing more than one element in σ∗. For each
v ∈ σ∗, define

ms(v) = min{strength of P | P is a path from v to a vertex u ∈ σ∗ − {v}}.
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Note that min{strength of P | P is a path from v to u} ≤ ds(v, u), and thus, ms(v) ≤
ds(v, u) for all u ∈ σ∗ − {v}. Therefore, ms(v) ≤ max{ds(v, u) | u ∈ σ∗ − {v}} = eF(v).

Definition 2. Let GF be a fuzzy graph. A function f : σ∗ → [0, diamF(GF)] is a broadcast in
GF if either f (v) = 0 or ms(v) ≤ f (v) ≤ eF(v) for all v ∈ σ∗.

According to the definition of broadcasts in fuzzy graphs proposed in this work, we
need any broadcast, f , mapping each vertex, v, to equal 0, which means this vertex cannot
send a signal to other vertices in the graph or that ms(v) ≤ f (v) can ensure that at least
one vertex in the graph can receive a signal from v through a connecting path.

Definition 3. The cost of a broadcast f in a fuzzy graph GF is defined as ∑( f ) = ∑v∈σ∗ f (v).

One can see that there can be more than one broadcast in a fuzzy graph. Let GF :
(V, σ, µ) be a fuzzy graph containing more than one element in σ∗. Let v ∈ σ∗ be given.
One can define f (v) = eF(v) and f (u) = 0 for all u ∈ σ∗ − {v}. Then, f is a broadcast.
If x ∈ σ∗ − {v}, then we can define another broadcast, g : σ∗ → [0, diamF(GF)], by
g(x) = eF(x) and g(u) = 0 for all u ∈ σ∗ − {x}. As a result, there are at least two
broadcasts in GF.

Definition 4. Let f be a broadcast in a fuzzy graph GF. A vertex v in σ∗ is called a broadcast
vertex if f (v) > 0. The set of all broadcast vertices of GF is denoted by σ∗f+ .

Definition 5. A broadcast f in a fuzzy graph GF is called a dominating broadcast if for each
vertex, u, in σ∗, there exists a vertex, v ∈ σ∗f+ , such that ds(u, v) ≤ f (v).

For each v ∈ σ∗, define f : σ∗ → [0, diamF(GF)] by f (v) = eF(v) and f (u) = 0,
for all u ∈ σ∗ − {v}. Then, f is a broadcast in GF, such that σ∗f+ = {v}. Moreover,
ds(u, v) ≤ eF(v) = f (v) for all u ∈ σ∗. Therefore, f dominates. As a result, there exists a
dominating broadcast in a connected fuzzy graph containing more than one vertex in σ∗.

If GF is a fuzzy graph with only one vertex in σ∗, then diamF(GF) = 0. This implies
that there is only one broadcast on GF in which f (σ∗) = {0}. However, this broadcast is
not a dominating broadcast, because σ∗f+ = ∅.

3.2. The Relationship between Domination Numbers and Radius in Fuzzy Graphs

In this section, we demonstrate the relationship between domination numbers and
radius in fuzzy graphs.

Definition 6 ([13]). An arc of a fuzzy graph is called strong if its membership function value is at
least as great as the strength of the connectedness between its endpoints when it is deleted.

Definition 7 ([12]). Let GF be a fuzzy graph. A subset D of σ∗ is said to be a fuzzy dominating
set of GF if, for every v ∈ σ∗ − D, there exists u ∈ D, such that (u, v) is a strong arc.

Definition 8 ([12]). A fuzzy dominating set, D, of a fuzzy graph, GF, is called a minimal
dominating set of GF, if, for every vertex v ∈ D, the set D− {v} is not a dominating set.

Theorem 1. Let GF be a connected fuzzy graph containing more than one vertex in σ∗. Then, for
each v ∈ σ∗, the set σ∗ − {v} is a fuzzy dominating set of GF.

Proof. Let v ∈ σ∗. As |σ∗| > 1, we have σ∗−{v} 6= ∅. Moreover, {u ∈ σ∗ | µ(u, v) > 0} 6= ∅
because GF is connected. Let u ∈ σ∗ − {v} be such that µ(u, v) = max{µ(a, v)|a ∈ σ∗}.
Then, CONNG(v, u) ≤ µ(v, u). Therefore, (u, v) is strong and, thus, σ∗ − {v} is a fuzzy
dominating set.
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Let GF be a connected fuzzy graph containing more than one vertex in σ∗. As a result
of Theorem 1, there always exists a minimal dominating set which is not σ∗.

Definition 9 ([12]). The domination number γ(GF) is the minimum number of cardinalities
taken over all minimal dominating sets of GF.

Definition 10. The broadcast domination number of GF, denoted by γb(GF), is inf{∑( f ) | f ,
which is a dominating broadcast of GF}.

Proposition 1. Let GF be a connected fuzzy graph containing more than one vertex in σ∗. Then,

γb(GF) ≤ r(GF).

Proof. Let v ∈ σ∗ be such that eF(v) = r(GF). We define f : σ∗ → [0, diamF(GF)] by:

f (x) =
{

r(GF) if x = v,
0 if x 6= v,

for all x ∈ σ∗. From this, 0 ≤ r(GF) ≤ diamF(GF). For each x ∈ σ∗, if x = v, then
f (x) = r(GF) = eF(v) ≥ ms(v) and, if x 6= v, then f (x) = 0. Therefore, f is a broadcast.
For each x ∈ σ∗, we have ds(x, v) ≤ eF(v) = r(GF) = f (v). Then, ds(x, v) ≤ f (v) for all
x ∈ σ∗. Therefore, f is a dominating broadcast. Since ∑( f ) = ∑v∈σ∗

f+
f (v) = r(GF), we

have γb(GF) ≤ ∑( f ) = r(GF). Therefore, γb(GF) ≤ r(GF).

Proposition 2. Let GF be a connected fuzzy graph containing more than one vertex in σ∗. Then:

γb(GF) ≤ γ(GF).

Proof. First, from Definition 9, we can choose a fuzzy dominating set, S, of GF, such
that |S| = γ(GF). It follows from Theorem 1 that S 6= σ∗. Then, we define f : σ∗ →
[0, diamF(GF)] by

f (v) =

{
0 if v /∈ S,
min{1, eF(v)} if v ∈ S,

for all v ∈ σ∗. Let a ∈ σ∗. If a ∈ S, we know that f (a) = min{1, eF(a)} ≤ eF(a) ≤
diamF(GF). If a /∈ S, then f (a) = 0 ≤ diamF(GF). Hence, f is well defined. Notice that
ms(v) ≤ 1 and ms(v) ≤ eF(v) for all v ∈ σ∗. It follows that, for each v ∈ σ∗, if f (v) 6= 0,
then ms(v) ≤ f (v) ≤ eF(v). Therefore, f is a broadcast. We know that σ∗f+ = S, since
GF is connected. Next, we show that f is a dominating broadcast. Let a ∈ σ∗. If a ∈ S,
then a ∈ σ∗f+ , and ds(a, a) = 0 ≤ f (a). On the other hand, if a /∈ S , then there is an
element b ∈ S, such that (a, b) is a strong arc. It follows that b ∈ σ∗f+ , ds(a, b) ≤ µ(a, b) ≤ 1,
and ds(a, b) ≤ eF(b). This implies that ds(a, b) ≤ min{1, eF(b)} = f (b). Therefore, f is a
dominating broadcast. Note that γb(GF) ≤ ∑a∈σ∗

f+
f (a) = ∑a∈S f (a). Moreover, for each

a ∈ S, we know that f (a) = min{1, eF(a)} ≤ 1. Thus, we obtain that ∑a∈S f (a) ≤ |S|. It
follows from Definition 10 that γb(GF) ≤ |S|. Since |S| = γ(GF), we can conclude that
γb(GF) ≤ γ(GF).

As a consequence of Propositions 1 and 2, we obtain the following result.

Theorem 2. Let GF be a connected fuzzy graph containing more than one vertex in σ∗. Then,
γb(GF) ≤ min{r(GF), γ(GF)}.

3.3. An Application of Broadcasts in Fuzzy Graphs

In this section, we provide an example of applications of broadcasts in fuzzy graphs.
The example refers to a problem concerning the suitability of the locations chosen to build
the distribution centers (warehouses) of a manufacturer.
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One of the concerns is reducing the transportation cost from the product manufac-
turer to the retail stores. The product manufacturer will only distribute the products to
distribution centers. Then, each distribution center will deliver these products to retail
stores [15]. There are five main factors to take into account when considering the suitability
of the locations of warehouses. These factors consist of adequate spaces, customer services,
favorable traffic, connections with suppliers and the retail stores, easy freeway accesses,
and a qualified workforce [16]. The suitability degree measurement assists in designing the
locations of the warehouses. On the other hand, if the unsuitability of any location is in the
lowest degree, then these locations are qualified choices.

We assume that the manufacturer would like to distribute their products to seven
cities, A, B, C, D, E, F, and G. An expert investigates all five factors of suitability and turns
them into scores between 1 and 5 as follows:

An average score between 1.00–1.49 indicates the lowest suitability level.
An average score between 1.50–2.49 indicates a low suitability level.
An average score between 2.50–3.49 indicates a moderate suitability level.
An average score between 3.50–4.49 indicates a high suitability level.
An average score between 4.50–5.00 indicates the highest suitability level.

In order to apply the idea of broadcasts in fuzzy graphs to this situation, we let
V = {A, B, C, D, E, F, G}. Then, we turn these scores into normalized average score be-
tween 0 to 1 of the unsuitability of the warehouse locations shown in Figure 2, using the
function σ : V → [0, 1] defined by

σ(x) =

{
e1−s(x) if s(x) ≥ 1,
1 otherwise,

for all x ∈ V, where s(x) is the average score of suitability as shown in Table 1. Next, we let
µ be the degree of measurement of the available traveling path between any two considered
cities. That is, µ : V ×V → [0, 1] is a function defined by:

µ(a, b) = min{σ(a), σ(b)},

for all a, b ∈ V. Then, such defined functions and the set V make the triple (V, σ, µ) be a
fuzzy graph GF. In order to find the most suitable warehouse location for this problem, we
apply broadcasts in fuzzy graphs to this situation.

A(0.02)
B(0.05)

G(0.07)

F(0.11)

E(0.14)
D(0.25)

C(0.37)

Figure 2. This figure represents the dominating broadcast, f2, when the cities B and D are chosen to
be warehouses. The vertices represent seven cities: A, B, C, D, E, F, and G. The number label on each
vertex represents its membership value derived from the average score of suitability in Table 1. An
edge appearing in this figure shows the ability to distribute the products between cities.
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Table 1. The average suitability and unsuitability scores of the warehouse locations.

Cities Average Score of Suitability Score of Unsuitability

A 4.9 0.02
B 4 0.05
C 2 0.37
D 2.4 0.25
E 3 0.14
F 3.2 0.11
G 3.6 0.07

We consider the domination number of GF. Notice that the minimum cardinalities
taken over all minimal dominating sets of this fuzzy graph is 1. Moreover, from Table 2,
we see that r(GF) = eF(F) = 0.25. Moreover, {F} is a minimal dominating set. It follows
from Theorem 2 that γb(GF) ≤ min{0.25, 1}. Therefore, we obtain that γb(GF) ≤ 0.25. The
diameter of this fuzzy graph is 0.39. We can consider the cost of a fuzzy broadcast to be the
damage of operating the warehouses at the vertices (i.e., cities) according to the broadcast.
The damage can be considered to be the increased financial cost that the owner has to pay,
the increased time-wasting in logistics, or the increase of environmental pollution caused
by operating the warehouses at the selected places. If we define f1 : V → [0, 0.39] by
f1(F) = 0.25, f1(A) = 0, f1(B) = 0, f1(C) = 0, f1(D) = 0, f1(E) = 0, and f1(G) = 0, then
f1 is a broadcast in GF and σ∗

f+1
= {F}. We know ds(a, F) ≤ eF(F) for all a ∈ V. Hence, f1 is

a dominating broadcast. The cost of the broadcast f1 is 0.25, which is a score of unsuitability.
Note that the city whose value is f1, attains a score of 0 in terms of suitability and will not
be chosen as a warehouse. This means that, according to the values of f1, we will choose
the city F as a warehouse.

On the other hand, if we let f2 be defined by f2(B) = 0.05, f2(D) = 0.14, f2(A) = 0,
f2(C) = 0, f2(E) = 0, and f2(F) = 0, then f2 is a broadcast in GF, as shown in Figure 2.
Moreover, ds(E, D) ≤ f2(D), ds(F, D) ≤ f2(D), ds(A, B) ≤ f2(B), ds(G, B) ≤ f2(B), and
ds(C, B) ≤ f2(B), Therefore, f2 is a dominating broadcast. The cost of the broadcast f2 is
0.19, which is less than that of f1. This implies that constructing warehouses in cities D and
B will be more suitable than constructing a warehouse only in city F.

However, constructing two warehouse uses more money than constructing only one
warehouse. Thus, the manufacturer needs to compare the benefits that they will receive in
the long run.

Table 2. Present distance between two cities and eccentricity of each city.

Distance between
Two Cities A B C D E F G Eccentricity

of Each City

A 0 0.02 0.07 0.25 0.39 0.14 0.07 0.39
B 0.02 0 0.05 0.23 0.37 0.12 0.05 0.37
C 0.07 0.05 0 0.25 0.39 0.17 0.1 0.39
D 0.25 0.23 0.25 0 0.14 0.11 0.18 0.25
E 0.39 0.39 0.39 0.14 0 0.25 0.32 0.39
F 0.14 0.12 0.17 0.11 0.25 0 0.07 0.25
G 0.02 0.05 0.1 0.18 0.32 0.7 0 0.32

4. Conclusions

In this work, we were interested in defining the concepts of broadcasts and dominating
broadcasts in fuzzy graphs. In usual graph theory, these two concepts can be applied
to minimize transportation problems and costs in communication networks. However,
broadcasts in graphs cannot solve some real life problems because sometimes there are
a few data that must be considered when constructing a graph model for a problem.
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As a consequence, we need the idea of fuzzy theory to deal with such complications
in graph models. In Section 3, we proposed a definition of a broadcast in connected
fuzzy graphs in Definition 2. We showed that there can be more than one broadcast in
a connected fuzzy graph containing more than one vertex in σ∗. We also introduced the
definition of dominating broadcasts in connected fuzzy graphs. We have proven that
a dominating broadcast in a connected fuzzy graph containing more than one vertex
in σ∗ exists. Moreover, it has been shown that there can be more than one dominating
broadcast in a connected fuzzy graph. Afterward, we calculated the relationship between
γb(GF), r(GF), and γ(GF), where γb(GF) is the broadcast domination number, r(GF) is the
radius, and γ(GF) is the broadcast domination number of a connected fuzzy graph GF. The
study shows the following inequality:

γb(GF) ≤ min{r(GF), γ(GF)},

which is comparable to the one outlined in Erwin’s work [5].
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