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Abstract: This study addresses the problem of non-stop passage by vehicles at intersections based
on special processing of data from a road camera or video detector. The basic task in this article is
formulated as a forecast for the release time of a controlled intersection by non-group vehicles, taking
into account their classification and determining their number in the queue. To solve the problem
posed, the YOLOv3 neural network and the modified SORT object tracker were used. The work
uses a heuristic region-based algorithm in classifying and measuring the parameters of the queue of
vehicles. On the basis of fuzzy logic methods, a model for predicting the passage time of a queue of
vehicles at controlled intersections was developed and refined. The elaborated technique allows one
to reduce the forced number of stops at controlled intersections of connected vehicles by choosing the
optimal speed mode. The transmission of information on the predicted delay time at a controlled
intersection is locally possible due to the V2X communication of the road controller equipment, and
in the horizontally scaled mode due to the interaction of HAV—the Digital Road Model.

Keywords: traffic signal control; machine learning; intelligent transport systems; unmanned vehicles

1. Introduction

There is a continuous and uncontrolled increase in the number of cars in many major
cities around the world. This phenomenon gives rise to many issues in the management of
the transport system, such as traffic jams, environmental degradation, and the growth of
traffic accidents [1–7]. Current solutions and technologies for traffic movement regulation,
such as the “green wave”, “Smart traffic light”, and an increase in the number of lanes, have
nearly reached their limit [8–14]. In order to organize the non-stop passage of intersections,
various groups of scientists are developing applications that provide communication
between vehicles and infrastructure Vehicle to Vehicle (V2V) and Vehicle to Infrastructure
(V2I). The combination of V2V and V2I, known as the Vehicle to Everything (V2X) link,
provides an estimate of traffic density [15–23]. This ensures calculation of the optimal speed
of the vehicle to minimize the engine idling when stopping at intersections [24–30]. There
are already lots of prototypes of such solutions to date, some of which have already passed
a number of tests and are used as commercial and non-commercial products. Moreover, the
features provided by such assistants may be quite different from each other. Lack of timely
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and accurate data from drivers on the operation mode of traffic lights and the presence
of a transport queue at the intersection do not allow them to choose a speed that ensures
non-stop travel.

Modern car navigators can plot a route taking into account the traffic organization and
support address search. They can have an extensive infrastructure base. Some models can
receive and take into account information on the traffic situation while planning a route,
and, if possible, avoiding serious traffic congestion.

In recent years, researchers and major car manufacturers have been developing and
implementing driver assistance systems (Connected Assistants) that will dictate how fast
the vehicle needs to move and when the traffic light at the nearest intersection will change.
In 2016, Audi, in cooperation with Traffic Technology Services, started testing the Audi
Traffic Light Information (TLI) “assistant” [22]. This system displays a panel (or display)
countdown until the green traffic light signal of the traffic light turns on (if the red signal is
active); the countdown until the stop traffic light signal turns on simultaneously with the
recommended speed (if the green signal is active). BMW has an app called Traffic Light
Assistant (TLA), which requires a connected smartphone. The difference between TLA
and TLI lies in providing information on traffic signals with variable phase times. In the
future, adaptive cruise control may be added to these assistants, which allows the car to
slow down and then stop, burning even less fuel [27]. The characteristic feature of such
assistants is that they take into account traffic lights located in front at a distance of up to
180 m. They also take into account some of the cars located nearby, but only those in which
the same systems are installed. The advantages of using V2V and V2I are obvious, yet there
are problems related to their use. The communication between infrastructure and vehicles
is enabled by the use of wireless data transmission technologies [28,30].

To ensure the safety and sustainable movement of traffic flows, continuous access
to the network and secure communication are required regardless of the mobility of the
vehicle [23]. The disadvantages of these systems are also represented by the delay in data
transmission and the lack of accurate information on the parameters of road traffic at the
following intersection. However, these solutions have a common drawback—they do not
take into account the fact that queues are formed in front of the intersections, waiting for a
traffic light to continue driving.

The active development of information technology (IT) solutions (the use of modern
achievements in the field of computer technology, high technologies, the latest means
of communication, and software) for recognition and classification of transport, with
the interpretation of big data from outdoor video surveillance cameras as the classic
equipment of intelligent transport systems, provides ample opportunities in tackling the
challenges of ensuring the stable road traffic, as well as serves as a good addition to V2X
communications [31–37].

Therefore, due to the means of digital road infrastructure, road users, including highly
automated vehicles, receive additional situational awareness of the traffic conditions on
the route. One of the services implemented by this system is the provision of the non-stop
passage of highly automated vehicles at controlled intersections.

The results obtained in this paper are essential from a practical standpoint. The
recommended speed for vehicles approaching a signalized intersection is calculated by a
new predictive system that solves the problem of reducing the number of stops at regulated
intersections of connected vehicles. The paper describes the problem of determining the
possibility of crossing an intersection according to the set characteristics and calculates the
required travel speed. It gives a possible solution to this problem. To solve the problem,
the following parameters are taken into account: the distance between the car and the
intersection, the regulation phase, the time until the end of the current phase, and the queue
of vehicles at the intersection. Using these characteristics, the traffic situation is simulated
and the vehicle speed needed to cross the intersection without stopping is calculated.

The experimental results demonstrate that the proposed system can predict the time
of passing controlled intersections by a queue of vehicles and reduce the forced number of
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stops to 14% by optimizing the speed rate. The paper also proposes a conceptual scheme
for implementing the service of cooperative intelligent transport systems, as well as the
transfer of information to the digital road model and onboard the car to inform the driver
and/or to develop control actions in highly automated vehicles.

The rest of the paper is arranged as follows: Section 2 provides an overview of research
on the considered subject; Section 3 describes a methodology for recognizing and classifying
vehicles using neural networks and presents a model of a predictive system. Section 4
presents the use of fuzzy logic methods to simulate vehicle movement; Section 5 introduces
simulation using the Python programming language; Section 6 discusses the obtained
results and further areas of research.

2. Related Works

Many scientific papers have dealt with the problem of reducing delays at controlled
intersections in the conditions of congestions. Liu and Chang [38] conditionally divided
the approaches to studying this issue into mathematical programming and modeling. The
approach based on mathematical programming [39–41] is aimed at increasing the traffic
capacity with minimal delays at intersections and has several substantial drawbacks. This
approach does not take into account the length of the vehicle queue at the intersection
formed during the stop traffic light signal or those vehicles that did not manage to pass
during the green traffic light signal.

The modeling-based approach allows one to take into account the interaction of traffic
flows. The developed models allow one to take into account the complex interaction of the
parameters of the traffic flow state and its unstable nature to optimize the traffic light signal
time and increase the traffic capacity at controlled intersections [42,43]. There is a wide
variety of models used for traffic management: the split, cycle, and offset optimization
technique (SCOOT) [44–46]; optimization policies for adaptive control (OPAC) [47]; real-
time hierarchical optimizing distributed effective system (RHODES) [48]; store-and-forward
modeling [49–51]; meta networks (METANET) [52,53], etc.

Shelby [54] compared adaptive traffic signal management systems, such as OPAC,
PRODYN (programmation dynamique), COP (controlled optimization of phases).

ALLONS-D (adaptive limited lookahead optimization of network signals—decentralized
version), SCOOT, and outlined the main drawbacks of adaptive control, of which to over-
come, a multiple computational load on modern controllers is needed. Notably, the PRO-
DYN approach is computationally complex in oversaturated situations. The use of the
depth first search (DFS) method in ALLONS-D results in major computational savings and
delays are significantly reduced through the use of the planning horizon. The computa-
tional efficiency of COP (version 97) is superior to all other considered algorithms without
the unduly worsening of delays.

Connected and autonomous vehicle (CAV) technology has been actively used to orga-
nize the coordinated movement of vehicles crossing intersections. An approach based on
space–time intervals is applied for the operational control of CAV [55], using the double-
loop spatial position associating time series (SPATS) and the acceleration dynamically
adjusting based on predicted trajectory (ADAPT) methods. The proposed approach ef-
fectively regulates the traffic flow with an input flow of 650 vehicles per hour; when
this threshold is exceeded, the vehicles’ delay continues to increase. The approach is
based on a single vehicle type and does not take into account unconnected vehicles as
traffic participants.

Driving autonomous vehicles at an intersection with minimal travel times and avoid-
ing accidents is suggested in [56]. The research presents a form of the problem of limited
nonlinear optimization, which is approximated using neural networks. The effectiveness
of the proposed method is demonstrated using the CarSim modeling environment. This
approach (similarly to the previous one [55]) does not take into account the scenario when
there are human-controlled vehicles in the traffic flow.
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VANET (vehicular adhoc network) has been widely used to improve traffic manage-
ment in urban conditions. It uses wireless communication between vehicles and roadside
units (RSU). It is assumed that each vehicle is equipped with a wireless communication
system transmitting information on the vehicle (type, speed, and travel direction) to special
units located near the traffic lights at the intersection. The obtained information allows one
to reconfigure the vehicle route to less busy directions, improving safety and preventing
congestions, but it does not solve the problem of congestion at the intersection itself [57–60].

Mathematical models can correctly reflect the current traffic situation but they cannot
predict its changes and the behavior of individual drivers. Such models cannot cope
with ambiguities and uncertainties in road traffic. In such situations, we need a different
approach using fuzzy logic systems [61].

Modeling an intelligent traffic light controller through the use of fuzzy logic for
adaptive changes in traffic light cycles is presented in [62]. The duration of the traffic light
signal can be adjusted depending on the queue of vehicles. The implementation of the
system is expensive but promises to significantly reduce the average delay as compared to
a conventional fixed-time controller.

Many researchers estimated the length of the queue at the intersection in real time.
They proposed several methods, e.g., using probing devices [63–66] and mobile sensors [67],
based on video image processing [68]. The information on the length of the vehicle queue
at the intersection is very valuable for making decisions on how to control the duration of
the traffic light signal.

Traffic management is a complex system, which provides for the integration of ad-
vanced information, communication technologies, automation equipment, vehicles, and
their users, i.e., the introduction of intelligent transport systems (ITS), to improve its ef-
ficiency. One of the ITS aspects is traffic forecasting, which allows one to control the
parameters of the traffic flow and reduces delays, emissions, and fuel consumption, as well
as increases safety.

Traffic forecasting is currently a rapidly developing area in the scientific literature due
to the advances in computational technologies for the high-speed processing of big data.
There are two main approaches to traffic forecasting: parametric and nonparametric [69].
The parametric approach represents autoregressive integrated moving average (ARIMA)
models. The nonparametric approach uses models, such as neural networks (NNs), support
vector machines (or support vector regression for a forecasting problem), and K-nearest
neighbors regression. NNs-based models have gained popularity.

The division into the main types of neural networks is given in [69]. The authors
distinguish and describe the following types of neural networks used for forecasting:
multilayered feedforward neural networks (MLFNN), time delay neural networks (TDNN),
recurrent neural networks (RNN), convolutional neural networks (CNN), deep belief
networks (DBN), radial basis function neural network (RBFNN), wavelet neural networks
(WNN), and fuzzy neural networks (FNN). Hybrid systems with different types of NNs
are also discussed. The authors note that the development of NN learning methods and
the use of new approaches make NN-based forecasting more flexible, efficient, and precise.

A learning system for real-time traffic signal management based on the Bayesian
network is proposed in [70]. Not only real-time traffic data but also historical data were
used to forecast the passage of the vehicle queue at the intersection. The results demonstrate
that the system calculates the optimal traffic light signal time for the vehicle to pass on the
priority road without compromising the delay time for the vehicle on the secondary road.

To forecast traffic flows, [71] used a spatio-temporal forecasting method combined
with the K-nearest neighbor (KNN) and the long short-term memory network (LSTM). The
performance results of the developed model as compared to the real traffic data and other
models demonstrated the superiority of the proposed model. However, the work on the
improvement of forecasting taking into account such factors as weather, traffic accidents,
etc., will be continued.
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Fuzzy logic methods were used to control traffic lights in real time according to the
current traffic status in the model developed in [72,73]. The simulation was carried out at
various scenarios of vehicle traffic conditions on the intersection lanes; the results show that
the use of a fuzzy system allows one to unload the intersection over a minimum time under
different traffic conditions and uneven speed of entering the intersection. The developed
system is also simple and can be easily incorporated into the existing infrastructure.

Conflicting demands arise simultaneously at a controlled intersection in the existing
strategies for the priority passage of buses due to the increase in their number in the traffic
flow. As a result, modeling based on fuzzy logic methods [74] demonstrated that the
method proposed by the authors works better than other methods in terms of the average
delay of the buses themselves and the average delay of other vehicles. The proposed model
does not take into account pedestrians and non-motorized vehicles in the traffic flow.

In the conditions of changing traffic at the intersection, the developed models are no
longer able to work with the previous performance; therefore, [75] proposed a system using
a neural network and fuzzy logic. The system is capable of self-learning and reasoning,
thus decisions are made taking into account the two-lane movement. It is planned to further
expand the proposed system to cover several intersections in order to reduce congestions
throughout the city.

Unlike previous works, this paper describes a predictive model allowing one to calcu-
late the speed at which the probability of passing controlled intersections without stopping
increases by using the transport section (intersection) data. The solutions for improving
traffic management systems proposed in the previous works have a common drawback—
their work does not take into account the fact that queues are formed at intersections
waiting for the green traffic light signal to continue driving. This research proposes to use
information from closed-circuit television (CCTV) cameras at urban controlled intersections.
If we know how many cars wait for the green traffic light signal at the nearest controlled
intersection, we can calculate the speed at which a car should approach this queue to cross
the intersection in a single flow.

3. Materials and Methods

The main hypothesis of the study is the idea that an increase in traffic density can
have a positive impact on the capacity of intersections. This is evidenced by the fact that
reducing differences in vehicle speed will (i) reduce the need to change lanes, (ii) increase
the capacity of intersections, and (iii) increase road safety. Following the recommendations
of the linked assistant for optimal travel speed will help achieve an increase in traffic
density. Even if a small number of cars are equipped with assistants, they will still act
as flow-rate regulators, because they will be the leading vehicles [29]. For this purpose,
the authors propose to use information from surveillance cameras for the situations at
regulated intersections of cities. Data on the number of cars at regulated intersections that
are waiting for green traffic light signal will help calculate the speed at which it is necessary
to reach the queue in order to cross the intersection in a single stream.

Calculation of the recommended speed should be performed by a predictive system
that solves a number of local problems. This paper describes a local problem and a variant
of its solution: determining the possibility of crossing an intersection according to the given
characteristics and calculating the required speed of movement. To solve the problem, the
following parameters are required:

• Distance between the car and the intersection, m;
• Time until the end of the current phase, s;
• The number of vehicles in the queue before the intersection, units.

Using these characteristics, the traffic situation is modeled and the vehicle speed
required to cross the intersection without stopping is calculated.
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3.1. Recognition and Classification of the Queue of Vehicles Using Neural Networks

As a basis for collecting information about road traffic, we used existing city video
surveillance systems, which include video cameras with different resolutions and fixed
frame rates [76]. Such systems operate 24 h a day, 7 days a week and generate mas-
sive amounts of video streams. Some researchers use data from low-resolution video
surveillance systems and deep neural networks to monitor traffic flows and estimate traffic
density [33,34]. In contrast to the described analytical approaches, this work offers a new
practical approach to collecting and analyzing data on the time it takes to pass a controlled
intersection by a queue of cars. The system should collect, process, and transmit data in real
time to generate control actions in highly automated vehicles (HAV is a standard vehicle
equipped with up to four levels of automation (according to the Society of Automotive
Engineers (SAE)) based on HYUNDAI SOLARIS). As part of the testing, it is assumed
that V2X communication is implemented on the basis of 4G (long-term evolution (LTE))
mobile cellular communication and a partially implemented European Telecommunica-
tions Standards Institute (ETSI) ITS G5 protocol stack on top of LTE. A HAV transmits its
high-precision geoposition to the infrastructure, with an accuracy of at least 10 cm and a
frequency of 10 Hz. Based on the current HAV location, the server determines the distance
to the intersection and, based on its current load, determines the recommended speed to
the nearest intersection and transmits it to HAV with a frequency of 2 Hz. The driverless
driving program takes into account this recommended speed and tries to adhere to it taking
into account the current road situation.

In the process of training the neural network, such unfavorable conditions for traffic
analysis as changeable weather and heavy traffic congestion were laid down; these factors
create problems for computer processing of a video stream in real time. Situations where
some vehicles overlap others, which poses significant difficulties in detection and tracking,
were also taken into account.

The architecture of the neural network You Only Look Once (YOLO v3) and the open
source Simple Online and Realtime Tracking (SORT tracker) were chosen as the technology
for the vehicle detection and classification system [77]. The SORT tracker provides the
functionality needed to track objects across multiple frames. At the next stage, taking into
account the complete or incomplete trajectory of the vehicle, we need to classify its general
direction of movement. To do this, you can train a shallow classifier, similar to [78,79]. The
heuristic approach was found to work quite well for us during the learning process [80].
For improving the detection and classification accuracy we used multi-scale prediction
with an increased number of anchors. To train the neural network, more than 9500 images
were marked up and augmented, which allowed the tenfold increase of the dataset.

The trained neural network comprises 106 layers. In addition to using convolutional
layers, its architecture also contains residuals [81], upsampling layers, and skipped connec-
tions (Figure 1).

To determine the time of movement of vehicles on a section of the road network,
a matrix of perspective transformation of the original image to geographic coordinates
was applied. The area in front of the place where the “stop line” marking is applied is
divided into several non-overlapping regions. As we track the entire video sequence, we
approximate the vehicle position in each frame to the center of the bottom edge of the
bounding box. Given the trajectory of each vehicle in image coordinates, it is possible
to assign each waypoint to one of the intersection sections. As a result, the trajectory is
transformed into a sequence of visited regions, which provides for determining the time
and direction of movement of vehicles.

Figure 2 shows a fragment of a neural network with a mask at one of the intersections
in Chelyabinsk, Russia.



Mathematics 2022, 10, 282 7 of 22

Figure 1. YOLOv3 neural network architecture.

Figure 2. Video frame of the neural network at the intersection of Lenin av.-Engels str.
(Chelyabinsk, Russia).

Therefore, the use of a neural network to recognize and classify the traffic flows makes
it possible to obtain data on the travel time of a stop line by a queue of vehicles. A detailed
description of the traffic flow detection and classification model based on neural network
algorithms is presented in our previous research [36]. These are the raw data to model the
system ensuring the non-stop passage by highly automated vehicles.

3.2. The Model of the Predictive System and the Algorithm of Its Operation

This section presents a model of a predictive system calculating the required travel
speed when the vehicle is moving straight ahead to cross the nearest controlled intersection
in the travel direction without stopping.
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Vehicle speed (Vcar) is determined by the Equation (1) [81]. In this case, the parameter
is determined from the equation for calculating the distance traveled by the car (2)–(4) [81]:

Vcar =
∫ tacceleration

tstart
a·dt, (1)

where tacceleration is the time during which the car is moving with acceleration; tstart is the
moment the car starts moving; a is acceleration of the car.

L = Lacceleration + Lsteady_motion, (2)

where L is the path to be traveled by the car; Lacceleration is the distance traveled by a car with
non-zero acceleration; Lsteady_motion is the distance traveled by a car at a constant speed.

Lacceleration =
∫ ∫ tacceleration

tstart
a·dt2 (3)

Lsteady_motion =
∫ tend

taccelerationt

Vsteady_motion·dt =
∫ tend

taccelerationt

∫ tacceleration

tstart
a·dt

2
, (4)

where tend is the time it takes a car to cover a given distance; Vsteady_motion is the speed
reached by the car while accelerating.

Expressing parameter tacceleration from these Equations (2)–(4), we obtain Equation (5):

t2
acceleration − 2

(
tend − tstart +

V0

a

)
·tacceleration +

2V0·tstart

a
+

2L
a

= 0, (5)

where V0 is initial car speed. This equation can have two solutions; however, only the one
shown in Equation (6) is suitable for modeling:

tacceleration =
2
(

tend − tstart +
V0
a

)
− 2

√[
−2
(

tend − tstart +
V0
a

)]2
− 4
(

2V0·tstart
a + 2L

a

)
2

. (6)

Parameter tend depends on the number of cars (CarMeter) waiting to pass at the
intersection; the time until the end of the current regulation phase (PhaseTimer); the number
of this phase (PhaseNumber); and the maximum duration of each phase T1 and T2 (for one
signal cycle).

Parameter L depends on the distance from the current position of the car to the stop
line of the intersection (L0) and the distance between this stop line and the line of the
beginning of the conflicting directions of the intersection (to the nearest border crossing of
roads) (Lcross) (7).

L = L0 + Lcross (7)

The acceleration parameter a is determined by the Equation (8) [80]. In Equation (8),
D is the dynamic factor of the vehicle (the parameter characterizing the traction-speed
properties of the vehicle; the maximum value for vehicles with a limited passing ability is
0.3 . . . 0.45 and for vehicles with a high passing ability it is 0.6 . . . 0.8); ψ is the coefficient
of the total resistance of the road (a set parameter determining the maximum vehicle speed
for a road with an even hard surface); δ is the coefficient accounting for the influence of
rotating masses (the coefficient depends on the transmission ratio; it shows how many
times force is needed to speed up the oscillating and rotating wheels of the car with a
given acceleration, a, which is higher than the force needed to speed up only the oscillating
masses); g ≈ 9.81 m/s2 is the gravity acceleration:

a =
D − ψ

δ
g (8)
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The algorithm of the model operation consists of several sections (shown in Figure 3):
car, acceleration, and end time. In the end time section, parameter tend is calculated. The
calculation is performed based on the following input parameters: T1, T2, PhaseNumber,
PhaseTimer, and CarMeter. The calculation result is passed to the car section.

Figure 3. Operation algorithm.

In the acceleration section, the vehicle acceleration is calculated based on Equation (8).
The input data are parameters D, ψ, and δ. The calculation result is passed to the car section.

The car section calculates the speed required for a car to cross the intersection without
stopping. The input data are parameters L0, Lcross, and V0. If the calculated speed exceeds
the permitted speed, the recalculation takes place based on parameters T1 and T2.

3.3. Experiment Design

One of the crossroads of the city of Chelyabinsk was chosen for experimental modeling.
The intersection diagram is shown in Figure 4. The experiment accepts the conditions that
the car starts at a distance L0 to the stop line of the intersection and moves straight in the
north direction.
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Figure 4. Traffic plan.

The following parameter values were used for testing the model:

• T1 = 24 s;
• T2 = 48 s;
• PhaseNumber = 2;
• PhaseTimer = 48 s;
• CarMeter is selected from the range [0; 10];
• tstart = 0 s;
• Lcross = 24 m;
• L0 is selected from the range [276; 496] meters with a step of 20 m;
• a = 1.5 m/s2.

The parameter tend is required for the modeling and depends on the number of cars
waiting for the green traffic light signal to permit passage at the intersection. For modeling
purposes, statistics were collected for the intersection concerned, as shown in Table 1. In
Table 1, the timing starts at the moment when the traffic light becomes active. At the same
time, an average of 9 cars manage to drive through one traffic signal cycle in the considered
lane. If there are more than nine cars at the intersection, the value T1 + T2 is added to
the Tend parameter for modeling—vehicles will cross the intersection only during the next
traffic light cycle.

Table 1. Car parameters at the intersection.

Car No. Tstart (sec) L (m) Tend (s)

1 0.3 24.1 6.1
2 1.9 28.7 8.6
3 3.2 33.3 11.1
4 4.6 38.2 13.6
5 6.2 42.8 15.8
6 8.0 47.6 18.6
7 9.8 52.3 20.5
8 10.6 57.0 21.2
9 12.5 61.7 23.2

When analyzing video from an intersection surveillance camera, it was determined
that the traffic capacity of an intersection in the examined direction of traffic becomes
higher in a situation where cars pass the intersection one after another, and not at a random
distance between them. Therefore, it was suggested that if the car with the speed to be
determined followed the last car from the queue at the intersection, this would positively
impact the increasing traffic capacity of the intersection.



Mathematics 2022, 10, 282 11 of 22

Figure 5 shows the result of the calculations: the dependence of the vehicle speed on
the number of cars waiting at the intersection and statistical data from Table 1. Table 2
shows the speeds calculated as a function of the distance L and the number of cars waiting
at the intersection. The calculations were carried out in the MATLAB software package.

Figure 5. Calculated driving speed.

Table 2. Vehicle speed (km/h).

L (m)
Number of CarMeter Vehicles

0 1 2 3 4 5 6 7 8 9 10

300 23.58 20.30 19.36 18.50 17.72 17.09 16.35 15.88 15.71 9.07 9.07
320 25.23 21.70 20.69 19.77 18.94 18.26 17.46 16.96 16.79 9.68 9.68
340 26.90 23.12 22.03 21.05 20.16 19.43 18.58 18.05 17.86 10.29 10.29
360 28.58 24.54 23.38 22.34 21.38 20.61 19.71 19.14 18.94 10.90 10.90
380 30.27 25.96 24.74 23.63 22.61 21.79 20.84 20.23 20.02 11.51 11.51
400 31.98 27.40 26.10 24.92 23.85 22.98 21.97 21.33 21.10 12.12 12.12
420 33.69 28.84 27.47 26.22 25.09 24.17 23.10 22.43 22.19 12.73 12.73
440 35.42 30.29 28.84 27.53 26.33 25.37 24.24 23.53 23.28 13.34 13.34
460 37.17 31.75 30.22 28.84 27.58 26.57 25.38 24.64 24.38 13.95 13.95
480 38.93 33.22 31.61 30.16 28.84 27.77 26.53 25.75 25.48 14.57 14.57
500 40.70 34.69 33.00 31.48 30.10 28.98 27.68 26.86 26.58 15.18 15.18
520 42.49 36.18 34.41 32.81 31.36 30.20 28.83 27.98 27.68 15.80 15.80

For instance, if the car concerned (model object) is at a distance of L = 420 m from the
beginning of the intersection, while 3 cars are waiting for the go traffic light signal, then it
needs to move at a speed of 25–30 km/h.

The presented model of the predictive system requires clarification, as the travel
time of the queue of cars has some deviations caused by the presence of large-sized vehi-
cles [79]. Mathematical modeling using fuzzy logic methods for this purpose is presented in
the Section 5.

4. Microscopic Simulation of Intersection Traffic Control

We used Python programming language to build the simulation program. Visualiza-
tion was made using the OpenCV library.

The simulation starts with the following initial parameters:

• The number of vehicles before the stop line (CarMeter);
• The distance from the start line of crossing the conflicting directions to the first ap-

proaching vehicle, meter (S1);
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• The speed of the vehicles approaching the intersection (Vcar);

The following characteristics are set for the intersection:

• The distance from the stop line to the start line of crossing the conflicting directions
(Lcross)—24 m;

• The distance from the start line to the end line of crossing the conflicting directions—
(Lintersec) 30 m;

• The duration of the green traffic light signal (T1)—24 s.

The following limitations are set for the vehicles:

• Vehicle length (lcar = 4.5 ± 0.5 m);
• Minimum distance between the vehicles in the queue (lmin = 1.5–3 m);
• Safe distance between the moving vehicles lsaf = Vcar/2, m.
• Maximum acceleration (amax = 1.5 ± 0.1 m/s2);
• Acceleration during braking (abrak = −5 ± 1 m/s2);
• Delay at the start (d = 800 ± 300 ms);
• Current vehicle speed (Vcar = 30–60 km/h);
• Speed of the vehicles in the queue (Vcar_q = 0);
• Current coordinate of the vehicle in the queue (nn, m); n1 = lmin.
• Current coordinate of the vehicle approaching the intersection (nn_int, m); n1_int = S1.

nn = nn−1 + lcar + lmin (9)

nn_int = nn_int−1 + lcar + lsaf. (10)

The calculations are made 25 times per second. Each time, starting from the first
vehicle, the acceleration, the speed, and the coordinate are calculated. For the first vehicle,
the acceleration is taken as the maximum. After the end of the go traffic light signal, the
distance needed to stop with the minimum acceleration is calculated for each vehicle. If the
sum of the current coordinate of the vehicle and the calculated distance is farther than the
coordinates of the stop line, this vehicle is taken into account in the list of the vehicles that
passed the intersection. The calculations are made until all vehicles from this list cross the
end line of crossing the conflicting directions. Then, the average speed is calculated for all
of them.

A small number of vehicles in the queue (CarMeter = 0.3) and a sufficiently long
distance to the approaching vehicles (S1 > 100 m) almost do not affect the traffic capacity
of the intersection. If the queue is longer, the speed of the approaching vehicles begins to
be affected in some cases. For example, at CarMeter = 7, S1 = 100 m and Vcar = 60 km/h,
nine vehicles can pass the intersection, and at Vcar = 50 km/h, their number is twelve. At
CarMeter = 8, S1 = 140 m and Vcar = 60 km/h, eleven vehicles can pass the intersection,
and at Vcar = 40 km/h, the number is fifteen. This happens because a long queue at
the stop line drives very slowly, and vehicles moving towards the intersection at high
speed (60–50 km/h) quickly approach it and have to stop completely. At a speed of
less than 40 km/h, the vehicle approaching an intersection first slows down a little and
then accelerates again (Figure 6a,b). At the same time, there may be situations when
only vehicles moving ahead drop the speed. However, if they quickly accelerate again,
subsequent vehicles move at almost the same speed. At CarMeter = 8 and S1 = 100 m, the
traffic capacity almost does not change because all the approaching vehicles have to stop
due to the short distance.
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Figure 6. Simulation visualization of vehicles movement at an intersection (a,b) (CarMeter = 8, S1 = 140 m).

The recommended speed for the approaching vehicles (Vrec) is calculated as follows:

Vrec = (S1 − nn − lsaf)/tcur (11)

where tcur is the time from the moment when the green traffic light signal turns on. As a
result, we obtain the speed at which the approaching vehicles will catch up with the queue
by this moment. During the simulation, this speed will be initially higher than the current
speed of the last vehicle, but at some point it will become lower. This speed is considered
to be calculated. The approaching vehicles will currently catch up with the queue at this
speed, not being forced to slow down.

As the initial parameters of the vehicle are set in the form of a range, we made
100 measurements to obtain the recommended speed and took the average result. Then,
we made 100 measurements for each recommended speed and the vehicle flow speed
at 60 km/h. Figure 7 demonstrates the simulation results for estimating the average
traffic capacity of the intersection depending on the number of vehicles in the queue. The
microscopic simulation demonstrated the effectiveness of the approach to adaptive control
of the vehicle flow speed. Therefore, when the vehicle moves at the recommended speed
(S1 = 120 m), there is an increase in the traffic capacity of the selected intersection.

Figure 7. The number of vehicles that passed the intersection at the calculated and uncontrolled
speed (S1 = 120 m).
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Thus, speed control in a connected vehicle environment can significantly improve
the traffic capacity of controlled intersections. In addition, joint speed control of several
vehicles is more efficient than speed control of a single vehicle.

5. Mathematical Modeling of the Movement of Vehicles Based on Methods of Fuzzy Logic

As road traffic is stochastic and difficult to control, soft computing methods should
be used. Such methods are based on uncertainty, ambiguity, and partial truth. Neural
networks and fuzzy logic underlie the use of soft computing, as neural networks are capable
of self-learning, and fuzzy logic effectively copes with the uncertainty and imprecision of
real systems. The used E. Mamdani’s algorithm, based on fuzzy inference, allows us to
avoid an excessive volume of computations [82].

The data given in Tables 1 and 2 allow for estimating the limits of variation of
the initial variables and elaborate a mathematical model of traffic flows using fuzzy
modeling methods.

As an output variable (output) we shall choose the optimal speed of the car approach-
ing the intersection. The speed should be such that, with a high enough probability, the car
will drive up to the intersection with the ability to drive through the intersection without
stopping. Indeed, the need to stop poses negative consequences related to the loss of time
to start the car, taking into account the delay due to the correction for the driver’s reaction.
We shall notice that the output variable has values in the range from 0 to 60 km/h in
accordance with the traffic rules in populated areas.

We will choose the following as input variables (inputs):

(1) The number of cars waiting in front of the intersection;
(2) The distance of the car to the beginning of the intersection;
(3) The share of large-sized vehicles among those waiting at the intersection.

Further research can help in adjusting the list of input variables.
The model based on the methods of fuzzy mathematics will be compiled using the

Fuzzy TECH 5.81 d Professional computer program.
The input variable in1 represents the number of cars waiting at the intersection. The

range of this variable is selected from 0 to 10 to match the values in Table 2. This range can
be expanded in further studies. This variable has three grades (small, medium, and large)
with the distribution of values shown in Figure 8a.

Figure 8. Distribution of values of input variables: (a–c) and output variable (d).
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The input variable in2 is the vehicle’s distance to the start of the intersection. The
variation range of this variable is selected in the range from 300 to 520 m, again, to be
consistent with the values in Table 2. This range can also be changed as appropriate. This
variable has three grades (close, medium, and far) with the distribution of values shown in
Figure 8b.

The input variable in3 is the proportion of large vehicles waiting at the intersection.
The values of this variable range from 0 to 1.0 and correspond to the complete absence of
such vehicles in the queue before the intersection. The number 1 means that all vehicles
at the intersection are large. It is clear that a large proportion of large-sized vehicles will
cause a delay in clearing the intersection; therefore, the speed of the vehicle under study
should be reduced when approaching the intersection. This variable also has three grades
(small, medium, and large) with the distribution of values shown in Figure 8c. We shall
notice that in order to refine the simulation results in the future, one can take into account
specific types of vehicles located at the intersection.

As noted, the output variable out1 is the optimal speed of the vehicle approaching the
intersection. It has five grades (very low, low, medium, high, and very high). Distribution
of the values of this variable is shown in Figure 8d.

Coordination of the grades of the output and input variables is shown in Table 3.

Table 3. Matching the grades of the output and input variables.

No.
IF THEN

in1 in2 in3 DoS Out1

1 Small Close Small 1.00 Very high
2 Small Close Medium 1.00 High
3 Small Close Large 1.00 Medium
4 Small Medium Small 1.00 Very high
5 Small Medium Medium 1.00 High
6 Small Medium Large 1.00 Medium
7 Small Far Small 1.00 Very high
8 Small Far Medium 1.00 High
9 Small Far Large 1.00 Medium
10 Medium Close Small 1.00 Medium
11 Medium Close Medium 1.00 Low
12 Medium Close Large 1.00 Very low
13 Medium Medium Small 1.00 High
14 Medium Medium Medium 1.00 Medium
15 Medium Medium Large 1.00 Low
16 Medium Far Small 1.00 High
17 Medium Far Medium 1.00 Medium
18 Medium Far Large 1.00 Low
19 Large Close Small 1.00 Low
20 Large Close Medium 1.00 Very low
21 Large Close Large 1.00 Very low
22 Large Medium Small 1.00 Low
23 Large Medium Medium 1.00 Low
24 Large Medium Large 1.00 Very low
25 Large Far Small 1.00 Medium
26 Large Far Medium 1.00 Low
27 Large Far Large 1.00 Low

A graphical representation of the developed model based on fuzzy logic in the form of
surfaces out1 (in1, in2), out1 (in2, in3), and out1 (in1, in3) is shown in Figures 9–11, respectively.
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Figure 9. Surface plot out1 (optimal speed of the vehicle approaching the intersection) (in1 (the num-
ber of cars waiting at the intersection), and in2 (the vehicle’s distance to the start of the intersection)).

Figure 10. Surface plot out1 (optimal speed of the vehicle approaching the intersection) (in2 (the
vehicle’s distance to the start of the intersection), and in3 (the proportion of large vehicles waiting at
the intersection)).
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Figure 11. Surface plot out1 (optimal speed of the vehicle approaching the intersection) (in1 (the
number of cars waiting at the intersection), and in3 (the proportion of large vehicles waiting at the
intersection)).

Comparison of the values of the optimal speeds obtained on the basis of fuzzy mod-
eling and the data in Table 2 shows good convergence of the results, which verifies the
adequacy of the models. For example, with the values in1 = 5, in2 = 380 m, in3 = 0.54
according to the model with fuzzy logic, we get the value of the optimal speed out1 = 21.85.
With the values in1 = 8, in2 = 480 m, in3 = 0.36, we have out1 = 25.599. The corresponding
values from Table 2 are 21.79 km/h and 25.48 km/h. As can be observed, the results are
very close. At the same time, the model based on fuzzy mathematics is more realistic due
to the consideration of the share of large vehicles.

The fact that there is no need to reduce the speed in the absence of vehicles at the
intersection and at a sufficiently large distance from it is also a confirmation of the higher
degree of realism of the model with fuzzy logic. Thus, with the values in1 = 0, in2 = 500 m,
and in3 = 0, the model with fuzzy logic gives the value of the optimal speed at 55 km/h,
while Table 2 shows only 40.7 km/h.

6. Discussion of Modeling Results

In the integral-mathematical model (Formulas (1)–(8)), as well as the block diagram
of the corresponding algorithm (Figure 3), the distance of the car from the controlled
intersection and the parameters of the vehicle queue before the stop traffic light signal
are used as a basis. The model allows us to calculate the recommended vehicle speed
for passing an intersection without deceleration. An example of calculation with a wide
variation of input parameters (Table 1) is shown by the distribution field in Figure 5
and also reflected in Table 2. However, the widest field of random and unpredictable
disturbing factors of both the traffic flow itself, as well as the environment, is not taken into
account here. Therefore, we used the second model approach based on fuzzy inference
(E. Mamdani’s algorithm and fuzzyTECH software product), which allows us to avoid
an excessive amount of computations when simulating random disturbing factors. In
this practical research, which is the initial stage of assessing the transport situation at an
intersection under the conditions of several uncertainties, we used the simplest types of
fuzzy membership functions–linear (not Gaussian due to the lack of information on the
normal distribution parameters). We also considered the complete system of rules (Table 3)
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without checking its inconsistency, although in the future, with more detailed application
of the fuzzy logic methods, we plan to study these issues as well. The modeling results are
presented by volumetric distribution fields for the recommended speed of a car approaching
the intersection, depending on the combination of various input parameters (Figures 9–11).
Numerical values of any parameters can be obtained in the fuzzyTECH program. A
comparison of the recommended speed values obtained on the basis of fuzzy modeling
and the calculated data using the mathematical model demonstrates good convergence of
the results, which verifies the adequacy of the two considered models.

The developed models calculate close predicted values for the recommended vehicle
speed. This, on the one hand, characterizes the high stability of the solution of the original
problem. However, on the other hand, the models are approximate, as they do not take
into account many unpredictable and disturbing factors of both the traffic flow itself and
the environment. Therefore, the mathematical model takes into account only the main
input quantities, ignoring the influence of random and unpredictable effects. This results
in rigidly defined deterministic outcomes. In the second model, which uses the fuzzy logic
methods, the entire set of external disturbances (ignoring their physical nature) is taken into
account a priori—by the assumption of their presence. This is specified both by the number
of levels—terms of fuzzy functions and their type (linear, Gaussian, etc.)—Although, in
this problem statement, all the main disturbing effects can be manifested and evaluated by
the level of their influence using the method of expert assessments. This certainly refers to
the areas of our future research.

Taking into account the thorough investigation of the features of urban traffic flows,
as well as possible errors in the neural network’s recognition of the vehicle itself and its
categories, we believe it is expedient to show the most significant disturbing effects in this
problem statement in our future research and to supplement further models with these
disturbing factors, after preliminary development of their statistical characteristics or by
experimental research, or after their average expert assessment. In this approach, it is
advisable to use computer simulation modeling (MATLAB suite, Simulink application),
which provides for Q-circuit continuous-stochastic models.

7. Conclusions

In this work we have focused on the problem of non-stop passage by highly automated
vehicles at controlled intersections and increasing their situational awareness using data
obtained from outdoor surveillance cameras. This subject area is popular, yet still in
its early stages of development. There are only a few works to date, as they are aimed
at tackling the challenge of ensuring the non-stop passage of motor transport through
regulated intersections.

To solve this problem, we used the YOLOv3 neural network and the SORT tracker in
order to receive and transmit data in real time to the onboard HAV system. The elaborated
system can count and classify vehicles in line by travel time with an average percentage
error of less than 7%.

The analysis based on fuzzy logic methods made it possible to confirm the calculated
predictions for various scenarios of forming a queue at an intersection in the tasks of
ensuring non-stop passage of HAV, subject to the implementation of queue segmentation
by initial characteristics and visualization of the results obtained.

The transmission of information on the predicted delay time at a controlled intersec-
tion in the local mode is possible due to the V2X communication of the road controller
equipment, and in the horizontally scaled mode due to the interaction of HAV—the digital
road model. With that, horizontal scaling would make possible even more productive
optimization of traffic flows throughout the city.

At the same time, even if not all vehicles are equipped with assistants, a positive effect
will still be attained, which is also due to V2V.
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The introduction of the proposed model will undoubtedly contribute to the opti-
mization of traffic, travel speed, the time needed to deliver goods and passengers, fuel
consumption, and environmental improvement.
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Abbreviations

L The path to be traveled by the car.

L0
Distance from the start line to the stop line of the next
intersection.

Lacceleration Distance traveled by a car with non-zero acceleration.

Lcross
Distance between the stop line and the line where the
conflictingdirections intersect the intersection traffic.

Lsteady_motion Distance traveled by a car at a constant speed.
PhaseNumber The number of the traffic light regulation phase currently active.
PhaseTimer Countdown to the end of the current traffic light regulation phase.

T1,T2
Total duration of the first and second phases of regulation of one
cycle of traffic light.

tacceleration The time during which the car is moving with acceleration.
tend The time it takes a car to cover a given distance.
tstart The moment the car starts moving.
V0 Initial car speed.
Vcar Car speed.
Vsteady_motion The speed reached by the car while accelerating.
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