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Abstract: This study aims to investigate the estimation problems when the parent distribution of
the population under consideration is the Nadarajah–Haghighi distribution in the presence of an
adaptive progressive Type-II hybrid censoring scheme. Two approaches are considered in this regard,
namely, the maximum likelihood and Bayesian estimation methods. From the classical point of view,
the maximum likelihood estimates of the unknown parameters, reliability, and hazard rate functions
are obtained as well as the associated approximate confidence intervals. On the other hand, the
Bayes estimates are obtained based on symmetric and asymmetric loss functions. The Bayes point
estimates and the highest posterior density Bayes credible intervals are computed using the Monte
Carlo Markov Chain technique. A comprehensive simulation study is implemented by proposing
different scenarios for sample sizes and progressive censoring schemes. Moreover, two applications
are considered by analyzing two real data sets. The outcomes of the numerical investigations show
that the Bayes estimates using the general entropy loss function are preferred over the other methods.

Keywords: Nadarajah–Haghighi distribution; adaptive progressive hybrid censoring; interval estimation;
frequentist and Bayesian estimation; reliability inference
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1. Introduction

Lately, numerous statistical models have been presented by many researchers. The
need to formulate new models arises due to empirical studies, theoretical situations, or
both. Considerable applications in disciplines including reliability and clinical investiga-
tions, among others, have demonstrated in recent years that datasets that can be modelled
employing traditional distributions are the exception more often than the rule. As a re-
sult, significant improvement has been produced in the modification of many traditional
distributions and their efficient utilization in different domains. One of the widespread
statistical distributions which can be used as an extension of the usual exponential dis-
tribution was introduced by Nadarajah and Haghighi [1] and was recently named the
Nadarajah–Haghighi (NH) distribution as an abbreviation of the authors’ names. Suppose
that the lifetime X of a testing unit follows the two-parameter NH(β, θ), where β and θ are
the shape and scale parameters, respectively. Then, the probability density function (PDF)
f (·), cumulative distribution function (CDF) F(·), reliability function (RF) R(·), and hazard
rate function (HRF) h(·) for a given mission time t are respectively provided by

f (x; β, θ) = βθ(1 + θx)β−1 exp(1− (1 + θx)β), x > 0, β, θ > 0, (1)

F(x; β, θ) = 1− exp(1− (1 + θx)β), x > 0, β, θ > 0, (2)
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R(t; β, θ) = exp(1− (1 + θt)β), t > 0, β, θ > 0, (3)

and

h(t; β, θ) = βθ(1 + θt)β−1, t > 0, β, θ > 0, (4)

where the exponential distribution is introduced as a special case when β = 1.
Nadarajah and Haghighi [1] showed that the density of the NH distribution can be

decreasing and that unimodal shapes as well as its HRF have an increasing, decreasing,
or constant shape similar to gamma, Weibull, and generalized-exponential distributions.
Many authors have investigated the estimations problems of the NH distribution. For
example, Mohie El-Din et al. [2] studied constant-stress accelerated life tests of the NH
distribution based on progressive censoring. Mohie El-Din et al. [3] also investigated a
progressive-stress accelerated life test using progressive Type-II censoring NH data. Dey
et al. [4] studied the different estimation procedures of the NH distribution. Selim [5]
considered estimation and prediction for the NH distribution using record values. Ashour
et al. [6] considered the NH distribution based on progressively first-failure censored data
and studied the estimation problems in this case.

On the other hand, censored data is a familiar topic in reliability and life-testing studies.
Time and failure censoring schemes are the most frequently employed censoring schemes
in life-testing and reliability investigations. One of the main shortcomings of these schemes
is that they do not allow units to be removed from the experiment at any moment other
than the end point; for more details, see Balakrishnan and Aggarwala [7]. To avoid this
drawback, the progressive Type-II censoring scheme (PT-II-CS) is suggested. To discuss the
mechanism of this scheme, let n units be placed on an experiment and let m be the prefixed
number of failed units. Suppose that Xi:m:n, i = 1, . . . , m denotes the time of the ith failure.
Then, R1 units are randomly removed from the remaining units at X1:m:n. Again, R2 units
are randomly removed from the remaining units at X2:m:n, and so forth. At Xm:m:n, all the
remaining n−m−∑m−1

i=1 Ri units are withdrawn. For more information about PT-II-CS,
see Balakrishnan [8]. In the context of hybrid censoring, Kundu and Joarder [9] proposed
a progressive Type-I hybrid censoring scheme in which n units are tested employing a
specified progressive censoring plan R1, R2, · · ·, Rm and the experiment is terminated at
T∗ = min(T, Xm:m:n), where T is a predetermined time. This scheme has the drawback that
the statistical inference method is inefficient due to the small observed sample size.

To solve this problem, Ng et al. [10] proposed a new scheme to increase the effi-
ciency of statistical inference called the adaptive progressive Type-II hybrid censoring
(AP-II-HC) scheme. Let m be predetermined before starting the experiment and permit
the total test time to run over T with a progressive censoring scheme R = (R1, R2, . . . , Rm)
which is predetermined but has values that may be adjusted during the experiment.
The mechanism of this scheme is similar to that in the case of PT-II-CS, except that
the stopping rule is different. Employing the AP-II-HC scheme, if the mth failure hap-
pens before T (i.e., Xm:m:n < T), the experiment stops at Xm:m:n. Otherwise, if Xd:m:n <
T < Xd+1:m:n, where d + 1 < m and Xd:m:n represent the dth failure time observed
before T, then the researcher does not remove any live units from the experiment by
placing Rd+1, Rd+2, . . . , Rm−1 = 0 and then Rm = n − m − ∑d

i=1 Ri. This process guar-
antees control of the experiment when the needed number of failures m is obtained.
Let {x, R} = {(x1:m:n, R1), . . . , (xd:m:n, Rd), T, (xd+1:m:n, 0), . . . , (xm−1:m:n, 0), (xm:m:n, Rm)}
be an AP-II-HC sample from a continuous population with PDF and CDF. By setting
xi = xi:m:n, i = 1, . . . , m for the sake of simplicity, the likelihood function of the AP-II-HC
data can be expressed as

L(δ|x) = C
m

∏
i=1

f (xi; δ)
d

∏
i=1

[1− F(xi; δ)]Ri [1− F(xm; δ)]Rm , (5)

where C = ∏m
i=1

[
n− i + 1−∑

max{i−1,d}
j=1 Rj

]
and δ is the vector of the unknown parameters.
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Different investigations based on AP-II-HC have been performed; readers are directed
to the studies of Nassar and Abo-Kasem [11], Ateya and Mohammed [12], Mohie El-Din
et al. [13], Liu and Gui [14], Elshahhat and Nassar [15], Kohansal and Bakouch [16], Alotaibi
et al. [17], and the references cited therein.

Despite the flexibility of the NH distribution in modelling different types of data and
the importance of the AP-II-HC scheme in reliability analysis and life-testing studies, no
study, to the best of our knowledge, has investigated the classical and Bayesian estimation
methods of the parameters and reliability characteristics of the NH distribution in the
presence of AP-II-HC data. To fill this gap, the essential role of this study is threefold. The
first is to study the classical point and interval estimations of the unknown parameters and
some reliability characteristics of the NH distribution employing the AP-II-HC samples
through the maximum likelihood approach. The second is to investigate the Bayesian
estimation via the squared error (SE) and general entropy (GE) loss functions of the same
unknown parameters utilizing the Monte Carlo Markov Chain (MCMC) technique. In
this regard, the Bayes point and highest posterior density (HPD) credible intervals of
the unknown parameters and some reliability characteristics are obtained based on the
assumption of independent gamma priors. The third is to compare the efficiency of the
different point and interval estimators. To achieve this goal, an extensive simulation study
is implemented and two real data sets are examined. Before progressing further, it is of
interest to mention that the various inferential procedures discussed in the next sections
are developed based on the assumption that the quantity d is greater than or equal to one.
In addition, it is assumed that the parameters and a number of of their related parametric
functions, such as RF and HRF, are always unknown.

The remainder of the paper is organized as follows. The maximum likelihood inference
of the NH distribution using AP-II-HC data is presented in Section 2. Inference through the
Bayesian estimation approach is considered in Section 3. Section 4 presents the outcomes
of a simulation study. Two example applications are provided in Section 5, and Section 6
concludes the paper.

2. Likelihood Inference

This section investigates the maximum likelihood estimators (MLEs) of the NH pa-
rameters β and θ as well as the reliability parameters R(t) and h(t). In addition, the
corresponding approximate confidence intervals are obtained using the observed Fisher
information matrix and the delta method.

2.1. Maximum Likelihood Estimators

Suppose that x1 < · · · < xd < T < xd+1 < · · · < xm is an AP-II-HC sample of size m
with scheme (R1, . . . , Rd, 0, . . . , 0, Rm) from the NH distribution and with PDF and CDF
provided by (1) and (2), respectively. Then, from (1), (2), and (5), the likelihood function
can be formulated without the constant term as

L( β, θ|x) ∝ (βθ)m
m

∏
i=1

(1 + θxi)
β−1

× exp

[
m

∑
i=1

(
1− (1 + θxi)

β
)
+

d

∑
i=1

Ri

(
1− (1 + θxi)

β
)
+ R∗m

(
1− (1 + θxm)

β
)]

. (6)

Thus, the natural logarithm of the likelihood function (`(·) = log L(·)), as

`( β, θ|x) ∝ m log(βθ) + (β− 1)
m

∑
i=1

log(1 + θxi)

+
m

∑
i=1

(
1− (1 + θxi)

β
)
+

d

∑
i=1

Ri

(
1− (1 + θxi)

β
)
+ R∗m

(
1− (1 + θxm)

β
)

. (7)
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The respective MLEs β̂ and θ̂ of β and θ can be derived by solving the two normal
equations simultaneously by obtaining the first partial derivatives of (7) with respect to β
and θ as

∂`

∂β
=

m
β
+ ∑m

i=1 log(1 + θxi) −∑m
i=1 (1 + θxi)

β log(1 + θxi)

−∑d
i=1 Ri(1 + θxi)

β log(1 + θxi)− R∗m(1 + θxm)
β log(1 + θxm) (8)

and

∂`

∂θ
=

m
θ
+ (β− 1)∑m

i=1 xi(1 + θxi)
−1 − β ∑m

i=1 xi(1 + θxi)
β−1

− β ∑d
i=1 Rixi(1 + θxi)

β−1 − R∗mxmβ(1 + θxm)
β−1. (9)

It is clear, from (8) and (9), that there are no explicit expressions for the MLEs β̂ and
θ̂. Therefore, we suggest employing numerical iterative methods such as the Newton–
Raphson procedure to obtain β̂ and θ̂. After β̂ and θ̂ have been derived, the MLEs of R(t)
and h(t) can be obtained from (3) and (4), respectively, based on the invariance property of
the MLEs β̂ and θ̂, as follows:

R̂(t; β̂, θ̂) = exp(1− (1 + θ̂t)β̂) and ĥ(t; β̂, θ̂) = β̂θ̂(1 + θ̂t)β̂−1.

2.2. Approximate Interval Estimators

To estimate the approximate confidence intervals (ACIs) for the unknown parameters
β, θ, R(t), and h(t), the asymptotic properties of their MLEs based on the theory of large
samples are used. The asymptotic distribution of (β̂, θ̂) is normal distribution with a mean
(β, θ) and variance-covariance matrix I−1(β, θ). Practically, the Fisher information matrix
I(β, θ) is estimated via I(β̂, θ̂) as

I−1(β̂, θ̂) =

(
−`11 −`12
−`21 −`22

)−1

(β,θ)=(β̂,θ̂)
=

(
v̂11 v̂12
v̂21 v̂22

)
, (10)

where

`11 = − m
β2 −∑m

i=1 (1 + θxi)
βlog2(1 + θxi)

−∑d
i=1 Ri(1 + θxi)

βlog2(1 + θxi)− R∗m(1 + θxm)
βlog2(1 + θxm),

`22 = −m
θ2 − (β− 1)∑m

i=1 x2
i (1 + θxi)

−2 − β(β− 1)∑m
i=1 x2

i (1 + θxi)
β−2

− β(β− 1)∑d
i=1 Rix2

i (1 + θxi)
β−2 − β(β− 1)R∗mx2

m(1 + θxm)
β−2,

and

`12 = ∑m
i=1 xi(1 + θxi)

−1 −∑m
i=1 xi(1 + θxi)

β−1[1 + β log(1 + θxi)]

−∑d
i=1 Rixi(1 + θxi)

β−1[1 + β log(1 + θxi)]

− R∗mxm(1 + θxm)
β−1[1 + βxm log(1 + θxm)].

Then, the 100(1− α)% two-sided ACIs of β and θ are

β̂± zα/2
√

v̂11, and θ̂ ± zα/2
√

v̂22, (11)

where v̂11 and v̂22 are the main diagonal elements of (10), respectively, and zα/2 is the upper
(α/2)th percentile point of the standard normal distribution.



Mathematics 2022, 10, 3775 5 of 19

To construct the 100(1− α)% ACIs of R(t) and h(t), we need to estimate the variances
of their estimators. The delta method is one of the most common significant techniques
used to approximate the variance of unknown parametric functions. Applying the delta
method, the approximated variances of the estimators of R(t) and h(t) can be respectively
obtained as follows:

v̂(R̂) ≈ [ΨRI−1(β̂, θ̂)Ψ>R ] and v̂(ĥ) ≈ [ΨhI−1(β̂, θ̂)Ψ>h ].

First, we must obtain ΨR = ( ∂R
∂β , ∂R

∂θ )|(β̂,θ̂) and Ψh = ( ∂h
∂β , ∂h

∂θ )|(β̂,θ̂), as follows:

∂R
∂β

= (1 + θt)β log(1 + θt) exp
(

1− (1 + θt)β
)

,

∂R
∂θ

= βt(1 + θt)β−1 exp
(

1− (1 + θt)β
)

,

∂h
∂β

= θ(1 + θt)β−1[1 + β log(1 + θt)],

and
∂h
∂θ

= β(1 + θt)β−1
[
1 + θt(β− 1)(1 + θt)−1

]
.

Hence, using the confidence level 100(1− α), the two-sided ACIs for R(t) and h(t) are
respectively constructed by

R̂(t)± z α
2

√
v̂(R̂) and ĥ(t)± z α

2

√
v̂(ĥ).

3. Bayes MCMC Paradigm

In this section, the Bayesian estimators and associated HPD credible interval estimators
of β, θ, R(t), and h(t) are obtained. Due to the complex form of the joint likelihood function,
the Bayes estimators are obtained in a complex form; for this reason, we use MCMC
approximation techniques.

Under the assumption that the unknown parameters are independent and have gamma
distributions, i.e., β ∼ Gamma(p1, q1) and θ ∼ Gamma(p2, q2), the Bayes MCMC estimates
are developed. Hence, the joint prior distribution of β and θ is provided by

P1(β, θ) ∝ βp1−1 θp2−1 e−(q1β+q2θ), β, θ > 0, (12)

where the hyper-parameters (pi, qi) > 0, i = 1, 2 are known and non-negative.
Substituting (6) and (12) into the continuous Bayes’ theorem, the joint posterior PDF

of β and θ can be expressed as

Φ( β, θ|x) = K−1βm+p1−1θm+p2−1e−(q1β+q2θ)
m

∏
i=1

(1 + θxi)
β−1

× exp

[
m

∑
i=1

(
1− (1 + θxi)

β
)
+

d

∑
i=1

Ri

(
1− (1 + θxi)

β
)
+ R∗m

(
1− (1 + θxm)

β
)]

, (13)

where K is the normalized constant and is provided by

K =
∫ ∞

0

∫ ∞

0
βm+p1−1θm+p2−1e−(q1β+q2θ)

m

∏
i=1

(1 + θxi)
β−1

× exp

[
m

∑
i=1

(
1− (1 + θxi)

β
)
+

d

∑
i=1

Ri

(
1− (1 + θxi)

β
)
+ R∗m

(
1− (1 + θxm)

β
)]

dβdθ.
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Now, based on the SE loss, which is the most common symmetric loss function, the
Bayes estimator φ̃(·) of any function of the unknown parameters β and θ, say, φ(β, θ), is
provided by the posterior expectation. The SE loss (say, ηS) and its Bayes estimator (say,
φ̃S(β, θ)) are respectively provided by

ηS(φ(β, θ), φ̃(β, θ)) = (φ̃(β, θ)− φ(β, θ))2,

and
φ̃S(β, θ) = E(Φ( β, θ|x)) = K−1

∫
β

∫
θ

φ(β, θ)Φ( β, θ|x)dθdβ, (14)

for more details, see Martz and Waller [18].
On the other hand, one of the useful asymmetric losses is called the GE loss function,

and is provided by

ηG(φ(β, θ), φ̃(β, θ)) ∝
(

φ̃(β, θ)

φ(β, θ)

)ρ

− ρ log
(

φ̃(β, θ)

φ(β, θ)

)
− 1, ρ 6= 0. (15)

It is clear, from (15) that the lowest errors occurs at φ̃(·) = φ(·) and that when setting
ρ = −1, the Bayes estimator via the GE loss function coincides with the Bayes estimator via
the SE loss function. When ρ > 0, a positive error has a more serious effect than a negative
error, whereas for q < 0, a negative error has a more serious effect than a positive error.
From (15), the Bayes estimator φ̃(β, θ) of φ(β, θ) is provided by

φ̃G(β, θ) =
[

Eφ(β,θ)
(
{φ(β, θ)}−ρ|x

)]−1/ρ
.

For more details, see Dey et al. [19].
Obviously, due to the nonlinear expression of (13), there is no closed-form solution for

the Bayes estimators of β, θ, R(t), or h(t) using the SE and GE loss functions. As a result,
we propose using the MCMC approach to obtain the Bayes estimates and construct the
associated HPD Bayes credible intervals.

To produce samples via the MCMC approach, conditional posterior distributions of
the unknown NH parameters β and θ must first be obtained:

Φ∗β( β|θ, x) ∝ βm+p1−1 exp
(
−β
[
q1 −∑m

i=1 log(1 + θxi)
])

× exp

[
m

∑
i=1

(
1− (1 + θxi)

β
)
+

d

∑
i=1

Ri

(
1− (1 + θxi)

β
)
+ R∗m

(
1− (1 + θxm)

β
)]

, (16)

and

Φ∗θ ( θ|β, x) ∝ θm+p2−1e−q2θ
m

∏
i=1

(1 + θxi)
β−1

× exp

[
m

∑
i=1

(
1− (1 + θxi)

β
)
+

d

∑
i=1

Ri

(
1− (1 + θxi)

β
)
+ R∗m

(
1− (1 + θxm)

β
)]

, (17)

respectively.
It is clear from (16) and (17) that the full conditional distributions of β and θ cannot

be reduced to any familiar density. Therefore, generating β and θ straightforwardly from
Φ∗β(·) and Φ∗θ (·) is unattainable by the standard methods. Therefore, we consider the
Metropolis–Hastings (M-H) algorithm with normal proposal distribution to obtain the
Bayes point/interval estimates of the unknown parameters β and θ, as well as the reliability
characteristics R(t) and h(t). We use the following procedure to collect MCMC samples
from (16) and (17):
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Step 1. Set the start values of (β, θ), say, (β(0), θ(0)).
Step 2. Set j = 1.
Step 3. Simulate β∗ and θ∗ from (16) and (17) from N(β̂, v̂11) and N(θ̂, v̂22), respectively.

Step 4. Calculate Q1=
Φ∗β(β∗ |θ(j−1),x)

Φ∗β(β(j−1) |θ(j−1),x)
and Q2= Φ∗θ (θ

∗ |β(j),x)
Φ∗θ (θ

(j−1) |β(j),x)
.

Step 5. Generate u1 and u2 from the uniform U(0, 1) distribution.
Step 6. If u1 ≤ min[1, Q1], set β(j) = β∗; otherwise, β(j) = β(j−1).
Step 7. If u2 ≤ min[1, Q2], set θ(j) = θ∗; otherwise, θ(j) = θ(j−1).
Step 8. Replace β and θ in (3) and (4) with their respective β(j) and θ(j) to compute R(j)(t)

and h(j)(t) for t > 0.
Step 9. Repeat Steps 2–8M times and obtain β(j), θ(j), R(j)(t), and h(j)(t) for j = 1, 2, . . . ,M,

then discard the firstM∗ samples as burn-in.
Step 10. Compute the Bayes estimates of β, θ, R(t), or h(t) (for brevity, say ϑ) under the SE

and GE loss functions, respectively, as follows:

ϑ̃S =
1

M−M∗

M

∑
j=M∗+1

ϑ(j)

and

ϑ̃G =

[
1

M−M∗∑
M
j=M∗+1(ϑ

(j))−ρ

]−1/ρ

, ρ 6= 0.

Step 11. Create the HPD Bayes credible interval of ϑ by sorting its MCMC samples in as-
cending order as ϑ(M∗+1), ϑ(M∗+2), . . . , ϑ(M). Thus, following Chen and Shao [20],
the 100(1− α)% HPD Bayes credible interval estimator for ϑ is provided by

(ϑ(j∗), ϑ(j∗+(1−α)(M−M∗))),

where j∗ =M∗ + 1, . . . , M is chosen such that

ϑ(j∗+[(1−α)(M−M∗)]) − ϑ(j∗) = min
16j6α(M−M∗)

(ϑ(j+[(1−α)(M−M∗)]) − ϑ(j)),

where the highest integer less than or equal to x is symbolized by [x].

4. Monte Carlo Simulation

To examine the performance of the acquired (classical/Bayesian) estimators of β, θ,
R(t), and h(t), we conducted a simulation study. The simulation results were obtained
with the actual values of β and θ selected as 0.5 and 1.5, respectively, and 1000 AP-II-HC
samples were drawn from the NH distribution based on various choices of n, m, T, and
different progressive censoring schemes. For mission time t = 0.1, the actual values of the
reliability characteristics R(t) and h(t) were 0.930 and 0.699, respectively, and the values of
n, m, and T were chosen such that n = 50 and 100 for each threshold time T = 0.5 and 1.
According to the proposed censoring, taking the failure percentage (m/n)100% = 40 and
80%, the experiment was terminated when the number of failed items reached a particular
value of m. Moreover, in order to evaluate the behavior of removal designs, several designs
of the progressive censoring scheme Ri, i = 1, 2, ..., m were operated as follows:

Scheme-1 : R1 = n−m, Ri = 0 for i 6= 1,

Scheme-2 : R m
2
= n−m, Ri = 0 for i 6= m

2
,

Scheme-3 : Rm = n−m, Ri = 0 for i 6= m.

To generate an AP-II-HC sample from the NH distribution for given values of n, m, T,
and R, we offer the following steps:
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Step 1: Applying the simple algorithm of Balakrishnan and Sandhu [21], simulate an
ordinary progressive Type-II censored sample as follows:

i Create υ independent observations of size m as υ1, υ2, . . . , υm.
ii For specific n, m, T, and Ri, i = 1, 2, . . . , m, put

wi = υ

(
i+∑m

j=m−i+1 Rj

)−1

i , i = 1, 2, . . . , m.
iii Let ui = 1− wmwm−1 · · ·wm−i+1 for i = 1, 2, . . . , m. Then, ui, i = 1, 2, . . . , m is

a progressively Type-II censored sample of size m from a distribution U(0, 1).
iv Set Xi = F−1(ui; β, θ), i = 1, 2, . . . , m to be the progressively Type-II censored

sample from NH(β, θ).

Step 2: Determine d, where Xd < T < Xd+1, and remove the remaining sample Xd+2, . . . , Xm.
Step 3: From [1− F(xd+1)]

−1 f (x), generate the first m − d − 1 order statistics with size
n− d−∑d

j=1 Rj − 1 as Xd+2, . . . , Xm.

To see the consequences of the prior information on the Bayesian estimators, two
separate informative sets of the hyperparameters ai, bi, i = 1, 2, are used, i.e., Prior-1:
(a1, a2) = (2.5, 7.5) and b1 = b2 = 5 and Prior-2: (a1, a2) = (5, 15) and b1 = b2 = 10.
Clearly, the suggested hyperparameter values are assigned in such a manner that the prior
mean becomes the expected value of the model parameter. It is known that when improper
gamma information is available, i.e., ai, bi = 0, i = 1, 2, the posterior PDF is reduced to the
likelihood function. In this case, we advise using the frequentist technique rather than the
Bayesian approach, as the latter is computationally more costly. Using the M-H algorithm
presented in Section 3, 12,000 MCMC samples are generated and the first 2000 variates are
overlooked as burn-in. Thus, after gathering 10,000 MCMC samples, the Bayes estimates
of β, θ, R(t), and h(t) using both the SE and GE (for ρ = (−2,+2)) loss functions can be
computed, along with the associated 95% HPD credible intervals.

Comparison between point estimates of β, θ, R(t) or h(t) (say Ω) is carried out based
on their root mean square errors (RMSEs) and mean relative absolute biases (MRABs),
respectively, as follows:

RMSE( ˆ̂Ωτ) =

√
1

1000 ∑1000
i=1

(
ˆ̂Ω(i)

τ −Ωτ

)2
, τ = 1, 2, 3, 4,

and
MRAB( ˆ̂Ωτ) =

1
1000 ∑1000

i=1
1

Ωτ

∣∣∣ ˆ̂Ω(i)
τ −Ωτ

∣∣∣, τ = 1, 2, 3, 4,

where ˆ̂Ω(i) is the calculated estimate of Ω at the ith simulated sample using any estimation
method, Ω1 = β, Ω2 = θ, Ω3 = R(t), and Ω4 = h(t). Additionally, the comparison between
interval estimates of Ω is performed using their average confidence lengths (ACLs) and
coverage percentages (CPs), respectively, as follows:

ACL(1−α)%(Ω) =
1

1000 ∑1000
i=1

(
U ˆ̂Ω(i) −L ˆ̂Ω(i)

)
, τ = 1, 2, 3, 4,

and
CP(1−α)%(Ω) =

1
1000 ∑1000

i=1 1(L ˆ̂Ω(i) ;U ˆ̂Ω(i)

)(Ω), τ = 1, 2, 3, 4,

where 1(·) is the indicator function and L(·) and U (·) denote the respective lower and
upper bounds of the 100(1− α)% asymptotic (or HPD Bayes credible) interval of Ωτ . All
numerical evaluations were carried out using R 4.1.2 software with the ‘maxLik’ and ‘coda’
packages proposed by Henningsen and Toomet [22] and Plummer et al. [23], respectively.
The simulated (point/interval) outcomes of β, θ, R(t), and h(t) (including RMSEs, MRABs,
ACLs, and CPs) are delivered with heatmap plots in Figures 1–4, respectively, while all
numerical tables are documented in the Supplementary Materials. For specification, notes
have been reported in heatmaps (for Prior-1 (say, P1) as an example), such as the Bayes
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estimates based on SE loss (referenced as “SE-P1”), the Bayes estimates based on GE loss
for ρ = −2 and +2 (mentioned as “GE1-P1” and “GE2-P1”, respectively), and the HPD
Bayes credible interval estimates (referenced as “HPD-P1”). From Figures 1–4, in terms of
RMSEs, MRABs, ACLs, and CPs, the following conclusions about the different estimates
can be stated.

• All estimates perform better with an increase in the total (or effective) sample size. A
similar performance pattern is observed when ∑m

i=1 Ri decreases.
• The Bayes estimates of all unknown parameters have the lowest overall RMSE, MRAB,

and ACL values as well as the highest CPs as compared to the frequentist estimates,
as expected. Furthermore, the Bayes estimates relative to GE loss perform better than
those based on SE loss.

• The Bayes (point/interval) estimates based on Prior-2 perform more satisfactorily than
those developed based on Prior-1. This is because Prior-2 has a smaller variance than
Prior-1.

• As T increases in the point estimation, it can be seen that (i) the RMSEs and MRABs
decrease for θ, R(t), and h(t) and (ii) the RMSEs and MRABs increase for β in the case
of likelihood estimation and decrease in the case of Bayesian estimation.

• As T increases in the interval estimation, it can be observed that (i) the ACLs decrease
for θ, R(t), and h(t), whereas the associated CPs increase and (ii) the ACLs increase
for β when using the ACIs and decrease in the case of HPD Bayes credible intervals.

• Comparing Schemes 1–3, it can be noted that the point/interval estimates of β, θ, R(t),
and h(t) obtained based on Scheme 1 are more efficient than those computed using
the other schemes in terms of their RMSE, MRAB, ACL, and CP values.

• In summary, the Bayesian approach to estimating the unknown parameters and/or
the reliability characteristics of the NH based on AP-II-HC samples is recommended.

0.5−(50,20)−1

0.5−(50,20)−2

0.5−(50,20)−3

0.5−(50,40)−1

0.5−(50,40)−2

0.5−(50,40)−3

1.0−(50,20)−1

1.0−(50,20)−2

1.0−(50,20)−3

1.0−(50,40)−1

1.0−(50,40)−2

1.0−(50,40)−3

0.5−(100,40)−1

0.5−(100,40)−2

0.5−(100,40)−3

0.5−(100,80)−1

0.5−(100,80)−2

0.5−(100,80)−3

1.0−(100,40)−1

1.0−(100,40)−2

1.0−(100,40)−3

1.0−(100,80)−1

1.0−(100,80)−2

1.0−(100,80)−3

MLE SE−P1 SE−P2 GE1−P1 GE2−P1 GE1−P2 GE2−P2

β

T
−

(n
,m

)−
S

c
h

e
m

e

0.5

1.0

RMSE

0.5−(50,20)−1

0.5−(50,20)−2

0.5−(50,20)−3

0.5−(50,40)−1

0.5−(50,40)−2

0.5−(50,40)−3

1.0−(50,20)−1

1.0−(50,20)−2

1.0−(50,20)−3

1.0−(50,40)−1

1.0−(50,40)−2

1.0−(50,40)−3

0.5−(100,40)−1

0.5−(100,40)−2

0.5−(100,40)−3

0.5−(100,80)−1

0.5−(100,80)−2

0.5−(100,80)−3

1.0−(100,40)−1

1.0−(100,40)−2

1.0−(100,40)−3

1.0−(100,80)−1

1.0−(100,80)−2

1.0−(100,80)−3

MLE SE−P1 SE−P2 GE1−P1 GE2−P1 GE1−P2 GE2−P2

β

T
−

(n
,m

)−
S

c
h

e
m

e

0.2

0.4

0.6

0.8

MRAB

(a) (b)

0.5−(50,20)−1

0.5−(50,20)−2

0.5−(50,20)−3

0.5−(50,40)−1

0.5−(50,40)−2

0.5−(50,40)−3

1.0−(50,20)−1

1.0−(50,20)−2

1.0−(50,20)−3

1.0−(50,40)−1

1.0−(50,40)−2

1.0−(50,40)−3

0.5−(100,40)−1

0.5−(100,40)−2

0.5−(100,40)−3

0.5−(100,80)−1

0.5−(100,80)−2

0.5−(100,80)−3

1.0−(100,40)−1

1.0−(100,40)−2

1.0−(100,40)−3

1.0−(100,80)−1

1.0−(100,80)−2

1.0−(100,80)−3

ACI HPD−P1 HPD−P2

β

T
−

(n
,m

)−
S

c
h

e
m

e

0.25

0.50

0.75

ACL

0.5−(50,20)−1

0.5−(50,20)−2

0.5−(50,20)−3

0.5−(50,40)−1

0.5−(50,40)−2

0.5−(50,40)−3

1.0−(50,20)−1

1.0−(50,20)−2

1.0−(50,20)−3

1.0−(50,40)−1

1.0−(50,40)−2

1.0−(50,40)−3

0.5−(100,40)−1

0.5−(100,40)−2

0.5−(100,40)−3

0.5−(100,80)−1

0.5−(100,80)−2

0.5−(100,80)−3

1.0−(100,40)−1

1.0−(100,40)−2

1.0−(100,40)−3

1.0−(100,80)−1

1.0−(100,80)−2

1.0−(100,80)−3

ACI HPD−P1 HPD−P2

β

T
−

(n
,m

)−
S

c
h

e
m

e

0.900

0.925

0.950

0.975

CP

(c) (d)

Figure 1. Heatmap plots for the estimation results of β. (a) RMSE. (b) MRAB. (c) ACL. (d) CP.
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Figure 2. Heatmap plots for the estimation results of θ. (a) RMSE. (b) MRAB. (c) ACL. (d) CP.
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Figure 3. Heatmap plots for the estimation results of R(t). (a) RMSE. (b) MRAB. (c) ACL. (d) CP.
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Figure 4. Heatmap plots for the estimation results of h(t). (a) RMSE. (b) MRAB. (c) ACL. (d) CP.

5. Real-Life Applications

This section presents the analysis of two real data sets from the clinical and engineer-
ing fields to illustrate the importance and usage of the proposed methodologies in real
practical situations.

5.1. Malignant Tumors

This application analyzes the survival data of 39 patients with malignant tumors of
the sternum (MTS) taken from Daniel and Cross [24]. They classified patients into two
groups, namely, 25 patients with low-grade MTS and 14 patients with high-grade MTS.
The months (time-to-event) for patients are arranged as follows: 0, 2, 3, 4, 6, 6, 7, 8, 9, 9, 11,
12, 15, 15, 16, 17, 21, 23, 26, 27, 29, 33, 34, 75, 79, 82, 95, 102, 109, 109, 117, 122, 127, 129, 137,
138, 156, 212, 337.

To check the validity of the NH distribution for MTS data, the Kolmogorov–Smirnov
(KS) statistic (along its P-value) is calculated. To perform the KS test, we first obtain the
MLEs β̂ and θ̂ of β and θ (along their standard errors (St.Es)) as 0.5811 (0.1747) and 0.0435
(0.0276), respectively. However, the KS distance is 0.144 with P-value 0.391. Therefore, it
stands to reason that the NH distribution fits the MTS data quite well. To examine the
existence and uniqueness of the MLEs, the contour plot of the log-likelihood function for β
and θ based on the MTS data set is depicted in Figure 5a. The plot indicates that the MLEs
β̂ and θ̂ exist and are unique. Furthermore, Figure 5a shows that the most suitable starting
values of β and θ are close to 0.5811 and 0.0435, respectively. The plots of the fitted and
empirical RFs are provided in Figure 5b.

From the complete MTS data set, different AP-II-HC samples are generated using dif-
ferent choices of m, T, and R, and are listed in Table 1. For brevity, scheme (R1, R2, . . . , Rm)
is used as Sm:n. Using the M-H algorithm steps described in Section 3, we generate
50,000 MCMC samples and discard the first 10,000 samples.
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Figure 5. (a) Contour plot of β and θ and (b) fitted/empirical RFs (right panel) from MTS data.

Table 1. Different AP-II-HC samples from MTS data.

Sm:n
i m Scheme T (d) Rm Generated Sample

S18:38
1 18 (20, 0∗17) 80 (4) 0 2, 34, 75, 79, 82, 95, 102, 109, 109, 117, 122, 127, 129, 137, 138, 156, 212, 337
S18:38

2 18 (0∗4, 2∗10, 0∗4) 30 (10) 8 2, 3, 4, 6, 6, 9, 12, 16, 23, 29, 75, 79, 82, 95, 102, 109, 109, 117
S18:38

3 18 (0∗17, 20) 10 (12) 0 2, 3, 4, 6, 6, 7, 8, 9, 9, 11, 12, 15, 15, 16, 17, 21, 23, 26, 27, 29

S28:38
1 28 (10, 0∗27) 100 (16) 0 2, 15, 15, 16, 17, 21, 23, 26, 27, 29, 33, 34, 75, 79, 82, 95, 102, 109, 109, 117, 122,

127, 129, 137, 138, 156, 212, 337
S28:38

2 28 (0∗9, 1∗10, 0∗9) 30 (15) 4 2, 3, 4, 6, 6, 7, 8, 9, 9, 11, 15, 16, 21, 26, 29, 34, 75, 79, 82, 95, 102, 109, 109, 117,
122, 127, 129, 137

S28:38
3 28 (0∗27, 10) 20 (15) 0 2, 3, 4, 6, 6, 7, 8, 9, 9, 11, 12, 15, 15, 16, 17, 21, 23, 26, 27, 29, 33, 34, 75, 79, 82,

95, 102, 109

* represents number of repeated times for zeros.

Because prior knowledge about the NH parameters β and θ is not available, the Bayes
estimates of β, θ, R(t) or h(t) at time t = 10 based on non-informative priors are obtained
relative to the SE and GE (for ρ = (−3,−0.03,+3)) loss functions. Moreover, utilizing
40,000 MCMC samples, the HPD Bayes credible intervals of the unknown parameters
are computed. The MLEs and Bayes estimates with their St.Es of β, θ, R(t), and h(t) are
obtained and displayed in Table 2, indicating that in terms of the lowest St.Es, the Bayes
estimates of β, θ, R(t), and h(t) perform better than those obtained based on the maximum
likelihood approach. In addition, the two-sided 95% ACI/HPD interval estimates along
with their interval lengths (ILs) are calculated, and are presented in Table 3. The table shows
that the interval estimates of β, θ, R(t), and h(t) obtained by the asymptotic and HPD
methods are quite close to each other, as expected. To examine the convergence of MCMC
outputs, we use S18:38

1 data as an example; the trace plots for 40,000 MCMC simulated
variates of each unknown parameter are plotted in Figure 6a and Figure 6b, respectively.

Consequently, certain vital measures of MCMC samples for β, θ, R(t), and h(t), namely,
the mean, mode, quartiles (Q1, Q2, Q3), standard deviation (St.D), and skewness are com-
puted, and are reported in Table 4. Using the Gaussian kernel density, the corresponding
histograms for 40,000 MCMC values of β, θ, R(t), and h(t) are represented in Figure 6 as
well. In each trace plot, the sample mean is represented as a solid blue line, the two bounds
of the 95% HPD credible intervals are represented as dashed lines, and in each histogram
plot the sample mean is shown as a red vertical dash-dotted line. Figure 6 indicates that
the MCMC procedure utilizing the M-H algorithm converges satisfactorily and that the
generated posterior estimates are very close to symmetric.
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Table 2. The point estimates (St.Es) of β, θ, R(t), and h(t) under MTS data.

Sm:n
i

Par. MLE SE
GE

ρ→ −3 −0.03 +3

S18:38
1 β 55.8232 (0.90 × 10+1) 55.8221 (4.97 × 10−5) 55.8220 (9.40 × 10−4) 55.8221 (4.97 × 10−5) 55.8221 (9.45 × 10−5)

θ 0.00009 (2.07 × 10−5) 0.00009 (4.03 × 10−8) 0.00009 (1.63 × 10−6) 0.00009 (5.66 × 10−7) 0.00009 (5.59 × 10−7)
R(10) 0.94727 (7.59 × 10−3) 0.94929 (2.24 × 10−5) 0.94931 (4.88 × 10−4) 0.94928 (5.19 × 10−4) 0.94925 (5.52 × 10−4)
h(10) 0.00556 (8.43 × 10−4) 0.00534 (2.49 × 10−6) 0.00538 (1.05 × 10−4) 0.00531 (3.59 × 10−5) 0.00524 (3.68 × 10−5)

S18:38
2 β 56.2524 (0.55 × 10+1) 56.2510 (4.98 × 10−5) 56.2510 (9.69 × 10−4) 56.2510 (9.71 × 10−4) 56.2510 (9.74 × 10−4)

θ 0.00011 (2.29 × 10−5) 0.00010 (4.42 × 10−8) 0.00010 (2.84 × 10−6) 0.00010 (1.71 × 10−6) 0.00010 (5.15 × 10−7)
R(10) 0.93659 (1.11 × 10−2) 0.94264 (2.48 × 10−5) 0.94267 (1.14 × 10−3) 0.94263 (1.18 × 10−3) 0.94259 (1.22 × 10−3)
h(10) 0.00676 (1.26 × 10−3) 0.00608 (2.78 × 10−6) 0.00613 (1.84 × 10−4) 0.00605 (1.08 × 10−4) 0.00597 (2.94 × 10−5)

S18:38
3 β 288.065 (0.85 × 10+1) 288.064 (4.95 × 10−5) 288.064 (1.01 × 10−3) 288.064 (1.01 × 10−3) 288.064 (1.02 × 10−3)

θ 0.00016 (2.35 × 10−5) 0.00016 (4.58 × 10−8) 0.00016 (1.14 × 10−6) 0.00016 (3.67 × 10−7) 0.00016 (4.36 × 10−7)
R(10) 0.53984 (5.76 × 10−2) 0.55575 (1.16 × 10−4) 0.55672 (4.26 × 10−4) 0.55528 (1.87 × 10−3) 0.55380 (3.35 × 10−3)
h(10) 0.07756 (1.58 × 10−2) 0.07438 (3.06 × 10−5) 0.07399 (1.06 × 10−3) 0.07323 (3.02 × 10−4) 0.07246 (4.76 × 10−4)

S28:38
1 β 1.08092 (5.39 × 10−1) 1.08041 (4.99 × 10−5) 1.08051 (4.15 × 10−4) 1.08037 (5.52 × 10−4) 1.08023 (6.92 × 10−4)

θ 0.00907 (7.04 × 10−3) 0.00907 (5.01 × 10−8) 0.00907 (1.71 × 10−8) 0.00907 (1.81 × 10−8) 0.00907 (3.49 × 10−8)
R(10) 0.90626 (2.65 × 10−2) 0.90634 (4.35 × 10−6) 0.90634 (4.48 × 10−5) 0.90633 (4.35 × 10−5) 0.90634 (4.23 × 10−5)
h(10) 0.00988 (2.78 × 10−3) 0.00987 (5.02 × 10−7) 0.00986 (3.97 × 10−6) 0.00987 (5.49 × 10−6) 0.00986 (7.04 × 10−6)

S28:38
2 β 95.8364 (0.68 × 10+1) 95.8355 (5.03 × 10−5) 95.8354 (9.36 × 10−4) 95.8355 (9.37 × 10−4) 95.8354 (9.39 × 10−4)

θ 0.00008 (1.19 × 10−5) 0.00008 (3.59 × 10−8) 0.00008 (1.14 × 10−6) 0.00008 (1.93 × 10−7) 0.00008 (8.07 × 10−7)
R(10) 0.92142 (9.91 × 10−3) 0.92296 (3.43 × 10−5) 0.92301 (4.30 × 10−4) 0.92293 (5.06 × 10−4) 0.92286 (5.83 × 10−4)
h(10) 0.00851 (1.16 × 10−3) 0.00833 (3.39 × 10−6) 0.00841 (1.38 × 10−4) 0.00829 (2.41 × 10−5) 0.00817 (9.56 × 10−5)

S28:38
3 β 333.434 (0.42 × 10+1) 333.432 (4.99 × 10−5) 333.433 (1.05 × 10−3) 333.433 (1.05 × 10−3) 333.432 (1.05 × 10−3)

θ 0.00005 (5.16 × 10−6) 0.00005 (2.30 × 10−8) 0.00005 (3.27 × 10−6) 0.00005 (3.95 × 10−6) 0.00005 (4.67 × 10−6)
R(10) 0.84785 (1.69 × 10−2) 0.84640 (7.56 × 10−5) 0.84667 (1.25 × 10−2) 0.84627 (1.21 × 10−2) 0.84586 (1.17 × 10−2)
h(10) 0.01779 (2.29 × 10−3) 0.01802 (1.03 × 10−5) 0.01826 (1.43 × 10−3) 0.01791 (1.78 × 10−3) 0.01754 (2.15 × 10−3)

Table 3. The 95% interval estimates (ILs) of β, θ, R(t), and h(t) under MTS data.

Sm:n
i Par. ACI HPD

S18:38
1 β (38.1642, 73.4822) [35.3180] (55.8026, 55.8415) [0.38946]

θ (0.00005, 0.00014) [0.00009] (0.00008, 0.00011) [0.00003]
R(10) (0.93238, 0.96216) [0.02978] (0.94051, 0.95814) [0.01763]
h(10) (0.00391, 0.00721) [0.00331] (0.00436, 0.00631) [0.00195]

S18:38
2 β (45.2941, 67.2107) [21.9166] (56.2316, 56.2706) [0.03897]

θ (0.00007, 0.00016) [0.00009] (0.00008, 0.00012) [0.00004]
R(10) (0.91481, 0.95836) [0.04355] (0.93264, 0.95218) [0.01954]
h(10) (0.00429, 0.00923) [0.00494] (0.00500, 0.00719) [0.00219]

S18:38
3 β (271.236, 304.893) [33.6565] (288.045, 288.084) [0.03870]

θ (0.00012, 0.00021) [0.00009] (0.00014, 0.00018) [0.00004]
R(10) (0.42684, 0.65284) [0.22599] (0.51020, 0.60110) [0.09090]
h(10) (0.04662, 0.10851) [0.06188] (0.06155, 0.08546) [0.02391]

S28:38
1 β (0.02448, 2.13736) [2.11288] (1.06087, 1.10005) [0.03918]

θ (0.00472, 0.02287) [0.01815] (0.00905, 0.00909) [0.00004]
R(10) (0.85418, 0.95834) [0.10416] (0.90461, 0.90801) [0.00340]
h(10) (0.00441, 0.01534) [0.01093] (0.00967, 0.01006) [0.00039]

S28:38
2 β (82.4225, 109.250) [26.8278] (95.8162, 95.8555) [0.03933]

θ (0.00006, 0.00011) [0.00005] (0.00006, 0.00009) [0.00003]
R(10) (0.90198, 0.94086) [0.03887] (0.90959, 0.93639) [0.02680]
h(10) (0.00623, 0.01078) [0.00455] (0.00679, 0.00991) [0.00312]

S28:38
3 β (325.159, 341.709) [16.5508] (333.413, 333.452) [0.03901]

θ (0.00004, 0.00005) [0.00001] (0.00003, 0.00006) [0.00003]
R(10) (0.81477, 0.88094) [0.06617] (0.81596, 0.87503) [0.05907]
h(10) (0.01329, 0.02229) [0.00899] (0.01395, 0.02201) [0.00806]
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Table 4. Vital measures of MCMC outputs of β, θ, R(t), and h(t) under MTS data.

Sm:n
i Par. Mean Mode Q1 Q2 Q3 St.D Skewness

S18:38
1 β 55.82206 55.80526 55.81530 55.82204 55.82883 1.00 × 10−2 −0.000361

θ 0.000091 0.000088 0.000085 0.000091 0.000096 8.02 × 10−6 −0.012473
R(10) 0.949304 0.950724 0.946309 0.949291 0.952289 4.47 × 10−3 +0.013413
h(10) 0.005335 0.005176 0.005004 0.005334 0.005665 4.94 × 10−4 +0.012804

S28:38
1 β 1.080413 1.063106 1.073691 1.080393 1.087115 9.98 × 10−3 +0.021721

θ 0.009069 0.009045 0.009063 0.009069 0.009077 1.00 × 10−5 +0.005913
R(10) 0.906339 0.907432 0.905755 0.906342 0.906922 8.70 × 10−4 −0.0215269
h(10) 0.009868 0.009691 0.009801 0.009867 0.009935 1.00 × 10−4 +0.026774
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Figure 6. Trace (top panel) and Histogram (bottom panel) plots of β, θ, R(t), and h(t) under MTS data.

5.2. Sodium Sulphur Batteries

This application analyzes the lifetimes (in cycles) of sodium sulphur batteries (SSBs),
and is taken from Phillips [25]. The failure times (where + represents right-censored data)
of 20 SSB are as follows: 76, 82, 210, 315, 385, 412, 491, 504, 522, 646+, 678, 775, 884, 1131,
1446. The same has recently been analyzed by Alotaibi et al. [17]. First, we ignore the
observation ‘646+’ (which was still running) and divide each time point in the SSB data by
one hundred for the sake of computational convenience. Next, we verify whether or not
the NH distribution is a suitable model to fit the SSB data. From the SSB dataset, the MLEs
β̂ and θ̂ (with their St.Es) of β and θ are 1.9912 (2.1140) and 0.0381 (0.0532), respectively.
Consequently, the calculated KS distance is 0.108 with P-value 0.954. This implies that the
NH distribution fits the SSB data quite satisfactorily. The contour plot of the log-likelihood
function of β and θ is shown in Figure 7a. The plot shows that the best initial guesses values
of β and θ are quite close to 0.652 and 0.475, respectively. In addition, it shows that the
acquired MLEs β̂ and θ̂ exist and are unique. In addition, the fitted and empirical RFs are
displayed in Figure 7b.

Next, three different AP-II-HC samples are generated from the complete SSB data;
these are presented in Table 5. Using Table 5, both the classical and Bayes estimates (with
their St.Es) as well as the ACI/HPD credible interval estimates (with their ILs) of β, θ, R(t),
and h(t) at specified time t = 0.01 are calculated, and are reported in Tables 6 and 7. Using
the M-H algorithm, we generate 50,000 MCMC samples and ignore the first 10,000 samples.
It is important to mention here that the Bayes estimates based on the GE loss function are
obtained using the same values for ρ as in the first application.
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From Tables 6 and 7 it can be seen that the Bayes (point/interval) estimates have
better performance than the frequentist estimates. Moreover, the trace and histogram
plots for 40,000 MCMC estimates of β, θ, R(t), and h(t) for S10:20

1 are shown in Figure 8a,b,
respectively, as an example. The plots indicate that the MCMC procedure converges
very completely. In addition, it stands to reason that the posterior histograms are fairly
symmetrical. Furthermore, from the S10:20

1 and S15:20
1 datasets, several vital statistics of

the simulated MCMC variates for β, θ, R(t), and h(t) can be computed, and are listed in
Table 8.
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Figure 7. (a) Contour plot of β and θ and (b) fitted/empirical RFs (right panel) from SSB data.

The analysis of these two real datasets shows that the NH distribution is an accurate
model for fitting the considered data. Moreover, the following findings can be observed
regarding the flexibility of the AP-II-HC scheme: (1) it is adaptable and very useful in
terminating the experiment when the researcher’s primary consideration is the number of
failures; (2) it can preserve the duration of the experiment; and (3) satisfactory estimates of
the RF and HRF can be acquired using the proposed scheme instead of using the whole
sample, avoiding the need for additional time, expenses, and human resources. Ultimately,
the Bayes MCMC procedure is recommended for estimating the unknown parameters of
the NH model in the case of AP-II-HC data.

Table 5. Different AP-II-HC samples from SSB data.

Sm:n
i m Scheme T (d) Rm Generated Sample

S10:20
1 10 (10, 0∗9) 0.3 (9) 0 0.0076, 0.0775, 0.0884, 0.1131, 0.1446, 0.1824, 0.1827, 0.2248, 0.2385, 0.3077
S10:20

2 10 (0∗3, 2∗5, 0∗2) 0.1 (7) 2 0.0076, 0.0082, 0.0210, 0.0315, 0.0491, 0.0646, 0.0884, 0.1824, 0.1827, 0.2248
S10:20

3 10 (0∗9, 10) 0.05 (7) 0 0.0076, 0.0082, 0.0210, 0.0315, 0.0385, 0.0412, 0.0491, 0.0504, 0.0522, 0.0646

S15:20
1 15 (5, 0∗14) 0.2 (12) 0 0.0076, 0.0491, 0.0504, 0.0522, 0.0646, 0.0678, 0.0775, 0.0884, 0.1131, 0.1446,

0.1824, 0.1827, 0.2248, 0.2385, 0.3077
S15:20

2 15 (0∗5, 1∗5, 0∗5) 0.06 (7) 3 0.0076, 0.0082, 0.0210, 0.0315, 0.0385, 0.0412, 0.0504, 0.0646, 0.0678, 0.0775,
0.0884, 0.1131, 0.1446, 0.1824, 0.1827

S15:20
3 15 (0∗14, 5) 0.04 (5) 0 0.0076, 0.0082, 0.0210, 0.0315, 0.0385, 0.0412, 0.0491, 0.0504, 0.0522, 0.0646,

0.0678, 0.0775, 0.0884, 0.1131, 0.1446

* represents number of repeated times for zeros.
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Table 6. The point estimates (St.Es) of β, θ, R(t), and h(t) under SSB data.

Sm:n
i

Par. MLE SE
GE

ρ→ −3 −0.03 +3

S10:20
1 β 285.582 (2.61 × 10+1) 285.483 (4.92 × 10−4) 285.484 (9.84 × 10−2) 285.484 (9.84 × 10−2) 285.483 (9.85 × 10−2)

θ 0.01484 (3.25 × 10−3) 0.01478 (4.75 × 10−6) 0.01484 (1.50 × 10−6) 0.01475 (8.93 × 10−5) 0.01466 (1.83 × 10−4)
R(0.01) 0.95763 (8.42 × 10−3) 0.95782 (1.36 × 10−5) 0.95783 (1.92 × 10−4) 0.95781 (1.80 × 10−4) 0.95780 (1.69 × 10−4)
h(0.01) 4.42139 (9.16 × 10−1) 4.40158 (1.47 × 10−3) 4.42128 (4.44 × 10−4) 4.39195 (2.89 × 10−3) 4.36157 (5.92 × 10−2)

S10:20
2 β 137.074 (0.19 × 10+1) 136.974 (4.98 × 10−4) 136.975 (9.94 × 10−2) 136.974 (9.95 × 10−2) 136.974 (9.97 × 10−2)

θ 0.02921 (7.93 × 10−3) 0.02915 (4.97 × 10−6) 0.02918 (2.19 × 10−5) 0.02914 (7.23 × 10−5) 0.02909 (1.24 × 10−4)
R(0.01) 0.95998 (9.17 × 10−3) 0.96008 (6.81 × 10−6) 0.96008 (1.07 × 10−4) 0.96008 (1.04 × 10−4) 0.96007 (1.02 × 10−4)
h(0.01) 4.16559 (9.93 × 10−1) 4.15505 (7.38 × 10−4) 4.16028 (5.98 × 10−3) 4.15250 (1.38 × 10−2) 4.14452 (2.17 × 10−2)

S10:20
3 β 385.152 (0.17 × 10+1) 385.050 (4.99 × 10−4) 385.050 (1.02 × 10−1) 385.050 (1.02 × 10−1) 385.050 (1.02 × 10−1)

θ 0.04924 (9.98 × 10−3) 0.04922 (4.99 × 10−6) 0.04924 (2.47 × 10−6) 0.04921 (2.76 × 10−5) 0.04918 (5.84 × 10−5)
R(0.01) 0.81156 (3.68 × 10−2) 0.81170 (1.89 × 10−5) 0.81172 (1.35 × 10−4) 0.81169 (1.09 × 10−4) 0.81167 (8.29 × 10−5)
h(0.01) 22.9162 (0.53 × 10+1) 22.8977 (2.76 × 10−3) 22.9111 (1.79 × 10−3) 22.8913 (2.16 × 10−2) 22.8711 (4.18 × 10−2)

S15:20
1 β 132.062 (0.28 × 10+1) 131.962 (4.94 × 10−4) 131.962 (9.98 × 10−2) 131.962 (9.99 × 10−2) 131.961 (1.00 × 10−1)

θ 0.03736 (9.97 × 10−3) 0.03734 (4.99 × 10−6) 0.03736 (8.62 × 10−6) 0.03732 (3.09 × 10−5) 0.03729 (7.15 × 10−5)
R(0.01) 0.95069 (7.82 × 10−3) 0.95075 (6.57 × 10−6) 0.95075 (6.29 × 10−5) 0.95075 (6.02 × 10−5) 0.95074 (5.75 × 10−5)
h(0.01) 5.18145 (8.63 × 10−1) 5.17483 (7.25 × 10−4) 5.17889 (2.49 × 10−3) 5.17286 (8.53 × 10−3) 5.16668 (1.47 × 10−2)

S15:20
2 β 497.492 (0.12 × 10+1) 497.391 (4.98 × 10−4) 497.391 (1.01 × 10−1) 497.391 (1.01 × 10−1) 497.391 (1.00 × 10−1)

θ 0.01108 (1.96 × 10−3) 0.01100 (4.42 × 10−6) 0.01107 (5.10 × 10−6) 0.01097 (1.11 × 10−4) 0.01086 (2.22 × 10−4)
R(0.01) 0.94491 (9.67 × 10−3) 0.94530 (2.21 × 10−5) 0.94532 (4.12 × 10−4) 0.94529 (3.81 × 10−4) 0.94526 (3.50 × 10−4)
h(0.01) 5.82417 (0.11 × 10−1) 5.78243 (2.46 × 10−3) 5.82411 (1.87 × 10−4) 5.76199 (6.19 × 10−2) 5.69710 (1.26 × 10−1)

S15:20
3 β 522.826 (0.12 × 10+1) 522.726 (4.92 × 10−4) 522.726 (1.00 × 10−1) 522.725 (1.00 × 10−1) 522.726 (1.00 × 10−1)

θ 0.02079 (3.30 × 10−3) 0.02074 (4.76 × 10−6) 0.02078 (5.68 × 10−6) 0.02072 (7.05 × 10−5) 0.02065 (1.37 × 10−4)
R(0.01) 0.89153 (1.69 × 10−2) 0.89181 (2.47 × 10−5) 0.89184 (3.06 × 10−4) 0.89180 (2.65 × 10−4) 0.89176 (2.24 × 10−4)
h(0.01) 12.1112 (0.21 × 10+1) 12.0835 (3.07 × 10−3) 12.1147 (2.99 × 10−4) 12.0683 (4.67 × 10−2) 12.0206 (9.43 × 10−2)

Table 7. The 95% interval estimates (ILs) of β, θ, R(t), and h(t) under SSB data.

Sm:n
i Par. ACI HPD

S10:20
1 β (234.382, 336.782) [102.400] (285.305, 285.670) [0.38477]

θ (0.00847, 0.02121) [0.01274] (0.01294, 0.01663) [0.00369]
R(0.01) (0.94112, 0.97414) [0.03301] (0.95257, 0.96309) [0.01052]
h(0.01) (2.62508, 6.21770) [3.59262] (3.83097, 4.97490) [1.14393]

S10:20
2 β (98.1428, 176.004) [77.8616] (136.789, 137.176) [0.38797]

θ (0.01366, 0.04475) [0.03108] (0.02720, 0.03108) [0.00388]
R(0.01) (0.94201, 0.97796) [0.03595] (0.95745, 0.96277) [0.00532]
h(0.01) (2.21894, 6.11225) [3.89331] (3.86419, 4.44045) [0.57627]

S10:20
3 β (351.439, 418.864) [67.4256] (384.841, 385.234) [0.39277]

θ (0.02968, 0.06881) [0.03913] (0.04732, 0.05123) [0.00391]
R(0.01) (0.73949, 0.88363) [0.14414] (0.80426, 0.81902) [0.01477]
h(0.01) (12.3565, 33.4759) [0.19304] (21.7725, 23.9350) [2.16247]

S15:20
1 β (76.8197, 187.304) [110.485] (131.773, 132.155) [0.38239]

θ (0.01782, 0.05689) [0.03908] (0.03534, 0.03927) [0.00393]
R(0.01) (0.93535, 0.96602) [0.03067] (0.94819, 0.95336) [0.00517]
h(0.01) (3.48957, 6.87333) [3.38376] (4.88778, 5.45809) [0.57031]

S15:20
2 β (474.023, 520.962) [46.9391] (497.197, 497.582) [0.38488]

θ (0.00723, 0.01493) [0.00770] (0.00923, 0.01274) [0.00350]
R(0.01) (0.92595, 0.96385) [0.03790] (0.93645, 0.95385) [0.01740]
h(0.01) (3.70814, 7.94020) [4.23206] (4.80768, 6.74853) [1.94085]

S15:20
3 β (499.327, 546.325) [46.9975] (522.534, 522.915) [0.38189]

θ (0.01432, 0.02726) [0.01295] (0.01893, 0.02269) [0.00376]
R(0.01) (0.85825, 0.92482) [0.06656] (0.88179, 0.90129) [0.01950]
h(0.01) (7.97698, 16.2529) [8.27595] (10.9142, 13.3392) [2.42500]
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Table 8. Vital measures of MCMC outputs of β, θ, R(t), and h(t) under SSB data.

Sm:n
i Par. Mean Mode Q1 Q2 Q3 St.D Skewness

S10:20
1 β 285.4836 285.2006 285.4152 285.4827 285.5504 9.86 × 10−2 +0.073569

θ 0.014781 0.013793 0.014139 0.014766 0.015421 9.51 × 10−4 +0.023780
R(10) 0.957820 0.960674 0.955992 0.957864 0.959653 2.71 × 10−3 −0.023563
h(10) 4.401575 4.091152 4.201630 4.395960 4.599931 2.95 × 10−1 +0.039569

S15:20
1 β 131.9620 131.7252 131.8950 131.9615 132.0289 9.87 × 10−2 +0.043861

θ 0.037341 0.039147 0.036679 0.037334 0.038014 9.98 × 10−4 −0.000245
R(10) 0.950752 0.948466 0.949868 0.950756 0.951631 1.31 × 10−3 +0.000603
h(10) 5.174830 5.427382 5.077752 5.174171 5.272276 1.45 × 10−1 +0.007415
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Figure 8. Trace (top panel) and Histogram (bottom panel) plots of β, θ, R(t), and h(t) under SSB data.

6. Concluding Remarks

In this paper, we have investigated maximum likelihood and Bayesian inference for
the Nadarajah–Haghighi distribution based on an adaptive progressive Type II censoring
scheme. Due to the complex forms of the maximum likelihood equations, the maximum
likelihood estimates of the unknown parameters are obtained through numerical methods.
Based on the invariance property of the maximum likelihood estimates, the estimates
of the reliability and hazard rate functions are derived as well. Utilizing the asymptotic
properties of the maximum likelihood estimates, both the approximate confidence intervals
of the unknown parameters and the reliability and hazard rate functions are acquired. On
the other hand, we evaluate Bayesian estimation using two loss functions, namely, the
squared error and general entropy loss functions, with the estimates obtained via the Monte
Carlo Markov Chain technique. Meanwhile, we establish the highest posterior density
Bayes credible intervals of the different unknown parameters. To check the performance
of the various estimates, we carried out a simulation study. In the simulation part of this
paper, the average values of the root mean square errors and relative absolute biases are
computed to examine the performance of the point estimates, while the average interval
lengths and coverage probabilities are evaluated for the interval estimates. Based on the
simulation outcomes, it is evident that Bayesian estimation, which retains appropriate
informative priors, is more reasonable than the maximum likelihood estimates in all
cases. To be more specific, the Bayesian estimates using the general entropy loss function
perform better than all other estimates. In addition, the highest posterior density Bayes
credible intervals possess the smallest average interval lengths with the highest coverage
probabilities when compared with the approximate confidence intervals. Finally, two real
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datasets, one involving patients with malignant tumors of the sternum and one involving
sodium sulphur batteries, are analyzed in order to demonstrate the practicality of the
different studied methodologies. In future work, it may prove essential to extend the
proposed methods to include the competing risks model or accelerated life tests.
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//www.mdpi.com/article/10.3390/math10203775/s1, Table S1: The RMSEs (1st column) and MRABs
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RMSEs (1st column) and MRABs (2nd column) of R(t); Table S4: The RMSEs (1st column) and
MRABs (2nd column) of h(t); Table S5: The ACLs (1st column) and CPs (2nd column) of ACI/HPD
credible intervals of β; Table S6: The ACLs (1st column) and CPs (2nd column) of ACI/HPD credible
intervals of θ; Table S7: The ACLs (1st column) and CPs (2nd column) of ACI/HPD credible intervals
of R(t); Table S8: The ACLs (1st column) and CPs (2nd column) of ACI/HPD credible intervals
of h(t).
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