
Citation: Lu, K.; Fang, X.; Fang, N.

PN-BBN: A Petri Net-Based Bayesian

Network for Anomalous Behavior

Detection. Mathematics 2022, 10, 3790.

https://doi.org/10.3390/

math10203790

Academic Editors: Luis Javier

García Villalba, Andrea Prati and

Vincent A. Cicirello

Received: 9 September 2022

Accepted: 11 October 2022

Published: 14 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

PN-BBN: A Petri Net-Based Bayesian Network for Anomalous
Behavior Detection
Ke Lu 1, Xianwen Fang 1,2,* and Na Fang 1

1 School of Mathematics and Big Data, Anhui University of Science and Technology, Huainan 232001, China
2 Anhui Province Engineering Laboratory for Big Data Analysis and Early Warning Technology of Coal

Mine Safety, Huainan 232001, China
* Correspondence: xwfang@aust.edu.cn

Abstract: Business process anomalous behavior detection reveals unexpected cases from event logs to
ensure the trusted operation of information systems. Anomaly behavior is mainly identified through
a log-to-model alignment analysis or numerical outlier detection. However, both approaches ignore
the influence of probability distributions or activity relationships in process activities. Based on this
concern, this paper incorporates the behavioral relationships characterized by the process model and
the joint probability distribution of nodes related to suspected anomalous behaviors. Moreover, a
Petri Net-Based Bayesian Network (PN-BBN) is proposed to detect anomalous behaviors based on
the probabilistic inference of behavioral contexts. First, the process model is filtered based on the
process structure of the process activities to identify the key regions where the suspected anomalous
behaviors are located. Then, the behavioral profile of the activity is used to prune it to position
the ineluctable paths that trigger these activities. Further, the model is used as the architecture for
parameter learning to construct the PN-BBN. Based on this, anomaly scores are inferred based on
the joint probabilities of activities related to suspected anomalous behaviors for anomaly detection
under the constraints of control flow and probability distributions. Finally, PN-BBN is implemented
based on the open-source frameworks PM4PY and PMGPY and evaluated from multiple metrics
with synthetic and real process data. The experimental results demonstrate that PN-BBN effectively
identifies anomalous process behaviors and improves the reliability of information systems.

Keywords: anomalous behavior detection; petri net-based bayesian network; probabilistic inference;
behavior profile; behavior context

MSC: 68Q87; 62F15

1. Introduction

Digital information systems use process models and other business specifications to
guide the safe and trusted operation of the system while storing operational records in an
event log. However, the actual execution process does not always conform to the planning
scheme, and thus unexpected behavior occurs. Therefore, anomalous behavior detection
techniques are widely used in business process management and play an essential role in
ensuring business processes’ correct and orderly execution [1]. There is no strict definition
for how to define anomalous behavior formally, but some consensus has been developed:
(1) they differ from normal behavior in specific characteristics; and (2) they occur much
less frequently than usual behavior [2]. Based on this consensus, a variety of anomalous
behaviors can be defined, such as intrusion detection in network environments [3], fraud
detection in e-commerce [4], and data leakage prevention [5]. The effective detection of
these abnormal behaviors means the system can stop the damage in time and reduce the
impact caused by deviant behaviors.

Automated anomalous behavior detection requires the ability to determine whether
abnormal behavior is occurring in the system by analyzing the operational patterns of

Mathematics 2022, 10, 3790. https://doi.org/10.3390/math10203790 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10203790
https://doi.org/10.3390/math10203790
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8531-7215
https://doi.org/10.3390/math10203790
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10203790?type=check_update&version=1

Mathematics 2022, 10, 3790 2 of 24

the raw data. Standard anomalous behavior detection methods are currently divided into
data-centric and model-centric approaches. The former focuses on identifying non-normal
data by analyzing numerical differences, and this idea is widely used in data mining. For
example, Liu et al. constructed an effective anomaly detection method based on data-level
constraints [6]. Using sparse operations to obtain representations of high-dimensional
data, domain information in the form of similarity matrices can be brought, based on
which anomalies can be discerned using graph clustering techniques. The latter (the model-
centric approach) focuses on analyzing the interactions and constraints between different
events in a business process to detect anomalous behavior by locating contradictory points
in the business logic. These two approaches are sensitive to numerical and behavioral
anomalies, respectively, and each plays a vital role in anomaly detection. However, they
lack the description of multiple activity–behavior relationships and the joint probability
distribution of activity contexts.

To address the above problems, this paper constructs a Petri net architecture-based
Bayesian network PN-BBN from event logs to propose an algorithm to detect abnormal
behavior from the perspective of behavior and data. The behavioral profiles analyze the
behavioral relationships of activity contexts among business process activities. The Petri-
based Bayesian network checks the probability distribution to determine whether the
processes are normal or not, which mainly includes the following two steps, as shown in
Figure 1.

Mathematics 2022, 10, x FOR PEER REVIEW 2 of 22

Automated anomalous behavior detection requires the ability to determine whether

abnormal behavior is occurring in the system by analyzing the operational patterns of the

raw data. Standard anomalous behavior detection methods are currently divided into

data-centric and model-centric approaches. The former focuses on identifying non-normal

data by analyzing numerical differences, and this idea is widely used in data mining. For

example, Liu et al. constructed an effective anomaly detection method based on data-level

constraints [6]. Using sparse operations to obtain representations of high-dimensional

data, domain information in the form of similarity matrices can be brought, based on

which anomalies can be discerned using graph clustering techniques. The latter (the

model-centric approach) focuses on analyzing the interactions and constraints between

different events in a business process to detect anomalous behavior by locating contradic-

tory points in the business logic. These two approaches are sensitive to numerical and

behavioral anomalies, respectively, and each plays a vital role in anomaly detection. How-

ever, they lack the description of multiple activity–behavior relationships and the joint

probability distribution of activity contexts.

To address the above problems, this paper constructs a Petri net architecture-based

Bayesian network PN-BBN from event logs to propose an algorithm to detect abnormal

behavior from the perspective of behavior and data. The behavioral profiles analyze the

behavioral relationships of activity contexts among business process activities. The Petri-

based Bayesian network checks the probability distribution to determine whether the pro-

cesses are normal or not, which mainly includes the following two steps, as shown in Fig-

ure 1.

Event log Petri net
Crucial

Region

Ineluctable

Path

Critical

Nodes

Conditional

probability

table

Directed

acyclic

graph

Petri net-based

Bayesian

network

Joint

probability

distribution

Candidate

Sequence

START

Anomaly

score

Is

anomaly?

Anomaly

behavior
END

Step 1: Identify the Ineluctable path of suspected anomalous behavior

Step 2: Detecting anomalous behavior using Process Bayesian networks

AND

Discover

Extract

Prune Prune

Train Convert AND

AND Construct

Yes

Calculate

Decide Inference

Figure 1. Process of Petri net architecture Bayesian network for anomaly detection.

(1) Determine the behavioral context using the behavioral profile. In this step, we

locate the activity contexts of suspected anomalous activities at the behavior structure

level, which are all on the same path. First, a business process model in the form of a Petri

net is discovered from the event log using process mining techniques. Then, the critical

node sets (the precursor and successor node sets) about the suspected anomalous activi-

ties are extracted from the candidate sequences. Further, the Petri net model is pruned

based on the critical node sets to obtain the key regions. Finally, the behavioral profile of

the process model is used to prune again to derive the ineluctable paths and thus obtain

the behavioral context.

Figure 1. Process of Petri net architecture Bayesian network for anomaly detection.

(1) Determine the behavioral context using the behavioral profile. In this step, we
locate the activity contexts of suspected anomalous activities at the behavior structure
level, which are all on the same path. First, a business process model in the form of a Petri
net is discovered from the event log using process mining techniques. Then, the critical
node sets (the precursor and successor node sets) about the suspected anomalous activities
are extracted from the candidate sequences. Further, the Petri net model is pruned based
on the critical node sets to obtain the key regions. Finally, the behavioral profile of the
process model is used to prune again to derive the ineluctable paths and thus obtain the
behavioral context.

Mathematics 2022, 10, 3790 3 of 24

(2) Construct Petri Net-Based Bayesian Network for anomaly detection. The Petri
net generated in step one is used as Bayesian network architecture, and the conditional
probability table of the Bayesian network is learned from the event log, thus constructing a
Petri Net-Based Bayesian Network. Based on this, the joint probability distribution values
constituted by the nodes on this path are derived in combination with the critical path
generated in step 1, and thus the anomaly scores are obtained. By comparing the anomaly
score with the threshold value, it is possible to determine whether the current activity is
abnormal behavior.

The model module most closely associated with the suspected anomalous activity is
analyzed by constructing paths that necessarily contain the activity based on its behavioral
characteristics. The decision is then based on the joint probability distribution of the cause
(antecedent activity) and effect (subsequent activity) of the possible suspected abnormal
activity. It considers the activity’s numerical fluctuation patterns and the business process’
behavioral impact.

The rest of the section is organized as follows. Section 2 briefly reviews the literature
related to abnormal behavior detection. To facilitate the description of the core algorithm,
the notations and concepts related to the Petri net model and Bayesian networks are
introduced in Section 3. Based on this knowledge, we expand in detail the proposed Petri
net architecture Bayesian network construction method and how it can be used for anomaly
detection in Section 4. Additionally, the PN-BBN is implemented and validated using
synthetic and real logs in Section 5. Finally, Section 6 summarizes the entire paper and
indicates future research directions.

2. Related Work

Anomalous behavior detection has gained much attention. Regarding anomaly de-
tection (also known as outlier detection and novelty detection) that exists in data mining,
this class of methods ignores the dependencies of the system process activities. Therefore,
only the problem of “anomalous behavior detection” in the field of process mining will be
described in this section, and outlier detection beyond the relevant methods can be found
in the literature for a detailed explanation [7].

Some studies consider anomalous behavior as deviant behavior in the process and
thus use conformance-checking techniques to detect abnormal behavior in the system [8].
Such approaches use event logs as the object of analysis and mine a model by analyzing
the events recorded in the logs. It is then compared with the initial or known reference
model from which the unintended behavior is analyzed. Van Dongen et al. used integer
linear programming techniques to implement Petri net-based alignment replay and thus
computed the optimal alignment for consistency checking [9]. Nagy et al. integrated
prefix-based alignment and multi-view checking techniques to achieve online conformance
checking by analyzing the event stream and building a data Petri net [10]. A method
based on the logarithmic novelty of the model metric was proposed to implement outlier
analysis [11]. The event logs are first divided into reference and analysis data, and then
a model structure is trained based on the reference data using semi-supervised learning.
When the model parameters fit the expected range, it is used to analyze the anomaly scores
of the data.

Considering the dramatic increase in the size of the log data recorded by information
systems, Sani et al. considered that exact alignment is not always required, and they
discarded the reference model and used the determined correct behavior to construct
prefix trees to identify problematic activities by obtaining consistency values under the
approximate method through edit distance [12]. To ensure the accuracy of this approximate
alignment, Sani gave a method to quantify the maximum approximation error of an
arbitrary sequence using edit distances that can guide the extraction of log subsets from
logs to be extracted [13]. Some studies have directly used alignment techniques to analyze
the variability of logs concerning the reference model. For example, a new fitness and

Mathematics 2022, 10, 3790 4 of 24

accuracy metric was constructed, which obtains the differences between models and logs
under the new metric using a divide-and-conquer strategy [14].

In some scenarios, exceptions are seen as traces of wrong behavior that are not benefi-
cial to the business process, and such approaches focus on how to filter them out of the main
path. Sequence mining techniques were used to detect and filter outliers from complex
processes to improve the quality of event logs [15]. In real-time environments, earlier
specifications were not always adapted to new scenarios. In this context, a class of methods
for event stream analysis emerged. The literature [16] constructs an incrementally updated
probabilistic automaton approach capable of performing a filtering analysis for each latest
event, determining whether it is normal or not based on the probability distribution of that
event while dynamically updating the probabilistic automaton. It removes all traces or
sequences containing anomalies resulting in insufficient samples for analysis. Dixit et al.
provided interactive operations that detect and fix misordered activities in event logs, thus
improving log quality and ensuring sample adequacy [17].

The inability to provide a clear definition of anomaly structure is a challenge in
anomaly detection. Nolle et al. used unsupervised learning to infer anomaly traces [18]. It
introduces a self-encoder neural network that automatically completes the neural network’s
learning process without labels to automatically analyze anomaly traces in the event
log. Based on this, Krajsic et al. constructed a variational self-encoder network—a deep
generative model based on regular training logs—and subsequently embedded it in an
online environment for anomaly detection. Nolle et al. chose to construct an approximate
process model from a deep learning perspective. It uses two recurrent neural networks
that simulate the process structure from both front and back directions [19]. The logs were
then aligned and analyzed with this network to detect anomalies and perform automatic
corrections. Scholars such as Vertuam Neto provided an autonomous evolutionary online
clustering algorithm called Autocloud [20]. It does not rely on a priori knowledge and can
respond quickly while the system runs, significantly improving the algorithm’s efficiency.

Although some studies have analyzed abnormal behavior from a behavioral perspec-
tive, few studies have focused on the influence of this in the activity context. Therefore, we
fuse the activity relationships of business processes and contextual joint probability distribu-
tions to construct Petri Net-Based Bayesian Networks that rely on behavioral relationships
for abnormal behavior detection.

3. Background Knowledge

This section provides a formal description and illustration of the relevant definitions
and notations of Petri nets and Bayesian networks used in the paper.

3.1. Petri Net Model

The starting point of this paper is the event log L that records user operations and the
system operation status in information systems. An event log consists of a set of traces
L = {σ1, · · · , σi, · · · }. Each trace σi = {a1, a2, · · · , ai} records the execution status of some
activity a1, · · · , ai of a business process under a particular case cj (i.e., event e1, · · · , ei).
Each trace is a record of a single execution of the system.

A Petri net is a popular business process modeling language that uses circles (called
places), boxes (called transitions), and arrows (called relation flow arcs) to model states,
activities, and relationships in a process, defined and formalized as follows.

Definition 1 ((Petri net) [21]). A Petri net is a triple N = (P, T; F) that satisfies the following
conditions.

(1) P denotes a finite set of places and T denotes a finite set of transitions;
(2) P ∩ T = ∅, P ∪ T 6= ∅;
(3) F ⊆ ((P× T) ∪ (T × P)).

Mathematics 2022, 10, 3790 5 of 24

(2) states that there is no intersection between the range of the values of the place and
the transition, and there is at least one place or transition in the net. (3) defines a relational
flow arc as an arrow from place to transition or from transition to a place. Figure 2 gives a
schematic diagram of the Petri net structure, where the leftmost circle is the starting place.
Furthermore, the black dot in the middle of the place is the marker by which the transfer in
the Petri net can formally describe the occurrence rule of this net structure.

Mathematics 2022, 10, x FOR PEER REVIEW 5 of 22

flow arc as an arrow from place to transition or from transition to a place. Figure 2 gives

a schematic diagram of the Petri net structure, where the leftmost circle is the starting

place. Furthermore, the black dot in the middle of the place is the marker by which the

transfer in the Petri net can formally describe the occurrence rule of this net structure.

Place

order

Send

invoice

Send

Reminder

Cancel

order

Make

delivery

Confirm

payment

Prepare

delivery
Pay

N1

Figure 2. Diagram of Petri net.

Definition 2. Given a Petri net N . For x P T , write ()• { | , }x y y P T y x F= as the

preset or input set of x , and ()• { | , }x y y P T x y F= as the post-set or output set of x .

Process discovery techniques discover a business process model described by a Petri

net from an event log. Next, a correspondence is established between the events recorded

in the event log and the activities represented by the transition in the model using a pro-

jection function.

Definition 3. (Projection) Given a process model m, an event log L, and an activity A in L, the

corresponding model variation in activity A is noted as:

(,)Projection m A A= (1)

When only one event a in the sequence is considered, its projection is denoted as:

(,)Projection m a a= (2)

We introduce the definition of the behavioral profile to capture the relationship between the

process activities in the behavioral structure.

Definition 4. (Behavioral Profile) [22] Given a process model m and two activities ,x y T .

If there exists a trace , , , ,x y , then (,)x y is said to be a weakly sequential relation, denoted

x y . Then, any pair of activities (,)x y in the model satisfies one of the following three relations :

(1) The strict order relation: x y , if x y ;

(2) The exclusiveness order relation: x y+ , if x y and y x ;

(3) The interleaving order relation: x||y, if x y and y x .

3.2. Bayesian Networks

When the random variables are strongly correlated, Bayesian networks [23] can ef-

fectively describe their interactions, as shown in Figure 3. Based on the random variables

and their causal relationships, we formalize the Bayesian network as follows.

Definition 5. (Bayesian Network) A Bayesian network consists of a directed acyclic graph G

and a set of conditional probability tables, where the graph nodes are described using circular

notation and represent a set of random variables 1{ , , , , ,1 }k nX x x x k n= . Arrows connect the

nodes, indicating the existence of conditional dependencies between two nodes ix and jx .

Figure 2. Diagram of Petri net.

Definition 2. Given a Petri net N. For x ∈ P∪ T, write •x = {y|y ∈ P ∪ T ∧ (y, x) ∈ F} as the
preset or input set of x, and x• = {y|y ∈ P ∪ T ∧ (x, y) ∈ F} as the post-set or output set of x.

Process discovery techniques discover a business process model described by a Petri
net from an event log. Next, a correspondence is established between the events recorded
in the event log and the activities represented by the transition in the model using a
projection function.

Definition 3 (Projection). Given a process model m, an event log L, and an activity A in L, the
corresponding model variation in activity A is noted as:

Projection(m, A) = A′ (1)

When only one event a in the sequence is considered, its projection is denoted as:

Projection(m, a) = a′ (2)

We introduce the definition of the behavioral profile to capture the relationship between the
process activities in the behavioral structure.

Definition 4 ((Behavioral Profile) [22]). Given a process model m and two activities x, y ∈ T.
If there exists a trace < · · · , x, · · · , y, · · · >, then (x, y) is said to be a weakly sequential relation,
denoted x � y. Then, any pair of activities (x, y) in the model satisfies one of the following
three relations:

(1) The strict order relation: x 7→ y , if x � y;
(2) The exclusiveness order relation: x + y, if x � y and y � x;
(3) The interleaving order relation: x||y, if x � y and y � x.

3.2. Bayesian Networks

When the random variables are strongly correlated, Bayesian networks [23] can effec-
tively describe their interactions, as shown in Figure 3. Based on the random variables and
their causal relationships, we formalize the Bayesian network as follows.

Mathematics 2022, 10, 3790 6 of 24

Definition 5 (Bayesian Network). A Bayesian network consists of a directed acyclic graph G
and a set Θ of conditional probability tables, where the graph nodes are described using circular
notation and represent a set of random variables X = {x1, · · · , xk, · · · , xn, 1 ≤ k ≤ n}. Arrows
connect the nodes, indicating the existence of conditional dependencies between two nodes xi and xj.

Mathematics 2022, 10, x FOR PEER REVIEW 6 of 22

When the variables are significant, the association between them is complex, and in

this case, it is almost impossible to model the joint probability of the variables for analysis.

Bayesian networks are set up with independent assumption rules to reduce the number

of parameters involved. Local independence among nodes in a Bayesian network is con-

sidered, and a node is conditionally independent of all non-predecessor nodes when the

predecessor node of that node is known. Using k to denote the set of parents of the

variable kx , the local conditional probability distribution of kx is marked as

| (|)
k kx k kP x = . The product of the local conditional probabilities of each kx forms the

joint probability distribution of x , denoted as () |

1 1

()
k k

K K

k k x

k k

p x p x

= =

= = ∣ .

Figure 3. Example of Bayesian network.

The global independent relationship between nodes is discussed in two cases: (1)

nodes are directly connected, and (2) nodes are indirectly connected. In case (1), as in Fig-

ure 3, “D and G,” “I and S,” etc., the two nodes are directly connected. In this case, the

node relationship is a direct causality, and there are only two ways to connect the two, so

any change in one variable will affect the other, i.e., the two nodes are unconditionally

independent. In case (2), the two nodes are connected via a third node, at which point

there are four types of connections corresponding to four relationships.

① Indirect causality: as in Figure 3, for nodes D, G, and L, if G is known, then D and

I are conditionally independent, noted as |D I G⊥ ;

② Indirect causal relationship: as in Figure 3, for the nodes L, G, and I, if G is

known, then L and I are conditionally independent and are denoted as |L I G⊥ ;

③ Co-causal relationship: as in Figure 3, G, S, and I are nodes. If I is known, then
G and S are conditionally independent, denoted as |G S I⊥ ;

④ Co-result relationships: as in Figure 3, D, I, and G are nodes. If G is unknown,

then D and I are conditionally independent, noted as |D I G⊥ .

The probabilistic inference problem for Bayesian networks is defined as follows,

where the conditional probability of some subset 1{ , , }iX x x = is computed based on

the above Bayesian network and its properties in the presence of known partial variables

1{ , , }iX x x = .

Figure 3. Example of Bayesian network.

When the variables are significant, the association between them is complex, and
in this case, it is almost impossible to model the joint probability of the variables for
analysis. Bayesian networks are set up with independent assumption rules to reduce
the number of parameters involved. Local independence among nodes in a Bayesian
network is considered, and a node is conditionally independent of all non-predecessor
nodes when the predecessor node of that node is known. Using πk to denote the set of
parents of the variable xk, the local conditional probability distribution of xk is marked as
Θxk |Πk

= P(xk

∣∣∣πk) . The product of the local conditional probabilities of each xk forms the

joint probability distribution of x, denoted as p(x) =
K
∏

k=1
p(xk | πk) =

K
∏

k=1
Θxk |Πk

.

The global independent relationship between nodes is discussed in two cases: (1) nodes
are directly connected, and (2) nodes are indirectly connected. In case (1), as in Figure 3,
“D and G,” “I and S,” etc., the two nodes are directly connected. In this case, the node
relationship is a direct causality, and there are only two ways to connect the two, so
any change in one variable will affect the other, i.e., the two nodes are unconditionally
independent. In case (2), the two nodes are connected via a third node, at which point there
are four types of connections corresponding to four relationships.

1© Indirect causality: as in Figure 3, for nodes D, G, and L, if G is known, then D and
I are conditionally independent, noted as D⊥I|G ;

2© Indirect causal relationship: as in Figure 3, for the nodes L, G, and I, if G is known,
then L and I are conditionally independent and are denoted as L⊥I|G ;

3© Co-causal relationship: as in Figure 3, G, S, and I are nodes. If I is known, then G
and S are conditionally independent, denoted as G⊥S|I ;

4© Co-result relationships: as in Figure 3, D, I, and G are nodes. If G is unknown,
then D and I are conditionally independent, noted as D⊥I|G .

Mathematics 2022, 10, 3790 7 of 24

The probabilistic inference problem for Bayesian networks is defined as follows, where
the conditional probability of some subset X′ = {x1

′, · · · , xi
′} is computed based on the

above Bayesian network and its properties in the presence of known partial variables
X′′ = {x1

′′ , · · · , xi
′′ }.

4. Detecting Abnormal Behavior using Petri Net-Based Bayesian Network

In this section, we describe in detail how to construct a Petri Net-Based Bayesian
Network from event logs and then detect abnormal behaviors in the business by proba-
bilistic inference, which consists of two main phases. In the first phase, the critical paths
to the suspected abnormal behavior are constructed based on the business process model
to consider the impact of the activity context from a behavioral perspective, the details
of which are described in Section 4.1. In Section 4.2, we introduce the second phase of
the algorithm. By introducing Bayesian network inference techniques, we calculate the
conditional probability of occurrence of the suspected abnormal behavior based on the busi-
ness process structure, thus enabling the detection of abnormal behavior under business
logic constraints.

4.1. Using Behavior Profiles to Determine Behavior Context

We use the business process model as the skeleton of the Bayesian network, i.e., the
DAG structure in the Bayesian network is replaced by the business process model. This
strategy aims to analyze the impact of activity contexts in different process structures
from a fine-grained level. It is first necessary to construct process models that capture the
behavioral structure of business activities. We use an advanced process discovery method
(Split Miner) [24] to mine Petri net representations of business process models from event
logs. It can discover business processes’ sequential, concurrent, and selective structures
from complex logs. Moreover, the method can balance accuracy and simplicity, resulting in
understandable and high-quality models.

For activities in the model, the activity on the select branch cannot appear in the same
case as the path where the activity is located. In contrast, the activity on the concurrent
branch can appear in its context. Therefore, activities on concurrent and selective branch
paths have different degrees of influence on the suspected abnormal activity in the current
analysis throughout the business process. Activities on concurrent and sequential branches
should receive more attention than activities on selective branches.

Next, we limit the analysis to the crucial regions of suspected abnormal behavior in
the model to focus on the events that directly affect abnormal activity. The crucial regions
of suspected anomalous activity were designated as subnetworks of the model.

Definition 6 (Crucial Region). Given a Petri networkN = (S, T, F), the crucial region (CR) is a
subnet of the Petri network, i.e.,

CR =
{

S′, T′, F′
∣∣S′ ⊆ P, T′ ⊆ T, F′ ⊆ F

}
where the starting node of the crucial region is defined as place i′, subject to one of the following
two conditions:

(1) •i′|= 0∧ i′ ∈ S ;
(2) •i′

∣∣ 6= 0∧ i′ ∈ S ∧ (i′)• ∈ T .

The end node of the crucial region is defined as the place e′, subject to one of the
following two conditions:

(1)
∣∣(e′)•∣∣= 0∧ e′ ∈ S ;

(2)
∣∣(e′)•∣∣ 6= 0∧ e′ ∈ S ∧ •(e′) ∈ T .

For example, the subnet N1 in Figure 2 is a crucial region. This crucial region’s starting
and ending nodes are c1 and “end”, respectively.

Mathematics 2022, 10, 3790 8 of 24

Thus, determining the crucial area depends on the start and end nodes. Next, we give
two additional definitions based on Definition 2, which locate the process activities’ start
and end nodes in the model structure.

Definition 7 (Predecessor and successor activities). Given an activity x, its predecessor activ-
ity is denoted as Pre(x) =• x, x ∈ T ∧ Pre(x) ∈ T, and its successor activity as Suc(x) = x•,
x ∈ T ∧ Suc(x) ∈ T.

Further, we define the activity’s predecessor and successor gateway to identify the
XOR gateway.

Definition 8 (Precursor and successor gateways). Given an activity x, its precursor gateway
is denoted as PreG(x), and its successor gateway is denoted as SucG(x).

The gateway XOR− split and its determination condition are defined as PreG(x) =
XOR− split, i f |(•x)•| > 0∧• x ∈ S.

The XOR − join gateway and its decision condition are defined as SucG(x) =
XOR− join, i f |•(x•)| > 0∧ x• ∈ S.

As mentioned above, the algorithm in this section aims to find an ineluctable path
from the business process model that contains the suspected anomalous behavior, which
will be denoted as an ineluctable path, formalized as follows.

Definition 9 (Ineluctable Path). Given a set of sequences CS containing suspected abnormal
behavior x and the critical region CR in which they are located, the ineluctable path IP concerning x
is defined as:

IP =< i′, . . . x, . . . , e′ >, ∀n ∈ IP ∩ T, nRx, R ∈ {→, ‖}

We define the nodes on this path as the behavioral context of the business process activity.
Based on the definition mentioned in the previous section, we formalize the ineluctable

path identification method for anomalous activities in Algorithm 1. The algorithm uses
event logs to research a set of candidate activity sequences containing suspected anomalous
behavior. Finally, it obtains a critical path with suspected abnormal activity as the core.

At the beginning of the algorithm, Algorithm 1:2 initializes a variable x for storing
suspected exception events. As the basis of this phase, the business process model is
generated by the advanced Split Miner method (Algorithm 1:3). The first and last events
of each candidate sequence are extracted using ‘i’ and ‘e’, respectively (Algorithm 1:4–5).
Furthermore, their projected activities (transitions) in the model are noted as I′ and E′

(Algorithm 1:6). The use of I′ and E′ to initialize the starting and ending activities are
intended to reduce the search space since it narrows the gap between the region formed by
the sequence of the selected activities and the critical region. Algorithm 1:7–29 implements
the same search strategy for each activity in the candidate sequence (excluding the first and
last). The key regions corresponding to the candidate activity sequences in the model are
first identified. In contrast to the proposed definition section, the analysis process requires
first determining the boundaries of the key regions, i.e., the starting and ending nodes of
the key regions. We analyze all suspected anomalous activities in the candidate activity
sequences one by one (Algorithm 1:7).

Algorithm 1:8 starts traversing the projected variants of the starting activity on the
model in the candidate activity sequence. If the predecessor activity of a transition is empty,
the transition is the first activity of the model. Then, the input place of the transition is one
of the starting activities of the critical region, which is kept in the original set. Moreover,
the analysis of the following starting activity is started (Algorithm 1:9–10). Otherwise, it
is further determined whether the predecessor gateway of the transition is XOR− split
(Algorithm 1:11). If not, the transition is removed from the starting activity set (Algorithm
1:12). Subsequently, the analyzed object is replaced with its predecessor activity. The search
is iterated until the predecessor gateway is satisfied or the predecessor activity is empty

Mathematics 2022, 10, 3790 9 of 24

(Algorithm 1:13). After that, the analysis proceeds to the next starting activity (Algorithm
1:14). When Algorithm 1:8–16 are finished, the set of starting activities for the critical region
is available.

Next, a similar search approach (Algorithm 1:17–24) is taken for the projection transi-
tion of the terminated activity on the model in the candidate activity sequence, with the
difference that the search direction is reversed. We start with the projected terminated
activity on the model in the candidate activity sequence and search backward until we find
the xor gateway or the last activity of the model. When Algorithm 1:17–24 are completed,
the set of terminating activities in the critical region is available.

Algorithm 1: Ineluctable Path Identification.
Algorithm 1: Ineluctable Path Identification

Input: Training event log L, Candidate Sequences CS
Result: Ineluctable Path IP

1 begin
2 Initialize candidate anomalous activity x
3 Modle m ← SplitMiner(L)
4 Initial activities I ← First activity of all sequences in CS
5 End activities E ← Last activity of all sequences in CS
6 I ′, E′ ← Projection(M, I), P rojection(M,E)
7 for i′ ∈ I ′ do
8 if Pre(i′) = NULL then
9 continue

10 else if PreG(i′) 6= XOR then
11 Delete i′ from I ′

12 i′ ← Pre(i′) until PreG(i′) = XOR or Pre(i′) = NULL
13 continue

14 end

15 end
16 for e′ ∈ E′ do
17 if Suc(e′) = NULL then
18 continue
19 else if SucG(e′) 6= XOR then
20 e′ ← Suc(e′) until SucG(e′) = XOR or Suc(e′) = NULL
21 continue

22 end

23 end
24 Crucial Region CR ← Area between I ′ and E′

25 while x in CS\i\e do
26 x′ ← Projection(M,x)
27 IP ← CR\(Nodes on the path that is XOR related to x′)
28 Output IP

29 end
30 Output m

31 end

1

The starting and ending activity sets obtained from the previous steps define the
critical region (Algorithm 1:25). For the suspected anomalous activity x in the candidate
sequence, its projection in the model is noted as x’ (Algorithm 1:26). Finally, we approximate
the key region nodes based on the behavioral profile knowledge and remove the nodes
on the XOR branch (Algorithm 1:27). That is, we keep the nodes that are in strict and
cross-order with x’, and remove the nodes and dependencies that are in exclusive order. At
this point, Algorithm 1 ends, and we obtain a path that contains the suspected anomalous
activity being analyzed, and all the nodes on this path are closely related to this node. In

Mathematics 2022, 10, 3790 10 of 24

addition, we output the generated process model to provide the structural basis for training
the Bayesian network in the next stage.

4.2. Constructing Petri Net-Based Bayesian Networks for Anomaly Detection

We construct a Bayesian network of fusion processes based on event logs in this stage.
The Bayesian network consists of two parts: a directed acyclic graph and a conditional
probability table, so the construction process is naturally divided into two steps.

(1) Determining the inter-activity topology.
(2) Learning conditional probability table.
In step (1), we transform the labeled transitions of the activity in the place and corre-

sponding logs of Petri nets directly into directed acyclic graphs.

Example 1. As shown in the Petri net subnet above in Figure 4, there are two transitions, with
a and b in the figure. We perform the transformation from left to right. The first node is place.
The second node is a transition a, •a and a• are both places, while (a•)• = b, and at this point, it
needs to be converted. Let a• = (a•)• = b, while setting •a to empty, as shown in Figure 4, the
connection between a and b has been established. Subsequently, node b is analyzed. b• is a place,
and (b•)• is empty, so b• is set to empty to obtain Figure 4. The Petri net subnet in the example has
been converted to the corresponding directed acyclic graph.

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 22

a b

a b

a b

Figure 4. Petri net simple structure converted to DAG.

However, most process models do not have this simple structure, and the conversion

process faces two main challenges.

The invisible transitions problem: The Petri net model can model the selection, con-

currency, and cyclic structure of system activities using place and transitions, but the abil-

ity to express the process model drawn by relying only on the transitions activities pro-

vided in the logs is limited. To improve the fitness of Petri nets, hidden transitions are

introduced in the process discovery algorithm to enhance the routing capability. These

invisible transitions are activities that do not exist in the logs; therefore, we remove the

invisible transitions that are strictly sequentially connected to the labeled transitions in

the Petri net. Again, we use an example for an explanation.

Example 2: As shown in Figure 5, the difference with Example 1 is ()a = (Figure 5a);

skip this invisible transition and continue to observe the next one. At this point () b =

let () ((())) ba a= = , i.e., the transition a is directly connected to b (Figure 5b). Repeat

the above example to obtain the result after the transformation (Figure 5c).

a b

a b

a b

(a)

(b)

(c)

Figure 5. Handling the invisible transitions in Petri nets.

Loop problem: Early process discovery algorithms rarely considered the loop struc-

ture in the system process when mining the process model from the event log [25]. How-

ever, with continuous research, scholars found that the actual operation of the sys tem is

accompanied by a variety of complex structures, such as loops and concurrency. The cor-

Figure 4. Petri net simple structure converted to DAG.

However, most process models do not have this simple structure, and the conversion
process faces two main challenges.

The invisible transitions problem: The Petri net model can model the selection, concur-
rency, and cyclic structure of system activities using place and transitions, but the ability
to express the process model drawn by relying only on the transitions activities provided
in the logs is limited. To improve the fitness of Petri nets, hidden transitions are intro-
duced in the process discovery algorithm to enhance the routing capability. These invisible
transitions are activities that do not exist in the logs; therefore, we remove the invisible
transitions that are strictly sequentially connected to the labeled transitions in the Petri net.
Again, we use an example for an explanation.

Example 2. As shown in Figure 5, the difference with Example 1 is (a•)• = τ (Figure 5a);
skip this invisible transition and continue to observe the next one. At this point (τ•)• = b let
(a•)• = (((a•)•)•)• = b, i.e., the transition a is directly connected to b (Figure 5b). Repeat the
above example to obtain the result after the transformation (Figure 5c).

Mathematics 2022, 10, 3790 11 of 24

Loop problem: Early process discovery algorithms rarely considered the loop structure
in the system process when mining the process model from the event log [25]. However,
with continuous research, scholars found that the actual operation of the system is accom-
panied by a variety of complex structures, such as loops and concurrency. The correct
mining of these structures is beneficial to improve the accuracy of the system description,
so most of the current advanced process discoveries make the cyclic structure a focus of
analysis. Furthermore, the topology of the Bayesian network is a directed acyclic graph, so
a key problem in constructing a Bayesian network based on the Petri net is to transform the
Petri net’s cyclic structure into a directed one acyclic structure.

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 22

a b

a b

a b

Figure 4. Petri net simple structure converted to DAG.

However, most process models do not have this simple structure, and the conversion

process faces two main challenges.

The invisible transitions problem: The Petri net model can model the selection, con-

currency, and cyclic structure of system activities using place and transitions, but the abil-

ity to express the process model drawn by relying only on the transitions activities pro-

vided in the logs is limited. To improve the fitness of Petri nets, hidden transitions are

introduced in the process discovery algorithm to enhance the routing capability. These

invisible transitions are activities that do not exist in the logs; therefore, we remove the

invisible transitions that are strictly sequentially connected to the labeled transitions in

the Petri net. Again, we use an example for an explanation.

Example 2: As shown in Figure 5, the difference with Example 1 is ()a = (Figure 5a);

skip this invisible transition and continue to observe the next one. At this point () b =

let () ((())) ba a= = , i.e., the transition a is directly connected to b (Figure 5b). Repeat

the above example to obtain the result after the transformation (Figure 5c).

a b

a b

a b

(a)

(b)

(c)

Figure 5. Handling the invisible transitions in Petri nets.

Loop problem: Early process discovery algorithms rarely considered the loop struc-

ture in the system process when mining the process model from the event log [25]. How-

ever, with continuous research, scholars found that the actual operation of the sys tem is

accompanied by a variety of complex structures, such as loops and concurrency. The cor-

Figure 5. Handling the invisible transitions in Petri nets.

We were inspired by Prasidis et al. [26] to create a copy of the last activity of the loop
body to disassemble the loop and form a new sequence structure, as shown in Figure 6.

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 22

rect mining of these structures is beneficial to improve the accuracy of the system descrip-

tion, so most of the current advanced process discoveries make the cyclic structure a focus

of analysis. Furthermore, the topology of the Bayesian network is a directed acyclic graph,

so a key problem in constructing a Bayesian network based on the Petri net is to transform

the Petri net’s cyclic structure into a directed one acyclic structure.

We were inspired by Prasidis et al. [26] to create a copy of the last activity of the loop

body to disassemble the loop and form a new sequence structure, as shown in Figure 6.

① Self-loop: The loop contains only one transition (only tagged variation is consid-

ered), as shown in Figure 6a. The predecessor transition (non-hidden variation) and the

successor transition (non-hidden transition) of activity b are both b. We introduce a new

label b’, which transforms the Petri net structure on the left side into the structure on the

right side.

② Two-elements loop: The loop is shown in Figure 6b when it contains two transi-

tions. We introduce the new label c’, thus disassembling the first-order loop into an acyclic

structure.

③ Long loop: Figure 6c shows when loops contain more than one transition. Simi-

larly, we take the last element of the loop body and introduce its copy token c ’ to disas-

semble the loop structure.

Figure 6. Disassembling the loop structure of Petri net.

The currently obtained ineluctable paths perform a pruning operation on the process

model, i.e., they approximate the periphery of the critical region and the XOR branch of

the suspected anomalous activity. The ineluctable paths regarding the suspected abnor-

mal behavior x still contain complex branching structures, as shown in Figure 4. We assign

corresponding weights to the different structures based on the behavior profile and Bayes-

ian network knowledge.

Definition 10. (Weight function) Given a suspected abnormal activity and the ineluctable path

(I)P in which it is located, use the weight function ()a to assign a value to the weight of each

node on the path:

| |
() 1

| | | (,) |

XOR
w a

node G a x
= −

−

where the node is all nodes in the IP, (,)G a x refers to the number of libraries from activ-

ity to activity, and |XOR| describes the number of XOR structures from activity x to

activity a . The fractions on the right side of this expression form a penalty factor: as the

XOR structure in the IP increases, the penalty factor increases; as (,)G a x in the node in-

creases, the penalty factor also becomes more extensive. We use the weight function to

define the difference between the activity penalty factor and one as its weight.

The Bayesian network inference idea enables us to infer the distribution of activities

from the process model in conjunction with the business logic in which the activities are

Figure 6. Disassembling the loop structure of Petri net.

1© Self-loop: The loop contains only one transition (only tagged variation is consid-
ered), as shown in Figure 6a. The predecessor transition (non-hidden variation) and the
successor transition (non-hidden transition) of activity b are both b. We introduce a new
label b’, which transforms the Petri net structure on the left side into the structure on the
right side.

2© Two-elements loop: The loop is shown in Figure 6b when it contains two transitions.
We introduce the new label c’, thus disassembling the first-order loop into an acyclic structure.

3© Long loop: Figure 6c shows when loops contain more than one transition. Similarly,
we take the last element of the loop body and introduce its copy token c’ to disassemble the
loop structure.

The currently obtained ineluctable paths perform a pruning operation on the process
model, i.e., they approximate the periphery of the critical region and the XOR branch of

Mathematics 2022, 10, 3790 12 of 24

the suspected anomalous activity. The ineluctable paths regarding the suspected abnormal
behavior x still contain complex branching structures, as shown in Figure 4. We assign
corresponding weights to the different structures based on the behavior profile and Bayesian
network knowledge.

Definition 10 (Weight function). Given a suspected abnormal activity and the ineluctable path
(I)P in which it is located, use the weight function ω(a) to assign a value to the weight of each node
on the path:

w(a) = 1− |XOR|
|node|−|G(a, x)|

where the node is all nodes in the IP, |G(a, x)| refers to the number of libraries from activity to
activity, and |XOR| describes the number of XOR structures from activity x to activity a. The
fractions on the right side of this expression form a penalty factor: as the XOR structure in the
IP increases, the penalty factor increases; as G(a, x) in the node increases, the penalty factor also
becomes more extensive. We use the weight function to define the difference between the activity
penalty factor and one as its weight.

The Bayesian network inference idea enables us to infer the distribution of activities
from the process model in conjunction with the business logic in which the activities are
located. For example, inferring the result based on the cause of the activity, inferring the
cause back from the results of the available observations, and reasoning from a mixture of
partial causes and results. For suspected abnormal behavior, the conditional probabilities of
other nodes in the IP are combined with the process structure characteristics for inference
analysis. We formalize the inference process as Algorithm 2.

Algorithm 2 is a further analysis based on Algorithm 1, and thus the input of this
algorithm is derived from the output of Algorithm 1. We input the event log again to
calculate the conditional probability table of the Bayesian network. In addition, anomaly
threshold O needs to be input to provide judgment information (Algorithm 2:Input).
Anomalous behavior detection is performed using the function detectAnomalyBehavior
(Algorithm 2:1–9). First, we initialize a list structure for storing the activity relations of the
directed acyclic graph (Algorithm 2:2).

Next, based on the methodology proposed above, we construct the Bayesian network
topology from the Petri net model, i.e., a directed acyclic graph with the business process
model as the skeleton (Algorithm 2:3). The specific construction process is shown in the
function BuildPN-BBN (Algorithm 2:10–32). In this function, the discriminative order
of Kusho, hidden variation, first-order cycle, second-order cycle, multi-order cycle, and
directed acyclic relation pairs is processed in analogy with Example 1 and Example 2. At
the end of the function, a list of the relation pairs of the directed acyclic graph structure,
i.e., the network skeleton, is obtained.

Subsequently, we trained conditional probability tables (Algorithm 2:4) using event
logs as data samples to capture inter-activity structural dependency information. The spe-
cific training steps are beyond the scope of this paper and can be found in the literature [23]
for detailed support.

Next, we obtained an anomaly score by Bayesian network inference (Algorithm 2:5).
Since the degree of association between activities on different branches of the behavioral
profile varies, to distinguish between distance differences and structural differences, we
define a weight assignment method and a joint probability calculation method in the
inference function inference (Algorithm 2:33–39). Based on the cause and effect of the
activity and the mixed inference, we obtain a probability value under contextual constraints.
It is compared with the anomaly threshold, and if it is higher than the expected threshold,
it can be determined as anomalous behavior based on the business behavior relationship
(Algorithm 2:6–8).

Mathematics 2022, 10, 3790 13 of 24

Algorithm 2: Anomalous behavior detection leveraging probabilistic inference.Algorithm 2: Anomalous behavior detection leveraging probabilistic
inference
Input: Modle m, Ineluctable Path IP , Training event log L, Threshold

θ
Result: Decision results isAnomalous

1 Function detectAnomalyBehavior :
2 init Directed acyclic relations DARs as a List
3 Directed acyclic graph DAG ← BuildPN-BBN(m)
4 Conditional probability table CPT ← BuildCPT(DAG,L)
5 Anomalous score S(x) ← Inferences(IP ,x)
6 if S(x) > θ then
7 isAnomalous← True
8 end

9 end
10 Function buildPN-BBN(m):
11 while node ∈ m do
12 init Directed acyclic relation DAR as a Tuple
13 if node ∈ S then

/* Removing the place */

14 SKIP to next node

15 else
16 SET PreG(node) to NULL
17 while Suc(node) is τ do

/* Removing the implicit transition */

18 SET next to Suc(node)

19 end
20 if next ==node then

/* Self-loop */

21 SET DAR to (node′, node)
22 else if next == Pre(node) then

/* Two-elements loop */

23 SET DAR to (node′, next)
24 else if next ∈ first elements of tuple in DGRs then

/* Long loop */

25 SET DAR to (node′, next)
26 else
27 Set DAR to (node, Suc(node))
28 end
29 Add DAR to DARs

30 end

31 end

32 end
33 Function inferences(IP ,x):
34 for a ∈ IP do
35 if XORsplit in R(a, x) then

36 Weighting Factor w(a) ← 1− |XOR|+1
|node|−|G(a,x)|+1

37 S(x)← Π(w(a) ∗ CPT (IP, x))

38 end

39 end

2

5. Evaluation

This section describes the event logs, assessment metrics, experimental procedures,
and results used for the evaluation.

Mathematics 2022, 10, 3790 14 of 24

5.1. Event Log

We use the open source datasets commonly used in process mining research for
evaluation.

Receipt (CoSeLoG project: Receipt phase of an environmental permit application
process (WABO), CoSeLoG project http://data.3tu.nl/repository/uuid (accessed on 8
September 2022): a07386a5-7be3 -4367-9535-70bcge77dbe6): This log is derived from the
BPI Challenge and is often abbreviated as Receipt.

This dataset records the activities and processes of a city (anonymized) at each stage
of the environmental permit application process.

Sepsis (Mannhardt, Felix (2016): Sepsis Cases—Event Log. 4TU.ResearchData. Dataset.
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460 (accessed on 8 Septem-
ber 2022)): This log comes from the 4TU open-source data platform. It records the treatment
flow of patients with Sepsis conditions, including events such as emergency room, hospi-
talization, discharge, and other execution information (e.g., time stamps).

In addition to the two logs mentioned above, we injected/removed random events
of varying degrees on top of the Receipt and Sepsis logs to simulate anomalous behavior.
When the amount of noise in a log trace is exceptionally high, analyzing the trace is no
longer meaningful, so we set the maximum injection percentage to 25%. In addition, we
mainly focus on exceptions caused by unintended execution orders of events, so more
attention is put on injecting events rather than deleting them.

Therefore, we used 16 logs to test, and the statistics of the logs are shown in Table 1.

Table 1. Event log statistics.

Log Name Total Traces Total Events Distinct Traces Distinct Events
Trace Length

Max Min Avg

Receipt 1434 8577 116 27 25 1 6.0
Receipt + 5% 1434 8966 237 27 25 1 6.3

Receipt + 10% 1434 9412 435 27 25 1 6.6
Receipt + 15% 1434 9793 679 27 26 1 6.8
Receipt + 20% 1434 10193 920 27 30 1 7.1
Receipt + 25% 1434 10624 1128 27 30 1 7.4
Receipt − 5% 1434 8153 718 27 24 1 5.7
Receipt − 10% 1434 7712 792 27 24 1 5.4

Sepsis 1050 15214 846 16 185 3 14.5
Sepsis + 5% 1050 15875 906 16 198 3 15.1

Sepsis + 10% 1050 16467 962 16 200 3 15.7
Sepsis + 15% 1050 17098 994 16 209 3 16.3
Sepsis + 20% 1050 17703 1011 16 218 3 16.7
Sepsis + 25% 1050 18241 1015 16 260 3 17.4
Sepsis − 5% 1050 14410 1007 16 177 2 13.7

Sepsis − 10% 1050 13604 1009 16 167 1 13.0

5.2. Evaluation Indicators

The proposed method is evaluated in three main aspects.
(1) Whether the abnormal behavior can be correctly identified.
Recall: The ability of the algorithm to identify abnormal behavior is judged by measur-

ing the anomalous behavior identified correctly. The Recall is the ratio of correctly identified
anomalous behaviors (True positive) to the number of inserted abnormal behaviors. The
resulting value is a decimal number between 0 and 1. When the value is close to one, the
abnormal behavior is almost entirely correctly identified.

Recall =
True positives

Actual positives
=

True positives
True positives + False negatives

(2) Whether the model quality can be improved.

http://data.3tu.nl/repository/uuid
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460

Mathematics 2022, 10, 3790 15 of 24

To measure the change in model quality, we use the metrics fitness and simplicity,
commonly used in the process mining domain.

Fitness: A token-based replay method calculates the percentage of traces that can
fit the model and measures how well the model fits the traces. By calculating the fitness
value, we can quantify the model’s expressiveness before and after the anomalous behavior
identification and thus make a numerical comparison (the fitness value is between 0 and 1).
When the value is close to one, the model can reflect the log behavior well.

Simplicity: We analyze the effectiveness of abnormal behavior detection by measuring
the model’s simplicity. It is defined formally in the following equation.

Simplicity =
1.0

1.0 + max(mean_degree− k, 0)

The mean degree of both the library and the transition is calculated based on the input
degree (the number of input arcs) and the output degree (the number of output arcs). The
number k is a value somewhere between 0 and infinity. And simplicity is a value between
0 and 1. The more the value approaches one, the simpler the model is.

(3) Whether it can be executed efficiently.
To analyze the temporal variability of our approach with other algorithms, we will

compare the running time of different algorithms (Duration = data importing + structure
learning + probabilistic inference). In this metric, we need to consider the time of vari-
ous phases of the algorithm, including the time required for data preprocessing, model
construction, and detection of abnormal activities.

Furthermore, we use the Receiver Operating Characteristic (ROC) Curve [27] and
compare it with an advanced anomalous behavior detection algorithm DAE [18].

5.3. Bayesian Structural Analysis

In this subsection, we use Sepsis logs to show in detail the exact implementation of
the algorithm.

Figure 7 shows the process models mined from Sepsis logs using Split Miner (https://
apromore.com/research-lab/ (accessed on 8 September 2022)), which can obtain simplistic
and accurate business process models from complex event logs. Compared to Inductive
Miner, another advanced process discovery method, Split Miner is slightly less suitable for
obtaining models. However, the latter comes at the expense of an accurate description of
the model, i.e., the model is more likely to have behavior structures that do not exist in the
logs. Therefore, we use the more balanced SM method.

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 22

arcs). The number k is a value somewhere between 0 and infinity. And simplicity is a

value between 0 and 1. The more the value approaches one, the simpler the model is.

(3) Whether it can be executed efficiently.

To analyze the temporal variability of our approach with other algorithms, we will

compare the running time of different algorithms (Duration = data importing + structure

learning + probabilistic inference). In this metric, we need to consider the time of various

phases of the algorithm, including the time required for data preprocessing, model con-

struction, and detection of abnormal activities.

Furthermore, we use the Receiver Operating Characteristic (ROC) Curve [27] and

compare it with an advanced anomalous behavior detection algorithm DAE [18].

5.3. Bayesian Structural Analysis

In this subsection, we use Sepsis logs to show in detail the exact implementation of

the algorithm.

Figure 7 shows the process models mined from Sepsis logs using Split Miner

(https://apromore.com/research-lab/ (accessed on 8 September 2022)), which can obtain

simplistic and accurate business process models from complex event logs. Compared to

Inductive Miner, another advanced process discovery method, Split Miner is slightly less

suitable for obtaining models. However, the latter comes at the expense of an accurate

description of the model, i.e., the model is more likely to have behavior structures that do

not exist in the logs. Therefore, we use the more balanced SM method.

We illustrate this with an example of a partial log sequence in a synthetic log. Given

a candidate sequence,

{ , , , , ,CS Leucocytes Release A IV Antibiotics Admission NC ReleaseA= , , }IV Antibiotics X Admission IC

we first determine its starting event set as:

{ , }, { }I Leucocytes IV Antibiotics E Admission IC= =

In this case, the candidate sequence is projected in the model with a starting event set

I I = and a projected ending event set E E = .

Figure 7. Petri net discovered by Split Miner from the Sepsis .

Subsequently, the elements in ,I E are filtered and updated based on Supplemen-

tary Algorithm 1 to obtain the updated set of projections { , }I ER Registration = . The im-

plicit transition is an activity that appears only in the model and not in the log; it is

used for routing roles and has no execution semantics. The updated projected activity set

and the critical regions defined by it are shown in Figure 8. We performed the first reduc-

tion in the original Petri net model by projecting the starting and ending activity sets,

excluding the model structure at the periphery of this set and keeping only the critical

regions.

Figure 7. Petri net discovered by Split Miner from the Sepsis.

We illustrate this with an example of a partial log sequence in a synthetic log. Given a
candidate sequence,

CS = {< Leucocytes, Release A >,< IV Antibiotics, Admission NC, ReleaseA >, < IV Antibiotics, X, Admission IC >}

https://apromore.com/research-lab/
https://apromore.com/research-lab/

Mathematics 2022, 10, 3790 16 of 24

we first determine its starting event set as:

I = {Leucocytes, IV Antibiotics}, E = {Admission IC}

In this case, the candidate sequence is projected in the model with a starting event set
I′ = I and a projected ending event set E′ = E.

Subsequently, the elements in I′, E′ are filtered and updated based on Algorithm 1 to
obtain the updated set of projections I′ = {ER Registration, τ}. The implicit transition τ is
an activity that appears only in the model and not in the log; it is used for routing roles
and has no execution semantics. The updated projected activity set and the critical regions
defined by it are shown in Figure 8. We performed the first reduction in the original Petri
net model by projecting the starting and ending activity sets, excluding the model structure
at the periphery of this set and keeping only the critical regions.

Mathematics 2022, 10, x FOR PEER REVIEW 15 of 22

Figure 8. Crucial region of the example candidate set CS (marked by the light blue dashed box).

Figure 9 shows the model fragment obtained after the second reduction, i.e., the ine-

luctable paths. After the two drops, we focused the analysis on the paths most closely

related to the behavior of activity X to be analyzed. At this point, the ineluctable paths are

all directly or indirectly related to X. These nodes can appear in the same path (e.g., ER

Registration, IV Liquid, and Leucocytes, when interpreted in terms of behavioral profile

relations, the latter two can be obtained as concurrent act ivities of the former, and there-

fore the three activities are co-occurring in the log).

ER

Registration

ER

Triage

ER Sepsis

Triage
Leucocyhtes

IV

Liquid

IV

Antibiotics

Release A

Admission

IC

Updated I

Updated E

X

Ineluctable Path

Figure 9. Ineluctable path.

Figure 10 shows the Bayesian process network with the Petri net model as a frame-

work. As a comparison, Bayesian network structures obtained using traditional structure

learning methods are given, such as the Constraint -Based Learning algorithm in Figure

Figure 8. Crucial region of the example candidate set CS (marked by the light blue dashed box).

Figure 9 shows the model fragment obtained after the second reduction, i.e., the
ineluctable paths. After the two drops, we focused the analysis on the paths most closely
related to the behavior of activity X to be analyzed. At this point, the ineluctable paths are
all directly or indirectly related to X. These nodes can appear in the same path (e.g., ER
Registration, IV Liquid, and Leucocytes, when interpreted in terms of behavioral profile
relations, the latter two can be obtained as concurrent activities of the former, and therefore
the three activities are co-occurring in the log).

Figure 10 shows the Bayesian process network with the Petri net model as a framework.
As a comparison, Bayesian network structures obtained using traditional structure learning
methods are given, such as the Constraint-Based Learning algorithm in Figure 11a, the
Tree Search algorithm in Figure 11b, and the Hill Climb Search algorithm in Figure 11c [28].
Analysis of the network structure reveals that it is challenging to obtain the correct structure
of the business process model with Bayesian structure learning methods:

Mathematics 2022, 10, 3790 17 of 24

Mathematics 2022, 10, x FOR PEER REVIEW 15 of 22

Figure 8. Crucial region of the example candidate set CS (marked by the light blue dashed box).

Figure 9 shows the model fragment obtained after the second reduction, i.e., the ine-

luctable paths. After the two drops, we focused the analysis on the paths most closely

related to the behavior of activity X to be analyzed. At this point, the ineluctable paths are

all directly or indirectly related to X. These nodes can appear in the same path (e.g., ER

Registration, IV Liquid, and Leucocytes, when interpreted in terms of behavioral profile

relations, the latter two can be obtained as concurrent act ivities of the former, and there-

fore the three activities are co-occurring in the log).

ER

Registration

ER

Triage

ER Sepsis

Triage
Leucocyhtes

IV

Liquid

IV

Antibiotics

Release A

Admission

IC

Updated I

Updated E

X

Ineluctable Path

Figure 9. Ineluctable path.

Figure 10 shows the Bayesian process network with the Petri net model as a frame-

work. As a comparison, Bayesian network structures obtained using traditional structure

learning methods are given, such as the Constraint -Based Learning algorithm in Figure

Figure 9. Ineluctable path.

Mathematics 2022, 10, x FOR PEER REVIEW 16 of 22

11a, the Tree Search algorithm in Figure 11b, and the Hill Climb Search algorithm in Fig-

ure 11c [28]. Analysis of the network structure reveals that it is challenging to obtain the

correct structure of the business process model with Bayesian structure learning methods:

(1) The number of activities is incomplete. As can be obtained from Table 1, Sepsis

logs contain 16 activities; PN-BBN obtains 16 activities; and the number of activities ob-

tained by the structural learning method is 11, 16, and 13.

(2) The activity dependency is not accurate. For example, the starting activity of the

business is ER Registration, and the corresponding direct dependency is (ER Registration,

ER Triage), which is not reflected in any of the three models in Figure 11.

(3) Parameter accuracy. Since the parameter learning of Bayesian networks is trained

based on the network structure, it can be inferred that an inaccurate network structure

will inevitably lead to inaccurate results of parameter learning.

Figure 10. Process-based Bayesian Network for Sepsis .

(a)

Figure 10. Process-based Bayesian Network for Sepsis.

Mathematics 2022, 10, 3790 18 of 24

Mathematics 2022, 10, x FOR PEER REVIEW 16 of 22

11a, the Tree Search algorithm in Figure 11b, and the Hill Climb Search algorithm in Fig-

ure 11c [28]. Analysis of the network structure reveals that it is challenging to obtain the

correct structure of the business process model with Bayesian structure learning methods:

(1) The number of activities is incomplete. As can be obtained from Table 1, Sepsis

logs contain 16 activities; PN-BBN obtains 16 activities; and the number of activities ob-

tained by the structural learning method is 11, 16, and 13.

(2) The activity dependency is not accurate. For example, the starting activity of the

business is ER Registration, and the corresponding direct dependency is (ER Registration,

ER Triage), which is not reflected in any of the three models in Figure 11.

(3) Parameter accuracy. Since the parameter learning of Bayesian networks is trained

based on the network structure, it can be inferred that an inaccurate network structure

will inevitably lead to inaccurate results of parameter learning.

Figure 10. Process-based Bayesian Network for Sepsis .

(a)

Mathematics 2022, 10, x FOR PEER REVIEW 17 of 22

(b)

(c)

Figure 11. Bayesian network (BN) obtained by traditional Bayesian structure learning method. (a)
BN learned by Constraint-Based Estimator from the Sepsis. (b) BN learned by Tree Search from the

Sepsis. (c) BN learned by Hill Climb Search from the Sepsis.

5.4. Anomaly Detection Results

We analyzed the performance of anomaly detection using the four metrics proposed

in this section, and we plotted the experimental results under different settings in Table

2. Two original logs that did not contain anomalous sequences were considered control

groups, and the derived data from the two logs were analyzed separately. Therefore, the

Receipt and Sepsis rows did not have the results about Recall and the results of using the

four algorithms BN by Constraint-Based Learning, BN by Tree Search, BN by Hill Climb

Search, and BN by Petri-based Learning to eliminate the abnormal. The fitness and sim-

plicity values were obtained after the values were removed, and we recorded the results

generated by the logs without operations as a None column to compare the degree of

improvement in log quality before and after the analysis.

Figure 11. Bayesian network (BN) obtained by traditional Bayesian structure learning method. (a) BN
learned by Constraint-Based Estimator from the Sepsis. (b) BN learned by Tree Search from the Sepsis.
(c) BN learned by Hill Climb Search from the Sepsis.

Mathematics 2022, 10, 3790 19 of 24

(1) The number of activities is incomplete. As can be obtained from Table 1, Sepsis logs
contain 16 activities; PN-BBN obtains 16 activities; and the number of activities obtained by
the structural learning method is 11, 16, and 13.

(2) The activity dependency is not accurate. For example, the starting activity of the
business is ER Registration, and the corresponding direct dependency is (ER Registration,
ER Triage), which is not reflected in any of the three models in Figure 11.

(3) Parameter accuracy. Since the parameter learning of Bayesian networks is trained
based on the network structure, it can be inferred that an inaccurate network structure will
inevitably lead to inaccurate results of parameter learning.

5.4. Anomaly Detection Results

We analyzed the performance of anomaly detection using the four metrics proposed in
this section, and we plotted the experimental results under different settings in Table 2. Two
original logs that did not contain anomalous sequences were considered control groups,
and the derived data from the two logs were analyzed separately. Therefore, the Receipt
and Sepsis rows did not have the results about Recall and the results of using the four
algorithms BN by Constraint-Based Learning, BN by Tree Search, BN by Hill Climb Search,
and BN by Petri-based Learning to eliminate the abnormal. The fitness and simplicity
values were obtained after the values were removed, and we recorded the results generated
by the logs without operations as a None column to compare the degree of improvement in
log quality before and after the analysis.

Table 2. Anomaly detection result metrics. No measures are recorded as None, and BN by Constraint-
Based Learning, BN by Tree Search, BN by Hill Climb Search, and BN by Petri-based Learning are
abbreviated as a,b,c,d, respectively, with the highest values marked in bold black and the second
highest values in orange.

Log Name Recall Fitness Simplicity
a b c d None a b c d None a b c d

Receipt \ \ \ \ 0.84 \ \ \ \ 0.69 \ \ \ \
Receipt − 5% 0.50 0.75 0.63 0.87 0.51 0.62 0.60 0.54 0.81 0.38 0.43 0.53 0.48 0.71

Receipt − 10% 0.44 0.68 0.56 0.84 0.49 0.41 0.58 0.53 0.76 0.49 0.50 0.55 0.46 0.69
Receipt + 5% 0.64 0.71 0.54 0.91 0.73 0.54 0.65 0.54 0.83 0.56 0.48 0.59 0.61 0.73

Receipt + 10% 0.62 0.61 0.51 0.85 0.81 0.49 0.51 0.61 0.80 0.51 0.47 0.52 0.49 0.71
Receipt + 15% 0.50 0.61 0.48 0.81 0.79 0.59 0.51 0.48 0.81 0.52 0.48 0.49 0.51 0.71
Receipt + 20% 0.49 0.55 0.45 0.72 0.74 0.52 0.46 0.47 0.78 0.61 0.62 0.58 0.55 0.73
Receipt + 25% 0.42 0.51 0.40 0.66 0.74 0.44 0.53 0.42 0.79 0.56 0.53 0.51 0.54 0.68

Sepsis \ \ \ \ 0.91 \ \ \ \ 0.66 \ \ \ \
Sepsis − 5% 0.41 0.71 0.73 0.86 0.75 0.51 0.63 0.66 0.92 0.57 0.55 0.61 0.65 0.71

Sepsis − 10% 0.39 0.69 0.68 0.81 0.72 0.48 0.61 0.59 0.84 0.60 0.50 0.59 0.63 0.78
Sepsis + 5% 0.45 0.72 0.73 0.89 0.89 0.56 0.54 0.69 0.89 0.65 0.57 0.65 0.64 0.69

Sepsis + 10% 0.42 0.70 0.67 0.85 0.84 0.53 0.52 0.61 0.81 0.61 0.52 0.61 0.62 0.66
Sepsis + 15% 0.38 0.66 0.67 0.80 0.82 0.47 0.51 0.56 0.75 0.61 0.46 0.54 0.67 0.65
Sepsis + 20% 0.35 0.61 0.65 0.76 0.85 0.43 0.50 0.50 0.73 0.63 0.34 0.42 0.58 0.61
Sepsis + 25% 0.29 0.59 0.62 0.71 0.81 0.39 0.49 0.48 0.71 0.58 0.31 0.53 0.55 0.57

The top half of the data in Table 2 shows that the Petri-based Bayesian network always
obtained the highest values in the experiments on Receipt logs, which is consistent with the
intuitive understanding of the Bayesian structure (Figures 10 and 11). This is because this
paper’s anomalous behavior detection assessment metric is inclined to be a behavior-level
metric. Therefore, the three methods, BN by Constraint-Based Learning, BN by Tree Search,
and BN by Hill Climb Search, presented lower levels overall due to their misrepresentation
of the behavioral relationships, which led to their inability to identify behavioral biases.
After several tests, it was found that these three had no obvious pattern in the result values
regarding the fitness and simplicity metrics of the behavioral perspective. The following
highest values of each metric were randomly generated among these three. In addition, the

Mathematics 2022, 10, 3790 20 of 24

Recall values of each group of logs in Table 2 revealed that the Petri-based Bayesian network
can effectively identify the injected anomalous behaviors. When injected anomalies are
higher, the Recall value is lower, the fitness is smaller, and the simplicity decreases. That
is, the recognition of abnormal behaviors decreases, the quality of logs decreases, and the
complexity of the model structure increases.

The data in the lower half of Table 2 show the experimental results for the Sepsis
series of logs. The data showed that the Constraint-Based Learning algorithm, in this
case, could hardly provide suggestions for anomaly detection. We further examined its
generated Bayesian network structure, as shown in Figure 12. The network structure
was modeled as six independent network segments, which had a large gap with the
actual process relationship, thus affecting the quality of its results. Meanwhile, the Petri-
based Bayesian network produced new logs that outperformed the original event logs,
significantly reducing the impact of abnormal behavior. Bn by Tree Search and bn by
Hill Climb Search showed results that were not considered regular, both performed by
providing sub-high values.

Mathematics 2022, 10, x FOR PEER REVIEW 19 of 22

Figure 12. BN by Constraint-Based Learning from the Receipt.

Finally, we analyzed the running times of the different algorithms. The algorithms

compared in this section all had a good performance on the event logs, and the injection

of different percentages of noise had little effect on the running speed, so we enumerated

the running times in both logs as positive and negative errors after several experiments as

follows.

BN by Constraint-Based Learning:

1200(80) 2230(500) 30(5)=3460(585)SepsisDuration ms= + + ;

750(50) 3150(200) 45(10)=3945(260)ReceiptDuration ms= + + .

BN by Tree Search:

1100(50) 400(50) 25(5)=1525(105)SepsisDuration ms= + + ;

1000(60) 1050(20) 20(6)=2070(86)ReceiptDuration ms= + + .

BN by Hill Climb Search:

1000(50) 3110(200) 25(5)=4135(255)SepsisDuration ms= + + ;

1100(50) 4950(100) 25(5)=6075(155)ReceiptDuration ms= + + .

BN by Petri-based Learning:

1140(80) 254(100) 20(5)=1414(185)SepsisDuration ms= + + ;

1200(40) 280(30) 30(5)=1510(75)ReceiptDuration ms= + + .

The above running times show that the proposed Petri-based Learning had a clear

advantage in constructing the Bayesian structure. In contrast, the other three Bayesian

network structure learning methods took a long time in this stage.

Figures 13 and 14 shows that the ROC curves of PN-BBN were higher than those of

DAE based on equal settings in Receipt and Sepsis logs, i.e., the Area Under roc Curve

(AUC) values were more significant. Therefore, this indicates that PN-BBN has a better

detection than DAE.

Figure 12. BN by Constraint-Based Learning from the Receipt.

Finally, we analyzed the running times of the different algorithms. The algorithms
compared in this section all had a good performance on the event logs, and the injection
of different percentages of noise had little effect on the running speed, so we enumerated
the running times in both logs as positive and negative errors after several experiments
as follows.

BN by Constraint-Based Learning:

DurationSepsis = 1200(±80) + 2230(±500) + 30(±5) = 3460(±585) ms;

DurationReceipt = 750(±50) + 3150(±200) + 45(±10) = 3945(±260) ms.

BN by Tree Search:

DurationSepsis = 1100(±50) + 400(±50) + 25(±5)= 1525(±105) ms;

DurationReceipt = 1000(±60) + 1050(±20) + 20(±6)= 2070(±86) ms.

Mathematics 2022, 10, 3790 21 of 24

BN by Hill Climb Search:

DurationSepsis = 1000(±50) + 3110(±200) + 25(±5)= 4135(±255) ms;

DurationReceipt = 1100(±50) + 4950(±100) + 25(±5)= 6075(±155) ms.

BN by Petri-based Learning:

DurationSepsis = 1140(±80) + 254(±100) + 20(±5) = 1414(±185) ms;

DurationReceipt = 1200(±40) + 280(±30) + 30(±5) = 1510(±75) ms.

The above running times show that the proposed Petri-based Learning had a clear
advantage in constructing the Bayesian structure. In contrast, the other three Bayesian
network structure learning methods took a long time in this stage.

Figures 13 and 14 shows that the ROC curves of PN-BBN were higher than those of
DAE based on equal settings in Receipt and Sepsis logs, i.e., the Area Under roc Curve
(AUC) values were more significant. Therefore, this indicates that PN-BBN has a better
detection than DAE.

Mathematics 2022, 10, x FOR PEER REVIEW 20 of 22

Figure 13. ROC of Receipt.

Figure 14. ROC of Sepsis.

6. Summary

To improve the accuracy of the network’s representation of process behavior, we pro-

pose a Petri Net-Based Bayesian Network for abnormal behavior detection. To improve the

accuracy of the network’s description of process behaviors, we formalized the behavioral

Figure 13. ROC of Receipt.

Mathematics 2022, 10, 3790 22 of 24

Mathematics 2022, 10, x FOR PEER REVIEW 20 of 22

Figure 13. ROC of Receipt.

Figure 14. ROC of Sepsis.

6. Summary

To improve the accuracy of the network’s representation of process behavior, we pro-

pose a Petri Net-Based Bayesian Network for abnormal behavior detection. To improve the

accuracy of the network’s description of process behaviors, we formalized the behavioral

Figure 14. ROC of Sepsis.

6. Summary

To improve the accuracy of the network’s representation of process behavior, we
propose a Petri Net-Based Bayesian Network for abnormal behavior detection. To improve
the accuracy of the network’s description of process behaviors, we formalized the behav-
ioral relationships as process models and used them as the architecture of the Bayesian
network. Advanced process model discovery techniques guarantee the model fitting ability
to analyze the behavioral relationships between activities effectively. Using behavioral
contours to approximate the analysis space allows the algorithm to focus on the causes of
the triggering of abnormal behaviors and the effects of the results on them, which helps to
improve the efficiency and accuracy of the algorithm. The comparative experiments with
synthetic and real case data showed that the Bayesian process network proposed in this
paper, which considers behavioral and probabilistic relationships among activities, had
better results.

In addition, the Bayesian process network uses event logs as the object of analysis and
a process model in Petri nets as the architecture. Therefore, the process is not limited by the
process discovery algorithm and can be hot swappable and replaced with the current state-
of-the-art process discovery algorithm to guarantee the accurate description of business
activities and the adaptability of the algorithm to different scenarios. Moreover, based on
the inference of joint probability distributions among activities for anomaly detection, it
reduces the requirement of domain knowledge to a certain extent. It facilitates the better
identification of anomalous behaviors by non-specialists.

However, offline data analysis is limited by policies and technologies, such as dam-
aged, lost, or no access to data. Therefore, further research will obtain insights about online
scenarios by analyzing event streams while the system runs.

Mathematics 2022, 10, 3790 23 of 24

Author Contributions: K.L.: conceptualization; methodology; software; writing—original draft;
and visualization. X.F.: funding acquisition and writing—review and editing. N.F.: methodology;
writing—review and editing; and investigation. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation, China (Nos. 61572035,
61402011), Key Research and Development Program of Anhui Province (2022a05020005), the Leading
Backbone Talent Project in Anhui Province, China (12 January 2020), and the Open Project Program
of the Key Laboratory of Embedded System and Service Computing of the Ministry of Education
(No. ESSCKF2021-05).

Data Availability Statement: All the data in this paper were obtained from https://data.4tu.nl
(accessed on 8 September 2022). Additionally, the algorithms were implemented based on PM4Py
and PMGPY. Experimental data and code related to this paper can be obtained by contacting the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bezerra, F.; Wainer, J.; van der Aalst, W.M.P. “Anomaly Detection Using Process Mining”, in Enterprise, Business-Process and

Information Systems Modeling. J. Big Data 2009, 29, 149–161. [CrossRef]
2. Goldstein, M.; Uchida, S. A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data.

PLoS ONE 2016, 11, e0152173. [CrossRef] [PubMed]
3. Saba, T.; Rehman, A.; Sadad, T.; Kolivand, H.; Bahaj, S.A. Anomaly-based intrusion detection system for IoT networks through

deep learning model. Comput. Electr. Eng. 2022, 99, 107810. [CrossRef]
4. Khan, A.T.; Cao, X.; Li, S.; Katsikis, V.N.; Brajevic, I.; Stanimirovic, P.S. Fraud detection in publicly traded U.S firms using Beetle

Antennae Search: A machine learning approach. Expert Syst. Appl. 2022, 191, 116148. [CrossRef]
5. Weytjens, H.; De Weerdt, J. Creating Unbiased Public Benchmark Datasets with Data Leakage Prevention for Predictive Process

Monitoring. Comput. Sci. 2022, 436, 18–29. [CrossRef]
6. Liu, H.; Xu, X.; Li, E.; Zhang, S.; Li, X. Anomaly Detection With Representative Neighbors. IEEE Trans. Neural Netw. Learn. Syst.

2021, 1–11. [CrossRef] [PubMed]
7. Aggarwal, C.C. Outlier Analysis. Cham: Springer International Publishing. 2017. Available online: http://link.springer.com/10

.1007/978-3-319-47578-3 (accessed on 7 September 2021).
8. Nolle, T.; Luettgen, S.; Seeliger, A.; Mühlhäuser, M. Analyzing business process anomalies using autoencoders. Mach. Learn. 2018,

107, 1875–1893. [CrossRef]
9. van Dongen, B.F.; De Smedt, J.; Di Ciccio, C.; Mendling, J. Conformance checking of mixed-paradigm process models. Inf. Syst.

2021, 102, 101685. [CrossRef]
10. Nagy, Z.; Werner-Stark, A. An Alignment-based Multi-Perspective Online Conformance Checking Technique. Acta Polytech.

Hung. 2022, 19, 105–127. [CrossRef]
11. Rullo, A.; Guzzo, A.; Serra, E.; Tirrito, E. A Framework for the Multi-modal Analysis of Novel Behavior in Business Processes. Int.

Conf. Intell. Data Eng. Autom. Learn. 2020, 12489, 51–63. [CrossRef]
12. Sani, M.F.; Van Zelst, S.J.; Van Der Aalst, W.M.P. Conformance Checking Approximation Using Subset Selection and Edit Distance.

In Proceedings of the Advanced Information Systems Engineering—32nd International Conference, CAiSE 2020, Grenoble,
France, 8–12 June 2020; Volume 12127, pp. 234–251. [CrossRef]

13. Sani, M.F.; Kabierski, S.J.; Van Der Aalst, W.M.P. Model Independent Error Bound Estimation for Conformance Checking
Approximation. arXiv 2021, arXiv:2103.13315. [CrossRef]

14. Lee, W.L.J.; Verbeek, H.; Munoz-Gama, J.; van der Aalst, W.M.; Sepúlveda, M. Recomposing conformance: Closing the circle on
decomposed alignment-based conformance checking in process mining. Inf. Sci. 2018, 466, 55–91. [CrossRef]

15. Sani, M.F.; van Zelst, S.J.; van der Aalst, W.M.P. Applying Sequence Mining for Outlier Detection in Process Mining. In Lecture
Notes in Computer Science; Springer: Cham, Switzerland, 2018; Volume 11230, pp. 98–116. [CrossRef]

16. van Zelst, S.J.; Sani, M.F.; Ostovar, A.; Conforti, R.; La Rosa, M. Filtering Spurious Events from Event Streams of Business
Processes. In Advanced Information Systems Engineering; Springer: Cham, Switzerland, 2018; Volume 10816, pp. 35–52. [CrossRef]

17. Dixit, P.M.; Suriadi, S.; Andrews, R.; Wynn, M.T.; ter Hofstede, A.H.M.; Buijs, J.C.A.M.; van der Aalst, W.M.P. Detection
and Interactive Repair of Event Ordering Imperfection in Process Logs. In Proceedings of the Advanced Information Systems
Engineering—30th International Conference, CAiSE 2018, Tallinn, Estonia, 11–15 June 2018; Volume 10816, pp. 274–290. [CrossRef]

18. Nolle, T.; Seeliger, A.; Mühlhäuser, M. Unsupervised Anomaly Detection in Noisy Business Process Event Logs Using Denoising
Autoencoders. In Discovery Science; Springer: Bari, Italy, 2016; pp. 442–456. [CrossRef]

19. Nolle, T.; Seeliger, A.; Thoma, N.; Mühlhäuser, M. DeepAlign: Alignment-Based Process Anomaly Correction Using Recurrent
Neural Networks. In Advanced Information Systems Engineering; Springer: Cham, Switzerland, 2020; Volume 12127, pp. 319–333.
[CrossRef]

https://data.4tu.nl
http://doi.org/10.1007/978-3-642-01862-6_13
http://doi.org/10.1371/journal.pone.0152173
http://www.ncbi.nlm.nih.gov/pubmed/27093601
http://doi.org/10.1016/j.compeleceng.2022.107810
http://doi.org/10.1016/j.eswa.2021.116148
http://doi.org/10.1007/978-3-030-94343-1_2
http://doi.org/10.1109/TNNLS.2021.3109898
http://www.ncbi.nlm.nih.gov/pubmed/34520369
http://link.springer.com/10.1007/978-3-319-47578-3
http://link.springer.com/10.1007/978-3-319-47578-3
http://doi.org/10.1007/s10994-018-5702-8
http://doi.org/10.1016/j.is.2020.101685
http://doi.org/10.12700/APH.19.4.2022.4.6
http://doi.org/10.1007/978-3-030-62362-3_6
http://doi.org/10.1007/978-3-030-49435-3_15
http://doi.org/10.48550/arXiv.2103.13315
http://doi.org/10.1016/j.ins.2018.07.026
http://doi.org/10.1007/978-3-030-02671-4_6
http://doi.org/10.1007/978-3-319-91563-0_3
http://doi.org/10.1007/978-3-319-91563-0_17
http://doi.org/10.1007/978-3-319-46307-0_28
http://doi.org/10.1007/978-3-030-49435-3_20

Mathematics 2022, 10, 3790 24 of 24

20. Neto, R.V.; Tavares, G.; Ceravolo, P.; Barbon, S. On the use of online clustering for anomaly detection in trace streams. In XVII
Brazilian Symposium on Information Systems; ACM: New York, NY, USA, 2021; pp. 1–8. [CrossRef]

21. Wil, M.P. van der Aalst, W.M.P. In Process Mining: Data Science in Action, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2016.
22. Padró, L.; Carmona, J. Computation of alignments of business processes through relaxation labeling and local optimal search. Inf.

Syst. 2022, 104, 101703. [CrossRef]
23. Sucar, L.E. Probabilistic Graphical Models; Springer: London, UK, 2015; Available online: http://link.springer.com/10.1007/978-1-

4471-6699-3 (accessed on 4 July 2022).
24. Augusto, A.; Conforti, R.; Dumas, M.; La Rosa, M.; Polyvyanyy, A. Split miner: Automated discovery of accurate and simple

business process models from event logs. Knowl. Inf. Syst. 2019, 59, 251–284. [CrossRef]
25. van der Aalst, W.; Weijters, T.; Maruster, L. Workflow mining: Discovering process models from event logs. IEEE Trans. Knowl.

Data Eng. 2004, 16, 1128–1142. [CrossRef]
26. Prasidis, I.; Theodoropoulos, N.-P.; Bousdekis, A. Handling Uncertainty in Predictive Business Process Monitoring with Bayesian

Networks. In Proceedings of the 2021 12th International Conference on Information, Intelligence, Systems & Applications (IISA),
Online, 12–14 July 2021. [CrossRef]

27. Fan, J.; Upadhye, S.; Worster, A. Understanding receiver operating characteristic (ROC) curves. Can. J. Emerg. Med. 2006, 8, 19–20.
[CrossRef] [PubMed]

28. Barbieri, N.; Manco, G.; Ritacco, E. Probabilistic Approaches to Recommendations. Synth. Lect. Data Min. Knowl. Discov. 2014, 5,
1–197. [CrossRef]

http://doi.org/10.1145/3466933.3466979
http://doi.org/10.1016/j.is.2020.101703
http://link.springer.com/10.1007/978-1-4471-6699-3
http://link.springer.com/10.1007/978-1-4471-6699-3
http://doi.org/10.1007/s10115-018-1214-x
http://doi.org/10.1109/TKDE.2004.47
http://doi.org/10.1109/iisa52424.2021.9555507
http://doi.org/10.1017/S1481803500013336
http://www.ncbi.nlm.nih.gov/pubmed/17175625
http://doi.org/10.2200/S00574ED1V01Y201403DMK009

	Introduction
	Related Work
	Background Knowledge
	Petri Net Model
	Bayesian Networks

	Detecting Abnormal Behavior using Petri Net-Based Bayesian Network
	Using Behavior Profiles to Determine Behavior Context
	Constructing Petri Net-Based Bayesian Networks for Anomaly Detection

	Evaluation
	Event Log
	Evaluation Indicators
	Bayesian Structural Analysis
	Anomaly Detection Results

	Summary
	References

