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Abstract: Consensus or conflict agreements, and how these change over time, have significant conse-
quences for understanding the network behavior of human beings, especially when it is necessary
to have agreements to move companies and countries forward peacefully. This paper proposes a
new Greatest Common Decision Maker (GCDM) aggregation voting procedure applied to square
preference matrices of n alternatives and n decision makers. An analysis of the mathematical com-
binatory ranking of consensus and conflicts generated by the GCDM is realized, and compared to
the well-known Borda, Pluralism and Condorcet aggregation procedures to cover the entire class of
dynamic accountable group decision-making phenomena. A classification for the family of magic
squares is reviewed and it is determined that a conflict decision matrix corresponds to a Latin square.
As an original contribution, a 2D color heatmap is generated as a visual tool to compare the con-
sensus and conflict cases generated by the compared methods. Finally, a new consensus reaching
model is proposed to compare these aggregation methods defining cost and effort change matrices to
convert the cases of conflicts into consensus according to the change in individual preferences. The
incorporation of social concepts into our research makes the results obtained stronger.

Keywords: multi-agent consensus; preference aggregation profile; Borda voting procedures;
pluralism voting procedures; greatest common decision; Condorcet voting procedures

MSC: 91B12; 91B14; 91B10

1. Introduction

The challenge of the 21st century, amid globalization, is to build better relations of
integration, cooperation, and collaboration between all kinds of groups, organizations,
countries, communities, and human beings. Understanding the internal behaviors of
a network in relation to decision making is a global issue [1]. Consensus or conflict
decisions and how they change over time become relevant and, therefore, it is necessary to
negotiate agreements that satisfy all those involved [2,3]. How should these agreements
and exchanges be led? Should they be conducted with blockades or in favor of one of the
parties? Is conflict necessary for cooperation to exist or does it arise spontaneously [3–6]?

Decision-making analysis and theory provide answers to the question: “How should
the decision problem be formulated to confront a decision maker?” The set of answers
grows significantly in alternatives, outcomes, and function utilities. Decision making
involves resolving between different options to act or not to act. [7,8].

Social choice theory emerged as a set of knowledge to be used in contexts where
agents or decision makers need to take collective decisions over a combinatorial space
of alternatives. This theory has introduced languages for preference representation and
modeling decision making [3,9–12].

Mathematics 2022, 10, 3815. https://doi.org/10.3390/math10203815 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10203815
https://doi.org/10.3390/math10203815
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-5965-3941
https://orcid.org/0000-0002-2716-6196
https://orcid.org/0000-0002-9695-3409
https://doi.org/10.3390/math10203815
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10203815?type=check_update&version=4


Mathematics 2022, 10, 3815 2 of 39

Social choice history can be traced back to Jeremy Bentham, Jean-Charles de Borda,
and Marquis Condorcet in the 18th century. Later, in 1950, Fishburn and Kenneth Arrow
proved that is impossible to aggregate preference relations into a collective (or social)
rational preference relation or social choice function that satisfies certain natural axioms or
democratic principles and values. This is called Arrow’s impossibility theorem [13,14].

A classic impossibility result theorem also exists for judgment aggregation, similar
to Arrow’s impossibility theorem. It says no judgment aggregation function satisfies the
complete combination of the rational social choice criteria [15]. Additionally, several other
similar impossibility theorems exist, such as the ANR impossibility theorem, smoothed
impossibility [16], Sen’s and Muller–Satterthwaite theorems, and the Gibbard–Satterthwaite
theorem [17].

Social agents, as decision makers, adopt distinct positions between cooperation and
conflict that make it difficult to coordinate a single choice that satisfies their goals in a
consensus, or deviate in a conflict or disagreement among them. In this cooperation
process, the agents carry out a consensus reaching process (CRP) where they can modify their
preferences to achieve a high level of agreement if they have a cooperation strategy before
achieving a consensus. New paradigms and means of making group decisions have arisen
in recent years [18–20].

The aggregation of individual preferences has been the subject of study for over two
centuries. Initially used to theorize on elections of the eighteenth century, it has evolved
into the social choice theory of today [21]. The most natural aggregation procedure in
communities is the simple majority voting; for instance, simple games can provide a
generalized interpretation of the notion of a “majority” [22].

The aggregation of individuals into collectivities is not straightforward: one cannot
simply sum individual preferences into collective preferences [22]. “Group decision making
(GDM) is viewed as a task to consolidate and aggregate preferences of a group of agents
to find the best collective alternative solution. Consensus is not always the best solution,
it becomes the most adequate cooperative answer or choice from a group to a decision
problem, otherwise, it is a conflict” [18,20,23].

Conflict can be described as anything that causes a disagreement among people, a
personal problem in a complicated situation, or an armed or violent confrontation or
opinion contraposition. Conflict also occurs within and among organizations. [1,2,24].

Negotiations, conflict resolutions and consensus agreements prioritize the alternatives
to be decided, with preference scales or rankings supported by the opinions, intentions, and
thoughts of the decision makers. Conflict resolution and consensus require techniques to
find the best nonviolent solution to a conflict between decision makers. [11,24]. The solution
to a conflict is a process that seeks all viable alternatives; consensus seeks a dialogue until
everyone agrees with a decision, which allows the course of one action to be followed,
avoiding the existence of a winner or a loser [25].

The motivations we have are related to philosophy and with the emerging systems
in nature and bio-societies. Do conflict and consensus arise naturally, or not? This is our
social and psychological question, in the end, to be demonstrated as one of the hypotheses
in this research.

Our first social question is deduced from the idea in [26] that “the science of politics
combines the individuals in a natural condition of humanity, in a state of nature”. This
equality between individuals leads to conflict between them because they have a “natural
right” to do what they want and what they believe [26–28]. Conflict or consensus can occur
or not without the presence of leaders.

Second, our psychological question derives from the idea that, in science, systems, or
art, the natural emergence of properties or behaviors occurs when an entity interacts with
a wider whole [29]. The natural emergence of behaviors is what happens when a set of
relatively simple entities organizes itself spontaneously and without explicit laws, until it
gives rise to intelligent behavior [30].



Mathematics 2022, 10, 3815 3 of 39

According to Arrow’s impossibility theorem, it is clear that an optimal aggregation
strategy does not exist; furthermore, group recommender systems have confirmed that there
is no ultimate winner [31,32].

Different standards and categories have been proposed to support the CRP
(see [6,18,23,33–35]). This includes the most recent methods such as any linguistic, fuzzy
or social network large-group decision making process that preserves individual consis-
tency through personalized individual semantics (PISs) or uses incomplete hesitant fuzzy
linguistic preference relations to control consensus reaching [36–41].

In addition, other vote procedures exist such as first past the post, single transferable
vote, additional member system, alternative vote plus, two-round system, alternative
vote, supplementary vote, Borda count [14], party list proportional representation [42],
amendment, Copeland, Condorcet winner and loser criteria, Dogson, Schwartz, max–min,
pluralism, approval, black runoff, Nanson, Hare, Coombs, mutual majority criteria, majority
loser criteria, participation criteria, independence of clones, heritage criteria, polynomial
time [43], and so on [44].

Main Idea

The main idea of this research is to propose a simple methodology that allows analyzing
conflict and consensus in decision making and contributes to a better understanding of
how they are related.

It is common to find situations in which a certain number of citizens elect among
different alternatives and aggregate their preferences into a winner alternative, representa-
tive of the society´s choice. When the social choice consists of more than one alternative,
usually we obtain tied winners, or a conflict [45]. Classical election methods such as Borda,
pluralism, and Condorcet focus on finding only one winning candidate or alternative.
Additionally, they have even been compared geometrically [46–49] to outline the optimal
method, considering only the winning alternative, but not the ranking among the alterna-
tives. Each method generates a certain quantity of total or partial conflicts. Therefore, the
creation of novel methods which increase the consensus and reduce conflict results is an
open field of research in the social choice literature.

We found structural conditions of the decisions among groups under equal condi-
tions, where individuals only look to reach their private objectives, with an expectation of
consensus and not pursuing a mutual goal group.

In our research, it is not only important to find the winning alternative, but to identify
in what linear order the losing alternatives are so that a ranking is built, since analyzing the
consensus among a group of decision makers leads us to understand the ranked choice
of group alternatives. In other words, we aim to identify the group aggregation of the
decision maker elections which satisfies their individual preferences, without causing a
conflict among them, based on the theory of social choice.

Therefore, we decided to broaden our research perspective from analyzing a winning
alternative to ranking all alternatives. That is, we focus on the comparison between the rankings
generated by the aggregation functions of the voting systems to determine the consensus and
conflicts among the decision makers.

There are other studies comparable with our idea [50]; it is important for the consensus
reaching process not only to understand the ranking preferences but the disagreements
that can lead to costly conflicts. In [51], the problem is approached with the support of a
cardinal ranking method extended with indices and measures for conflict evaluations. This
method collects negative and positive preferences before the alternative of doing nothing;
this helps to make informed decisions in the face of decisions that may be prone to conflict.

Borda’s method naturally gives us a ranking and, based on that ranking, we built our
definitions of what consensus is (when the alternatives are well ordered), what partial conflict is
(when there are ties), and what a magic square is (when there is no ranking because the group
preference assigned to each alternative is the same).
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In this article, we propose a new method of the Greatest Common Decision Maker (GCDM)
as the method that best represents our expectations about the ranking of alternatives
by achieving consensus with fewer conflicts when making a comparison with the other
methods mentioned.

We propose the GCDM as a new aggregation preference function combining different
visual arrangements to understand how to change their positions and preferences to reach
a group consensus. This helps for better group decisions, avoiding disagreements such
as interpersonal or intragroup conflicts among people gathered as a group, and increases
productivity, always looking for negotiation and not competition, submission, or evasion.

The Greatest Common Decision Maker generates a ranking that allows us to compare it,
with the classic voting methods extended to obtain linear orders or rankings for the group
preference alternatives [3].

The purpose of this main idea has a reasonable logic:
We are not looking for a winning alternative, but rather to determine that all alternatives are

winners at the same time, under a ranking. We do not want only some of the decision makers to
feel satisfied by the group choice, obtaining a winning alternative, but rather that the group
of decision makers accepts the consensus, as the one that best satisfies their preferences.

We are not comparing rankings either. We are comparing the conflicts and consensuses
which result from the rankings. We are not comparing methods to define if they are better or
more optimal than others to find the winning alternative or the ranking of alternatives, but
to analyze which methods foster conflict and which foster consensus. Additionally, we hope to
dynamically understand how we could combine the different voting methods so that they lead
us to a conflict or consensus over a determined time; in other words, we aim to identify
the combined application of voting methods that strategically leads us to a consensus or a
conflict [3].

The combination of the different voting methods proposes a novel consensus reaching
process framework based on effort (costs) or distance consensus changes to dynamically
cluster decisions in maps that help to minimize the total consensus efforts or distance
values in the consensus reaching process. This is similar to other studies such as [52,53],
which are comparable with our idea.

In summary, the idea of this innovative approach is to make it as simple as possible to obtain
a simple and quite easy-to-handle methodology to analyze consensus and conflict in the
process of decision making under a new visual representation.

In Sections 2 and 3, we detail the problem core of our research and the main assump-
tions. In Section 4, we give and review definitions for the magic squares, the social terms,
and the mathematical objects for the formalization of the voting procedures or aggregation
functions. In Section 5, there are explanations about the frameworks, tools, and methods
from the literature that bear the integration of our model and show the dynamic of our
methodology. In Section 6, the main research results are given, and we explain our consen-
sus reaching process, supported by a cost decision visualization. In Section 7, we present a
discussion and explain our future work. In Section 8, we conclude the work. Additionally,
and Appendix A are presented.

2. Problem Statement

Our research has the purpose of solving the following questions:

1. How, in negotiation among agents or groups, can we help them reach a consensus,
avoiding conflict among them? If each one does not know what the others think
when deciding or choosing an alternative, is it possible to build an aggregation func-
tion that leads most of the cases to consensus rather than to partial or total conflict?

2. In self-controlled groups where there is no moderator who reconciles a solution
to conflicts, is it possible to get out of a conflict by visualizing the advantages or
disadvantages of changing decisions at a certain cost?

There is no single study and software that can solve conflict in decision making, as far
as we can tell after reviewing the state-of-the-art literature. To overwhelm the threshold
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of this problem, our research aims to develop an innovative methodology to characterize
consensus negotiation [54] in an emerging environment of cooperation [55], or conflict
among multi-agent networks at a personal or group level.

We think that under certain initial assumptions, the difficulty in modeling [12] such a
solution can be overcome with the development of a new simplified preference aggregation
and a new visual strategy of costs specifically designed to characterize conflict’s preliminary
and dynamic procedures.

We think this can add value to the state of the art because the mathematical solution
to a conflict is not always the best one for a real social decision-making problem. Furthermore,
we know that, according to Arrow´s theorem, no optimal maximum solution for a social
choice function exists.

3. Assumptions

In this paper, we will focus on interpersonal and intergroup decisions (neither armed
nor violent conflicts) under descriptive models with aggregation processes in an egalitar-
ian context, i.e., decision aggregation methods in contexts of equal conditions and without
advantages for decision makers.

The type of decisions we will be analyzing are those with certainty, finite criteria, and fi-
nite alternatives. We assume decision matrices of finite “n” number of alternatives and finite
“n” decision makers organized in groups of agents, gathered in a square matrix of n × n
or magic squares (as per classification systems or ranking systems [44], and not rectangular
matrices of m × n or n ×m). We expect to go through different preference profiles in the
consensus reaching process, where consensus is measured by conflict metrics.

We assume preference relationships with agents in a group voting simultaneously with
no privileged information. In other words, agents are not ordered, and all have the same
rights and weights when their preferences are compared in the process of aggregation [56].

Strict and partial linear order relations are assumed, where the weights of preference
profiles are linear orders that can be interpreted as follows: a low weight for object i and
a high weight for object j implies that object i was periodized and/or voted later than j.
Preference profiles are represented in a decision matrix.

The preference aggregation method is equal to any voting system. Additionally, we
shall say we have a consensus when the aggregated collective preference imposes a linear
order over the objects, and a conflict when there no such linear-selected preference exists.
Moreover, we are not considering any consistency or consensus in any linguistic, fuzzy, or
social network large-group decision making process during the CRP.

Agents are autonomous, have their utility functions, and look for their benefit only,
and they are not looking to maximize the complete group social choice function [54–57].
Otherwise, agents are self-interested, and each one would like to obtain the decision that
maximizes its utility [56].

The unquestionable properties that are usually required of voting systems to be
considered as such are [43,58–60]: respect for anonymity, neutrality, majority criteria,
independence from irrelevant alternatives (IAI), consistency or reinforcement [59,60], ma-
nipulability, no show paradox, monotony, the weak Pareto principle, and the reverse order
paradox or reversal symmetry.

We follow the “rational” criteria of the theory of social choice: universality (any linear
ordering), transitivity (the aggregation of group preferences is also a linear ordering),
unanimity (if alternative “is preferred to” by all voters, then it is also preferred for the
group aggregation), and absence of a “dictato”, independence of irrelevant alternatives
(the aggregated preference for a pair of alternatives “x” and “y” depends only on the
preferences of the voters for the pair of alternatives “x” and “y”).
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4. Concepts and Definitions
4.1. Magic Square and Conflict Matrix Classification

Reviewing the literature, we notice that there is no clear agreement on how to classify
and name the magic squares, so we proposed the following classifications:

The general magic square is a square matrix of order n × n, formed by “n2” letters or
different, non-negative integers. With the following properties, each letter or each number
appears exactly once in each column or each row, or each main diagonal. In the case
of numbers, the sum of “n” different numbers in each row, column, and the two main
diagonals are the same. This common sum is known as a constant or magic number (see
Figure 1) [61–66].
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Figure 1. Different types of magic squares.

The general semi-magic square is a general magic square where the sum of the
numbers of its main diagonals does not result in a magic number (see Figure 1) [61,62,65,66].

The Latin square (conflict matrix) is a general semi-magical square formed by “n”
(and not “n2”) different letters or numbers per line or column, and arranged in some order
such that they cannot be repeated either by column or by line. That is, no number appears
twice in the same row or column (or in other words, each row and column is a permutation
of the “n” different letters or numbers). Although, both the letters and the numbers could
be repeated in the main diagonals (see Figure 1) [63,64,67–70].

The semi-magic square (conflict matrix), the object of our research (also known as
a normal magic square) is a Latin square that allows letters or numbers to be repeated
exclusively per line. It is a non-general semi-magic square (see Figure 1) [71,72].

To understand the relationships among the four classification squares, review Figure 1.
Additionally, the sets and subsets of them are shown in Figure 2.

We found that Arrow´s theorem can be represented with the appliance of conflict
matrices. Conflict matrices or magic squares illustrate the fact of what this theorem states
“for a finite number of voters greater than one, and a number of alternatives greater than or equal
to three is not possible to design a voting system that reflects the satisfactory aggregation of all
individual preferences of a community into a group preference” [73]. A conflict matrix does not
allow a unique aggregated group preference to be established as a result of the disagreement
among the individual preferences one by one in a group.

Therefore, to find optimal solutions to the process of seeking consensus negotiation, it
is necessary to assemble voting systems [32].

4.2. Definitions for Voting Procedures

These are the definitions that we use and create inspired by the literature to build
our methodology. The descriptions of variables and abbreviations are presented in the
Appendix A.
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Alternatives is a set of n objects or situations (X = {x1, x2, . . . , xn} = {alternatives xi},
n > 0) ranked or ordered by agents or decision makers [2,8,20,23,56,57,59,60,74] (see Figure 3).
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Agents or decision makers are a panel of experts (D = {d1, d2, . . . , dm} = {agents or
decision makers dj}, m > 0) who express their preferences on the alternatives in X in the
most natural way without any influence [2,9,20,23,54,56,57,73–75] (see Figure 3).

Preference weights are a set of values; W = {w1, w2 . . . , wn, where wi ∈ N}.N
is the set of natural numbers. The weights wi ∈ W are assigned to a series of alterna-

tives xj by a decision maker in D, where “i” could be equal or not equal to “j”. Preferences
have a linear order R, from the most preferred object to the least preferred object. The total
number of different preferences is “n!” [2,23,56,57,59,60,74] (see Figure 3).

The most preferred alternative for an agent is known as the agent’s ideal. The total
number of distinct ideal preferences is “n”. Additionally, the total number of distinct ideal
preference patterns is “nm”, where “m” is the number of agents

Rj = {w1j, w2j, . . . , wnj} represents one of the possible individual preferences (or
permutation without repetition over the alternatives of X) with wij ∈W, which is associated
with the decision maker dj in D (see Figure 3) [2,8,56,57].

Řk = {w1k, w2k, . . . , wnk} represents one of the possible group preferences with
wij ∈W, which is associated with the collective preference of the “m” agents in set D, with
1 ≤ k ≤ n!m (see Appendix B). This corresponds to the output of the preference aggregation
rule process or function [60] described before (see Figure 3) [2,56].
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The preference profile or pattern M = [P1, P2, . . . , Pm] is an array that represents the
preference data collected from “m” agents, where 0 < j ≤ m, and the jth agent uses the
linear order or preference order Pj to represent his or her preferences [2,23,57,76]. The total
number of different profiles of a group of agents is equal to “n!m”.

Decision matrix [77] is a selection matrix or preference profile M that helps to eval-
uate and prioritize a list of alternatives in a group. The decision makers determine a
preference profile over each alternative to be elected under their criteria, and this is added
as a column to the decision matrix (see Figure 3).

M is a decision matrix of dimension nxm, and it is made up of “n” rows (the alter-
natives) and “m” columns (the decision makers), such that each column Pj of the matrix
M has dimension nx1 in the following way: Pj = Rj

T, where Rj = (x1j, x2j, . . . , xnj), that is,
M = [P1, P2, . . . , Pm] = [R1

T, R2
T, . . . , Rm

T] = [xij](n ×m)
Mk is one of the possible decision matrices (or group choice profile) which represents

the individual preference arrangement of a set of agents D in a decision event where
k = 1, 2, . . . , n!m (see Figure 3).

Unanimity occurs when the “m” agents or decision makers have exactly the same pref-
erences. Additionally, consensus on a proposal does not mean that everyone is unanimously
in agreement.

Consensus is a mutual agreement between the members of a group or network where
the decision or consensus satisfies almost all the goals and objectives of the individuals,
but not necessarily their choices. Consensus implies consent among all the participants,
and tries to solve and reduce the objections of the majority or the minority at the same time
to reach the most convenient decision for the whole group [2,18,60].

In the consensus process, decision makers exchange judgments, opinions, and relevant
information to expose arguments and deliberate the reasons for a certain alternative [15,20].
Consensus grade is the level of the preference values or imprecision coefficient regarding
mutual agreement, i.e., cooperative or conflicting behavior. Consensus is not the election
or decision that looks for the maximum element that maximizes all the individual agents’
utility functions, but the greatest one under a unified negotiation protocol [54]. It is proven
that there several nonequivalent consensuses may exist [78].

A preference consensus occurs if the agents have identical or similar preference
rankings [2,60], and an ideal consensus occurs if the agents have identical or similar ideals.
A conflict occurs if there is no consensus.

Conflict is the opposition or total disagreement among people or groups due to the
contradictory coexistence among the participants, i.e., whenever participants do not suit
one another. The input for modeling a conflict [12] is the preference that each decision
maker has with respect to a variety of feasible objects, alternatives, states, or outcomes that
could be elected [2,23].

Partial consensus or partial conflict or dissent: The opposite of consensus is dissent.
Dissent is not synonymous with confrontation or conflict, but the tolerance of the opinion
of the majority regarding the common good. Partial consensus or partial conflict is not an
agreement among all the participants [60].

It is necessary to determine when a group of decision makers is under a consensus or
conflict, after applying an aggregation function to their preferences over the alternatives.

Types of decision matrices are those that, transformed by an aggregation function,
represent the preference profile of a group through a group preference Řk. The consensus
matrix establishes a strict linear order relationship for group preference. The conflict matrix
does not establish a strict linear order relationship for group preference. A consensus or
partial conflict matrix is the one that collects the cases of matrices that do not comply with
consensus or conflict matrices.
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O(v) represents a conflict metric or function that calculates the degree of conflict–
consensus on a weight vector “v” of dimension (n × 1), resulting from the application of
an aggregation function to a decision matrix, as follows:

O : Nn → {1, 2, 3} , N is the set of natural numbers

O(v) = O


v1
v2
. . .
vn

=


1 if vi 6= vj
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Preference aggregation (or consensus reaching process CRP) is a decision rule ag-
gregation approach (process, method, or algorithm) that combines or aggregates a set of
preference profiles of individual agents in one group with only one group preference Řk
or social choice [44]. Preference aggregation is known in the literature as the aggregation
function [8,9,20,44,59,73,74] or aggregation operator [20] that maps the set of n x m dimen-
sional decision matrices M to the set of individual or group preferences [35,79,80], electing
one as the group preference Řk or social choice. Therefore, a social choice function is
a preference aggregation that maps an elected collective preference profile into a single
preference order [6,44]. The aggregation criteria or algorithm may be a utility function or
a voting process or system, or a particular election theory or methodology agreed upon
by multiple agents or the group, with certain properties, principles or rules, certainty or
uncertainty, with an adversary or without an adversary (see Figure 3).

The process of modeling the preference profiles and the decision matrix shown in
Figure 3 starts from the alternatives or decision objects. In this example, fruits that the
agent Andrew will order linearly according to his taste and preference are: banana >
mango > pear > apple. This will be integrated into a decision matrix in equal conditions to
those of the other participating agents: Silvia, Peter, and Laura. Additionally, through an
aggregation function related to a voting system, in particular, the group preference is also
ordered linearly (mango > banana > apple > pear) according to the result of the aggregation
function. In this example, the aggregation function is the sum used in the Borda method.

We decided to standardize the voting procedure concepts with the help of mathemat-
ical objects to systematize the traditional definitions in the literature such as the Borda,
pluralism, and Condorcet aggregation functions [44]. This helped us to understand the
computation algorithms behind each voting system we studied. This section could also be
seen as part of our results, because we proposed a new aggregation function that we called
the Greatest Common Decision Maker (GCD).

4.3. Borda Voting Procedure

Borda is a positional voting procedure where each voter provides a ranking in the
group decision problem [14,77,81,82]. An individual preference profile is expressed in
terms of an ordinal ranking over the available alternatives to choose from [23]. The purpose
is to combine them into a group preference or consensus ordinal ranking [21,83].

B(Mk) represents the Borda aggregation function applied to a matrix of decision Mk
of dimension (n × n) and I(n × 1) = (1, 1, . . . , 1)T in the following way:

B : Nn×n → Nn , where N is the set of natural numbers

B(Mk) = Mk I(n × 1) =


∑n

j=1 x1j
∑n

j=1 x2j
. . .

∑n
j=1 xnj

 =


B1
B2
. . .
Bn

= Řk and O


B1
B2
. . .
Bn


The Borda voting method supposes that there are “n” candidates. The voters assign

“1” to the candidate ranked last, and “n” to the candidate ranked first according to their
preferences on a ballot. The Borda procedure consists of the sum of the ranks assigned by
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each decision maker to each candidate, and the one with the most points is the winner, or
Borda social choice [42,83,84]. Therefore, the relative magnitudes of each sum induce a new
ordinal ordering over the alternatives [21,23,81,85]. The compromise is to obtain the best
agreement for the assignment of a collective ordinal ranking.

In other words, the rows and weights of the decision matrix are added to obtain the
points each candidate receives as the last column. This column of sums represents the
group ranking preference linear order assigned to the candidates, or alternatives by Borda.
The degree of conflict–consensus is calculated. The Borda aggregation matrix crosses the
alternatives against the decision makers.

4.4. Stronger Alternative (Candidate) Profile Anatomy Matrix

In the pluralism and majority voting system, the winner of an election is the candidate
that received more votes than the others [86]. We propose here a stronger alternative
(candidate) profile anatomy matrix to identify the anatomy votes each candidate receives,
identifying not only the winner but a function to obtain the “r” preference weight profile
submatrices, where “r represents the wr value in the set W of preference weights”.

SUBr(Mk) represents the function to obtain the rSBk weight profile submatrix of
dimension (n × n) for the set of preference weight values W = {w1, w2 . . . , wr, . . . , wn} of
the decision matrix Mk, with elements “rsubk

ij”, in the following way:
rSBk is the weight submatrix profile with “i, j = 1, 2, . . . , n”, and elements “rsubk

ij”.

SUBr : Nn×n → Nn×n , where N is the set of natural numbers

rsubk
ij=

{
0 if mij 6= r
r if mij = r

SUBr(Mk) =
rSBk =


rsubk

11
rsubk

21
. . .

rsubk
n1

rsubk
12

rsubk
22

. . .
rsubk

n2

. . .

. . .

. . .

. . .

rsubk
1n

rsubk
2n

. . .
rsubk

nn


SAPA(Mk) represents the function to obtain the SPk stronger alternative (candidate)

profile matrix of dimension (n × n) by weighting the alternatives of a decision matrix Mk
and I(n × 1) = (1, 1, . . . , 1)T.

SPk is the stronger alternative (candidate) profile matrix with “i, j = 1, 2, . . . , n”, and
elements “ spk

ij ”.
SAPA : Nn×n → Nn×n , where N is the set of natural numbers, and given “r”, then

colspk
r =


spk

1r
spk

2r
. . .

spk
nr

 = rSBk I(n ×1) =


rsubk

11
rsubk

21
. . .

rsubk
n1

rsubk
12

rsubk
22

. . .
rsubk

n2

. . .

. . .

. . .

. . .

rsubk
1n

rsubk
2n

. . .
rsubk

nn

I(n ×1) =


∑n

j=1
rsubk

1j

∑n
j=1

rsubk
2j

. . .
∑n

j=1
rsubk

nj



SAPA(Mk) = SPk = [colspk
1, colspk

2, . . . , colspk
n] =


spk

11
spk

21
. . .

spk
n1

spk
12

spk
22

. . .
spk

n2

. . .

. . .

. . .

. . .

spk
1n

spk
2n

. . .
spk

nn


The rSBk weight submatrix profile identifies the allocated or positioned weight values

assigned by the decision makers to the alternatives in the Mk decision matrix. Therefore, each
column in the SP stronger alternative (candidate) profile matrix represents the assigned weight
rank to the preferences of decision makers in the Mk decision matrix. The SP profile matrix
will support our explanations for pluralism and the pluralism ranking voting procedures.
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4.5. Pluralism Voting Procedure

A voting method in which the candidate or alternative with the most votes wins is
called a simple majority rule or method. Plurality is a well-known voting system where
each voter is asked only for their first preference (or none if they abstain) [43,58,60,73], and
a candidate wins when they receive the greatest number of votes with the most first-place
votes [87]. The winning candidate only needs to obtain more votes than any other opponent;
a majority is not required, but more votes than the opposition combined [73,84,88].

Plu(rSBk) represents the pluralism aggregation function applied to a rSBk matrix of
dimension (n × n), where “r” corresponds to the maximum weight preference of Mk in the
following way:

Plu : Nn×n → Nn , where N is the set of natural numbers

Plu(rSBk) = rSBk I(n × 1) =


spk

1r
spk

2r
. . .

spk
nr

 =


P1
P2
. . .
Pn

= Řk and O


P1
P2
. . .
Pn


The pluralism group preference social choice is calculated based on the pluralism

aggregation function and the preference weight profile submatrix that represents the most
first-place votes of each candidate. Therefore, the obtained vector (column) of values shows
the won number of votes each candidate has as a first-place option, i.e., the candidates are
ranked according to the number of first-place votes [73,84,88].

Both the majority and the plurality winners are able to be determined. The degree of
conflict–consensus is calculated, and the pluralism aggregation social choice vector crosses
the alternatives against the weights. Although the plurality voting procedure is a method
that looks for a winner, it can be seen as an incomplete candidate ranking of the most
first-place votes [84].

4.6. Pluralism Ranking Voting Procedure

Unlike the simple pluralism voting procedure, we propose a new pluralism ranking method
to determine not only the winner of the ballot but the linear order or ranking of the
candidates based on the weight group preferences and vote place assigned to candidates;
note that, to the best of our knowledge, we could not find a natural extended procedure
for plurality in the literature, except Hare and Coombs majority procedures, which can be
adapted to pluralism [84].

Plura(SPk) represents the pluralism ranking aggregation function applied to an SPk

of dimension (n × n) and I(n × 1) = (1, 1, . . . , 1)T in the following way:

Plura : Nn×n → Nn , where N is the set of natural numbers

Plura(SPk) = max(SPk) =


max

{
spk

11,
max

{
spk

21,
. . .

max
{

spk
n1,

spk
12,

spk
22,

. . .
spk

n2,

. . .
. . . ,
. . .
. . . ,

, spk
1n
}

spk
2n
}

. . .
spk

nn
}
=


P1
P2
. . .
Pn

= Řk and O


P1
P2
. . .
Pn


The pluralism ranking is calculated based on the stronger alternative (candidate) profile

matrix that represents the anatomy of the group preference votes of each candidate, accord-
ing to their weights in the decision matrix and each weight submatrix profile. Therefore, the
obtained vector (column) of values combines the number of votes for each weight and the
related candidates obtained in the ballot, and represents the preference order assigned to
the candidates. The degree of conflict–consensus is calculated. The purpose is not to obtain
the majority winner, but the complete ranking votes of the candidates [84].
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4.7. Condorcet’s Ranking Voting Procedure

Condorcet (1743–1794) postulated his own model based on philosophical arguments;
he was Borda’s main antagonist. According to his model, the winning candidate is the one
who defeats the rest of the candidates by a simple majority in pairwise comparisons, which
implies that there will not always be a winner [58,73,82,83,89].

Condorcet is a voting method where the candidate who is preferred over all others al-
ways wins. Here, as in the other methods, the voters or decision makers rank candidates in
order of preference. The Condorcet ranking of candidates is obtained by counting the num-
ber of wins for each candidate when all candidates are run head-to-head in simple majority
elections [73,83,84,90]. Similarly to Borda´s voting procedure, this method also naturally
gives us a ranking based on the comparisons completed to obtain each candidate´s number
of votes.

Mk
co represents the Condorcet matrix of dimension (n × n) ⊆ X2, obtained from a

decision matrix Mk of dimension (n × n) in the following way:

coSubk
rp = {xrj ∈ Mk

∣∣ xrj > xpj;
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co of dimension (n × n) and I(n × 1) = (1, 1, . . . , 1)T in the following way:

Co : Nn×n → Nn , where N is the set of natural numbers

Co(Mk
co) = Mk

co I(n × 1) =


∑n

j=1 mco1j
∑n

j=1 mco2j
. . .

∑n
j=1 mconj

 =


co1
co2
. . .
con

 = Řk and O


co1
co2
. . .
con


The Condorcet aggregation matrix crosses alternatives against alternatives. A value

in a row assigned to one candidate shows the counting number of times that the row
candidate has a greater rank compared with the candidate represented in each column. The
last column is calculated with the sums of the values by rows and helps to assign a group
preference ranking linear order by Condorcet to the candidates or alternatives. The degree
of conflict–consensus is calculated.

4.8. Greatest Common Decision Maker Ranking Voting Procedure

We propose this new voting procedure or aggregation function as a composition of
Condorcet and Borda voting procedures in an innovative and strategical mixture that, as far
as we know, is not yet reported in the literature. We call it the Greatest Common Decision
Maker because it represents the main purpose of how to obtain the group preference. We
wanted to find out the most coincidences among the decision makers. This means that the
greatest common agent preference could be considered to represent the group preference
profile. We called it the Greatest Common Decision Maker because it resembles the greatest
common divisor procedure in mathematics.

In philosophy, the Greatest Common Decision Maker could be related to “the general
will of society, that . . . generalizes . . . not so much the number of votes as the common
interest that unites them” [91] (pp. 111–112). “Populism (or pluralism), by contrast, is a
majority that would seek to unfairly appropriate the private goods because it does not seek
the common good” [91] (p. 115), or the common decision of society.
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Mk
mcd represents the Mix matrix of dimension (m × n), where m = n(n − 1)/2 and is

obtained from a decision matrix Mk of dimension (n × n) in the following way:

sup(xij, xrj) =

{
1 if xij > xrj, i 6= r
0 if xij < xrj, i 6= r

Mk
mcd =



sup
(
x1j, x2j

)
sup

(
x1j, x3j

)
. . .

sup
(
x1j, xnj

)
sup

(
x2j, x3j

)
sup

(
x2j, x4j

)
. . .

sup
(
x2j, xnj

)
. . .

sup
(

xij, xi(+1j)

)
sup

(
xij, xi(+2j)

)
. . .

sup
(
xij, xnj

)
. . .

sup
(

xn (−2j), xn (−1j)

)
sup

(
xn (−2j), xnj

)
sup

(
xn (−j), xnj

)



=



mixk
1j

mixk
2j

. . .

. . .

. . .

. . .

. . .

. . .
mixk

ij
. . .
. . .
. . .
. . .
. . .
. . .

mixk
m (−1j)

mixk
mj



= [mixk
ij];
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The Condorcet mix matrix crosses alternatives against decision makers. It counts,
using the columns or the decision maker, how many times each alternative has a greater
rank compared with the other alternatives in the decision matrix. The last column is
calculated with the sums of the values by rows, and we propose that it helps to build the
Condorcet matrix.

GCD(Mk
mcdco) represents the aggregation function of the Greatest Common De-

cision Maker applied to a Condorcet mix matrix Mk
mcdco of dimension (n × n) and

I(n × 1) = (1, 1, . . . , 1)T in the following way:

GCD : Nn×n → Nn , where N is the set of natural numbers

GCD(Mk
mcdco) = Mk

mcdco I(n × 1) =


∑n

j=1 mcdco1j
∑n

j=1 mcdco2j
. . .

∑n
j=1 mcdconj

 =


GCD1
GCD2

. . .
GCDn

 = Řk and O′

Once the Condorcet mix matrix is obtained, based on it, the Greatest Common Decision
Maker matrix is built. Each decision maker column is compared with other decision makers
and the coincidences in the row values are counted one-to-one; each decision maker row
value in the GCD matrix shows the coincidences with the column decision maker. Therefore,
we found the Greatest Decision Maker by adding the coincidence values of the columns,
and the column that accumulates the greatest value compared with the others is the chosen
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one. The decision maker assigned to this column in the decision matrix represents the
group preference by GCD. The degree of conflict–consensus is calculated.

Note that we are using O’ instead of O as a conflict metric because the O metric needs to
be adjusted to identify the underlying or subjacent parallel conflicts and ties among decision
maker pairs. The O conflict metric is useful only for Borda, pluralism, and Condorcet. Here,
our sense of consensus and conflict needs to turn from weighted alternatives to weighted decision
makers, as comparisons will be performed among decision makers to determine the common choice.
However, calculating the degree of conflict–consensus implies understanding in detail the
behavior of the underlying rectangle matrices that could represent ties or not, and this is
out of the scope of this article review, so will be left for future work. This is one of the
disadvantages of the GCM aggregation function.

We will be explaining the O’ conflict metric for 3 × 3 and 4 × 4 decision matrix
dimensions cases to show its procedures, but the remaining cases for n × n decision matrix
dimensions will be left for future work.

To build an appropriate O’ conflict metric, it is necessary to define the Mk
cod ma-

trix that represents the Condorcet decision maker’s matrix of dimension (n × n) ⊆ D2,
obtained from a decision matrix Mk of dimension (n × n) in the following way:

codSubk
rp = {xip ∈ Mk

∣∣ xir = xip;
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r, p = 1, . . . , n

CoD(Mk
cod) represents the Condorcet decision maker’s aggregation function ap-

plied to a matrix of Condorcet decision makers Mk
cod of dimension (n × n) and

I(n × 1) = (1, 1, . . . , 1)T in the following way:

CoD : Nn×n → Nn , where N is the set of natural numbers

CoD(Mk
cod) = Mk

cod I(n × 1) =


∑n

j=1 mcod1j
∑n

j=1 mcod2j
. . .

∑n
j=1 mcodnj

 =


CoD1
CoD2

. . .
CoDn

 = Řk

The Condorcet decision maker’s aggregation matrix crosses decision makers against
decision makers. A value in a row assigned to one decision maker shows the counting
number of times that the row decision maker has equal rank compared with the decision
maker represented in each column. The last column is calculated with the sums of the
values by rows and helps to assign the group preference ranking order given by Condorcet
to the decision makers.

O’3 × 3(GCD(M3
mcdco), CoD(M3

cod)) represents a conflict metric or function that
calculates the GCD degree of conflict–consensus on a series of weighted vectors “v” of
dimension (3 × 1), resulting from the application of the GCD method to a decision matrix
of dimension 3 × 3, as follows:

O’
3×3 : N3×3 → {1, 2, 3} , where N is the set of natural numbers

O’
3 × 3 =


if CoDi = CoDj = 0,
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i then 1 (consensus)
otherwise then 2 (partial conflict)
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dimension (4 × 1), resulting from the application of the GCD method to a decision matrix
of dimension 4 × 4, as follows:

O’
4 × 4 : N4×4 → {1, 2, 3} , where N is the set of natural numbers

O’
4 × 4 =



if CoDi = CoDj = 0,
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Partial consensus or partial conflict or dissent: The opposite of consensus is dis-

sent. Dissent is not synonymous with confrontation or conflict, but the tolerance of the 

opinion of the majority regarding the common good. Partial consensus or partial con-

flict is not an agreement among all the participants [60]. 

It is necessary to determine when a group of decision makers is under a consensus 

or conflict, after applying an aggregation function to their preferences over the alterna-

tives. 

Types of decision matrices are those that, transformed by an aggregation function, 

represent the preference profile of a group through a group preference Řk. The consen-

sus matrix establishes a strict linear order relationship for group preference. The conflict 

matrix does not establish a strict linear order relationship for group preference. A consen-

sus or partial conflict matrix is the one that collects the cases of matrices that do not com-

ply with consensus or conflict matrices. 

O(v) represents a conflict metric or function that calculates the degree of conflict–

consensus on a weight vector “v” of dimension (n × 1), resulting from the application of 

an aggregation function to a decision matrix, as follows: 

O∶ ℕn ⟶ {1,2,3}, ℕ is the set of natural numbers 

O(v) = O(
v1
v2…
vn
)={

1 if vi ≠ vj ⍱ i ≠ j (consensus) 

3 if vi = vj⍱ i ≠ j (conflict) 

2 otherwise (partial conflict or consensus) 

 

Preference aggregation (or consensus reaching process CRP) is a decision rule ag-

gregation approach (process, method, or algorithm) that combines or aggregates a set of 

preference profiles of individual agents in one group with only one group preference Řk 

or social choice [44]. Preference aggregation is known in the literature as the aggregation 

function [8,9,20,44,59,73,74] or aggregation operator [20] that maps the set of n x m di-

mensional decision matrices M to the set of individual or group preferences [35,79,80], 

electing one as the group preference Řk or social choice. Therefore, a social choice func-

tion is a preference aggregation that maps an elected collective preference profile into a 

single preference order [6,44]. The aggregation criteria or algorithm may be a utility 

function or a voting process or system, or a particular election theory or methodology 

agreed upon by multiple agents or the group, with certain properties, principles or rules, 

certainty or uncertainty, with an adversary or without an adversary (see Figure 3). 

The process of modeling the preference profiles and the decision matrix shown in 

Figure 3 starts from the alternatives or decision objects. In this example, fruits that the 

agent Andrew will order linearly according to his taste and preference are: banana > 

mango > pear > apple. This will be integrated into a decision matrix in equal conditions 

to those of the other participating agents: Silvia, Peter, and Laura. Additionally, through 

an aggregation function related to a voting system, in particular, the group preference is 

also ordered linearly (mango > banana > apple > pear) according to the result of the ag-

gregation function. In this example, the aggregation function is the sum used in the Bor-

da method. 

We decided to standardize the voting procedure concepts with the help of mathe-

matical objects to systematize the traditional definitions in the literature such as the Bor-

da, pluralism, and Condorcet aggregation functions [44]. This helped us to understand 

the computation algorithms behind each voting system we studied. This section could 

also be seen as part of our results, because we proposed a new aggregation function that 

we called the Greatest Common Decision Maker (GCD). 

4.3. Borda Voting Procedure 

i 6= j then 3 (conflict)
else if CoDi = CoDj = n(n− 1),
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maker has with respect to a variety of feasible objects, alternatives, states, or outcomes 

that could be elected [2,23]. 

Partial consensus or partial conflict or dissent: The opposite of consensus is dis-

sent. Dissent is not synonymous with confrontation or conflict, but the tolerance of the 

opinion of the majority regarding the common good. Partial consensus or partial con-

flict is not an agreement among all the participants [60]. 

It is necessary to determine when a group of decision makers is under a consensus 

or conflict, after applying an aggregation function to their preferences over the alterna-

tives. 

Types of decision matrices are those that, transformed by an aggregation function, 

represent the preference profile of a group through a group preference Řk. The consen-

sus matrix establishes a strict linear order relationship for group preference. The conflict 

matrix does not establish a strict linear order relationship for group preference. A consen-

sus or partial conflict matrix is the one that collects the cases of matrices that do not com-

ply with consensus or conflict matrices. 

O(v) represents a conflict metric or function that calculates the degree of conflict–

consensus on a weight vector “v” of dimension (n × 1), resulting from the application of 

an aggregation function to a decision matrix, as follows: 

O∶ ℕn ⟶ {1,2,3}, ℕ is the set of natural numbers 

O(v) = O(
v1
v2…
vn
)={

1 if vi ≠ vj ⍱ i ≠ j (consensus) 

3 if vi = vj⍱ i ≠ j (conflict) 

2 otherwise (partial conflict or consensus) 

 

Preference aggregation (or consensus reaching process CRP) is a decision rule ag-

gregation approach (process, method, or algorithm) that combines or aggregates a set of 

preference profiles of individual agents in one group with only one group preference Řk 

or social choice [44]. Preference aggregation is known in the literature as the aggregation 

function [8,9,20,44,59,73,74] or aggregation operator [20] that maps the set of n x m di-

mensional decision matrices M to the set of individual or group preferences [35,79,80], 

electing one as the group preference Řk or social choice. Therefore, a social choice func-

tion is a preference aggregation that maps an elected collective preference profile into a 

single preference order [6,44]. The aggregation criteria or algorithm may be a utility 

function or a voting process or system, or a particular election theory or methodology 

agreed upon by multiple agents or the group, with certain properties, principles or rules, 

certainty or uncertainty, with an adversary or without an adversary (see Figure 3). 

The process of modeling the preference profiles and the decision matrix shown in 

Figure 3 starts from the alternatives or decision objects. In this example, fruits that the 

agent Andrew will order linearly according to his taste and preference are: banana > 

mango > pear > apple. This will be integrated into a decision matrix in equal conditions 

to those of the other participating agents: Silvia, Peter, and Laura. Additionally, through 

an aggregation function related to a voting system, in particular, the group preference is 

also ordered linearly (mango > banana > apple > pear) according to the result of the ag-

gregation function. In this example, the aggregation function is the sum used in the Bor-

da method. 

We decided to standardize the voting procedure concepts with the help of mathe-

matical objects to systematize the traditional definitions in the literature such as the Bor-

da, pluralism, and Condorcet aggregation functions [44]. This helped us to understand 

the computation algorithms behind each voting system we studied. This section could 

also be seen as part of our results, because we proposed a new aggregation function that 

we called the Greatest Common Decision Maker (GCD). 

4.3. Borda Voting Procedure 

i 6= j then 1 (consensus)
else if CoDi = CoDj = 4 or 6,
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maker has with respect to a variety of feasible objects, alternatives, states, or outcomes 

that could be elected [2,23]. 

Partial consensus or partial conflict or dissent: The opposite of consensus is dis-

sent. Dissent is not synonymous with confrontation or conflict, but the tolerance of the 

opinion of the majority regarding the common good. Partial consensus or partial con-

flict is not an agreement among all the participants [60]. 

It is necessary to determine when a group of decision makers is under a consensus 

or conflict, after applying an aggregation function to their preferences over the alterna-

tives. 

Types of decision matrices are those that, transformed by an aggregation function, 

represent the preference profile of a group through a group preference Řk. The consen-

sus matrix establishes a strict linear order relationship for group preference. The conflict 

matrix does not establish a strict linear order relationship for group preference. A consen-

sus or partial conflict matrix is the one that collects the cases of matrices that do not com-

ply with consensus or conflict matrices. 

O(v) represents a conflict metric or function that calculates the degree of conflict–

consensus on a weight vector “v” of dimension (n × 1), resulting from the application of 

an aggregation function to a decision matrix, as follows: 

O∶ ℕn ⟶ {1,2,3}, ℕ is the set of natural numbers 

O(v) = O(
v1
v2…
vn
)={

1 if vi ≠ vj ⍱ i ≠ j (consensus) 

3 if vi = vj⍱ i ≠ j (conflict) 

2 otherwise (partial conflict or consensus) 

 

Preference aggregation (or consensus reaching process CRP) is a decision rule ag-

gregation approach (process, method, or algorithm) that combines or aggregates a set of 

preference profiles of individual agents in one group with only one group preference Řk 

or social choice [44]. Preference aggregation is known in the literature as the aggregation 

function [8,9,20,44,59,73,74] or aggregation operator [20] that maps the set of n x m di-

mensional decision matrices M to the set of individual or group preferences [35,79,80], 

electing one as the group preference Řk or social choice. Therefore, a social choice func-

tion is a preference aggregation that maps an elected collective preference profile into a 

single preference order [6,44]. The aggregation criteria or algorithm may be a utility 

function or a voting process or system, or a particular election theory or methodology 

agreed upon by multiple agents or the group, with certain properties, principles or rules, 

certainty or uncertainty, with an adversary or without an adversary (see Figure 3). 

The process of modeling the preference profiles and the decision matrix shown in 

Figure 3 starts from the alternatives or decision objects. In this example, fruits that the 

agent Andrew will order linearly according to his taste and preference are: banana > 

mango > pear > apple. This will be integrated into a decision matrix in equal conditions 

to those of the other participating agents: Silvia, Peter, and Laura. Additionally, through 

an aggregation function related to a voting system, in particular, the group preference is 

also ordered linearly (mango > banana > apple > pear) according to the result of the ag-

gregation function. In this example, the aggregation function is the sum used in the Bor-

da method. 

We decided to standardize the voting procedure concepts with the help of mathe-

matical objects to systematize the traditional definitions in the literature such as the Bor-

da, pluralism, and Condorcet aggregation functions [44]. This helped us to understand 

the computation algorithms behind each voting system we studied. This section could 

also be seen as part of our results, because we proposed a new aggregation function that 

we called the Greatest Common Decision Maker (GCD). 

4.3. Borda Voting Procedure 

i 6= j then 2 (partial conflict)
else if GCDi = GCDj = 8
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maker has with respect to a variety of feasible objects, alternatives, states, or outcomes 

that could be elected [2,23]. 

Partial consensus or partial conflict or dissent: The opposite of consensus is dis-

sent. Dissent is not synonymous with confrontation or conflict, but the tolerance of the 

opinion of the majority regarding the common good. Partial consensus or partial con-

flict is not an agreement among all the participants [60]. 

It is necessary to determine when a group of decision makers is under a consensus 

or conflict, after applying an aggregation function to their preferences over the alterna-

tives. 

Types of decision matrices are those that, transformed by an aggregation function, 

represent the preference profile of a group through a group preference Řk. The consen-

sus matrix establishes a strict linear order relationship for group preference. The conflict 

matrix does not establish a strict linear order relationship for group preference. A consen-

sus or partial conflict matrix is the one that collects the cases of matrices that do not com-

ply with consensus or conflict matrices. 

O(v) represents a conflict metric or function that calculates the degree of conflict–

consensus on a weight vector “v” of dimension (n × 1), resulting from the application of 

an aggregation function to a decision matrix, as follows: 

O∶ ℕn ⟶ {1,2,3}, ℕ is the set of natural numbers 

O(v) = O(
v1
v2…
vn
)={

1 if vi ≠ vj ⍱ i ≠ j (consensus) 

3 if vi = vj⍱ i ≠ j (conflict) 

2 otherwise (partial conflict or consensus) 

 

Preference aggregation (or consensus reaching process CRP) is a decision rule ag-

gregation approach (process, method, or algorithm) that combines or aggregates a set of 

preference profiles of individual agents in one group with only one group preference Řk 

or social choice [44]. Preference aggregation is known in the literature as the aggregation 

function [8,9,20,44,59,73,74] or aggregation operator [20] that maps the set of n x m di-

mensional decision matrices M to the set of individual or group preferences [35,79,80], 

electing one as the group preference Řk or social choice. Therefore, a social choice func-

tion is a preference aggregation that maps an elected collective preference profile into a 

single preference order [6,44]. The aggregation criteria or algorithm may be a utility 

function or a voting process or system, or a particular election theory or methodology 

agreed upon by multiple agents or the group, with certain properties, principles or rules, 

certainty or uncertainty, with an adversary or without an adversary (see Figure 3). 

The process of modeling the preference profiles and the decision matrix shown in 

Figure 3 starts from the alternatives or decision objects. In this example, fruits that the 

agent Andrew will order linearly according to his taste and preference are: banana > 

mango > pear > apple. This will be integrated into a decision matrix in equal conditions 

to those of the other participating agents: Silvia, Peter, and Laura. Additionally, through 

an aggregation function related to a voting system, in particular, the group preference is 

also ordered linearly (mango > banana > apple > pear) according to the result of the ag-

gregation function. In this example, the aggregation function is the sum used in the Bor-

da method. 

We decided to standardize the voting procedure concepts with the help of mathe-

matical objects to systematize the traditional definitions in the literature such as the Bor-

da, pluralism, and Condorcet aggregation functions [44]. This helped us to understand 

the computation algorithms behind each voting system we studied. This section could 

also be seen as part of our results, because we proposed a new aggregation function that 

we called the Greatest Common Decision Maker (GCD). 

4.3. Borda Voting Procedure 

i 6= j then 2 (partial conflict)
else if GCDi = GCDj = 6
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maker has with respect to a variety of feasible objects, alternatives, states, or outcomes 

that could be elected [2,23]. 

Partial consensus or partial conflict or dissent: The opposite of consensus is dis-

sent. Dissent is not synonymous with confrontation or conflict, but the tolerance of the 

opinion of the majority regarding the common good. Partial consensus or partial con-

flict is not an agreement among all the participants [60]. 

It is necessary to determine when a group of decision makers is under a consensus 

or conflict, after applying an aggregation function to their preferences over the alterna-

tives. 

Types of decision matrices are those that, transformed by an aggregation function, 

represent the preference profile of a group through a group preference Řk. The consen-

sus matrix establishes a strict linear order relationship for group preference. The conflict 

matrix does not establish a strict linear order relationship for group preference. A consen-

sus or partial conflict matrix is the one that collects the cases of matrices that do not com-

ply with consensus or conflict matrices. 

O(v) represents a conflict metric or function that calculates the degree of conflict–

consensus on a weight vector “v” of dimension (n × 1), resulting from the application of 

an aggregation function to a decision matrix, as follows: 

O∶ ℕn ⟶ {1,2,3}, ℕ is the set of natural numbers 

O(v) = O(
v1
v2…
vn
)={

1 if vi ≠ vj ⍱ i ≠ j (consensus) 

3 if vi = vj⍱ i ≠ j (conflict) 

2 otherwise (partial conflict or consensus) 

 

Preference aggregation (or consensus reaching process CRP) is a decision rule ag-

gregation approach (process, method, or algorithm) that combines or aggregates a set of 

preference profiles of individual agents in one group with only one group preference Řk 

or social choice [44]. Preference aggregation is known in the literature as the aggregation 

function [8,9,20,44,59,73,74] or aggregation operator [20] that maps the set of n x m di-

mensional decision matrices M to the set of individual or group preferences [35,79,80], 

electing one as the group preference Řk or social choice. Therefore, a social choice func-

tion is a preference aggregation that maps an elected collective preference profile into a 

single preference order [6,44]. The aggregation criteria or algorithm may be a utility 

function or a voting process or system, or a particular election theory or methodology 

agreed upon by multiple agents or the group, with certain properties, principles or rules, 

certainty or uncertainty, with an adversary or without an adversary (see Figure 3). 

The process of modeling the preference profiles and the decision matrix shown in 

Figure 3 starts from the alternatives or decision objects. In this example, fruits that the 

agent Andrew will order linearly according to his taste and preference are: banana > 

mango > pear > apple. This will be integrated into a decision matrix in equal conditions 

to those of the other participating agents: Silvia, Peter, and Laura. Additionally, through 

an aggregation function related to a voting system, in particular, the group preference is 

also ordered linearly (mango > banana > apple > pear) according to the result of the ag-

gregation function. In this example, the aggregation function is the sum used in the Bor-

da method. 

We decided to standardize the voting procedure concepts with the help of mathe-

matical objects to systematize the traditional definitions in the literature such as the Bor-

da, pluralism, and Condorcet aggregation functions [44]. This helped us to understand 

the computation algorithms behind each voting system we studied. This section could 

also be seen as part of our results, because we proposed a new aggregation function that 

we called the Greatest Common Decision Maker (GCD). 

4.3. Borda Voting Procedure 

i 6= j then 2 (partial conflict)
else if GCDi = GCDj
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maker has with respect to a variety of feasible objects, alternatives, states, or outcomes 

that could be elected [2,23]. 

Partial consensus or partial conflict or dissent: The opposite of consensus is dis-

sent. Dissent is not synonymous with confrontation or conflict, but the tolerance of the 

opinion of the majority regarding the common good. Partial consensus or partial con-

flict is not an agreement among all the participants [60]. 

It is necessary to determine when a group of decision makers is under a consensus 

or conflict, after applying an aggregation function to their preferences over the alterna-

tives. 

Types of decision matrices are those that, transformed by an aggregation function, 

represent the preference profile of a group through a group preference Řk. The consen-

sus matrix establishes a strict linear order relationship for group preference. The conflict 

matrix does not establish a strict linear order relationship for group preference. A consen-

sus or partial conflict matrix is the one that collects the cases of matrices that do not com-

ply with consensus or conflict matrices. 

O(v) represents a conflict metric or function that calculates the degree of conflict–

consensus on a weight vector “v” of dimension (n × 1), resulting from the application of 

an aggregation function to a decision matrix, as follows: 

O∶ ℕn ⟶ {1,2,3}, ℕ is the set of natural numbers 

O(v) = O(
v1
v2…
vn
)={

1 if vi ≠ vj ⍱ i ≠ j (consensus) 

3 if vi = vj⍱ i ≠ j (conflict) 

2 otherwise (partial conflict or consensus) 

 

Preference aggregation (or consensus reaching process CRP) is a decision rule ag-

gregation approach (process, method, or algorithm) that combines or aggregates a set of 

preference profiles of individual agents in one group with only one group preference Řk 

or social choice [44]. Preference aggregation is known in the literature as the aggregation 

function [8,9,20,44,59,73,74] or aggregation operator [20] that maps the set of n x m di-

mensional decision matrices M to the set of individual or group preferences [35,79,80], 

electing one as the group preference Řk or social choice. Therefore, a social choice func-

tion is a preference aggregation that maps an elected collective preference profile into a 

single preference order [6,44]. The aggregation criteria or algorithm may be a utility 

function or a voting process or system, or a particular election theory or methodology 

agreed upon by multiple agents or the group, with certain properties, principles or rules, 

certainty or uncertainty, with an adversary or without an adversary (see Figure 3). 

The process of modeling the preference profiles and the decision matrix shown in 

Figure 3 starts from the alternatives or decision objects. In this example, fruits that the 

agent Andrew will order linearly according to his taste and preference are: banana > 

mango > pear > apple. This will be integrated into a decision matrix in equal conditions 

to those of the other participating agents: Silvia, Peter, and Laura. Additionally, through 

an aggregation function related to a voting system, in particular, the group preference is 

also ordered linearly (mango > banana > apple > pear) according to the result of the ag-

gregation function. In this example, the aggregation function is the sum used in the Bor-

da method. 

We decided to standardize the voting procedure concepts with the help of mathe-

matical objects to systematize the traditional definitions in the literature such as the Bor-

da, pluralism, and Condorcet aggregation functions [44]. This helped us to understand 

the computation algorithms behind each voting system we studied. This section could 

also be seen as part of our results, because we proposed a new aggregation function that 

we called the Greatest Common Decision Maker (GCD). 

4.3. Borda Voting Procedure 

i 6= j then 2 (partial conflict)
else if GCDi 6= GCDj
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maker has with respect to a variety of feasible objects, alternatives, states, or outcomes 

that could be elected [2,23]. 

Partial consensus or partial conflict or dissent: The opposite of consensus is dis-

sent. Dissent is not synonymous with confrontation or conflict, but the tolerance of the 

opinion of the majority regarding the common good. Partial consensus or partial con-

flict is not an agreement among all the participants [60]. 

It is necessary to determine when a group of decision makers is under a consensus 

or conflict, after applying an aggregation function to their preferences over the alterna-

tives. 

Types of decision matrices are those that, transformed by an aggregation function, 

represent the preference profile of a group through a group preference Řk. The consen-

sus matrix establishes a strict linear order relationship for group preference. The conflict 

matrix does not establish a strict linear order relationship for group preference. A consen-

sus or partial conflict matrix is the one that collects the cases of matrices that do not com-

ply with consensus or conflict matrices. 

O(v) represents a conflict metric or function that calculates the degree of conflict–

consensus on a weight vector “v” of dimension (n × 1), resulting from the application of 

an aggregation function to a decision matrix, as follows: 

O∶ ℕn ⟶ {1,2,3}, ℕ is the set of natural numbers 

O(v) = O(
v1
v2…
vn
)={

1 if vi ≠ vj ⍱ i ≠ j (consensus) 

3 if vi = vj⍱ i ≠ j (conflict) 

2 otherwise (partial conflict or consensus) 

 

Preference aggregation (or consensus reaching process CRP) is a decision rule ag-

gregation approach (process, method, or algorithm) that combines or aggregates a set of 

preference profiles of individual agents in one group with only one group preference Řk 

or social choice [44]. Preference aggregation is known in the literature as the aggregation 

function [8,9,20,44,59,73,74] or aggregation operator [20] that maps the set of n x m di-

mensional decision matrices M to the set of individual or group preferences [35,79,80], 

electing one as the group preference Řk or social choice. Therefore, a social choice func-

tion is a preference aggregation that maps an elected collective preference profile into a 

single preference order [6,44]. The aggregation criteria or algorithm may be a utility 

function or a voting process or system, or a particular election theory or methodology 

agreed upon by multiple agents or the group, with certain properties, principles or rules, 

certainty or uncertainty, with an adversary or without an adversary (see Figure 3). 

The process of modeling the preference profiles and the decision matrix shown in 

Figure 3 starts from the alternatives or decision objects. In this example, fruits that the 

agent Andrew will order linearly according to his taste and preference are: banana > 

mango > pear > apple. This will be integrated into a decision matrix in equal conditions 

to those of the other participating agents: Silvia, Peter, and Laura. Additionally, through 

an aggregation function related to a voting system, in particular, the group preference is 

also ordered linearly (mango > banana > apple > pear) according to the result of the ag-

gregation function. In this example, the aggregation function is the sum used in the Bor-

da method. 

We decided to standardize the voting procedure concepts with the help of mathe-

matical objects to systematize the traditional definitions in the literature such as the Bor-

da, pluralism, and Condorcet aggregation functions [44]. This helped us to understand 

the computation algorithms behind each voting system we studied. This section could 

also be seen as part of our results, because we proposed a new aggregation function that 

we called the Greatest Common Decision Maker (GCD). 

4.3. Borda Voting Procedure 

i 6= j then 1 (consensus)
else if mode(max(GCDi) ≤ 3
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maker has with respect to a variety of feasible objects, alternatives, states, or outcomes 

that could be elected [2,23]. 

Partial consensus or partial conflict or dissent: The opposite of consensus is dis-

sent. Dissent is not synonymous with confrontation or conflict, but the tolerance of the 

opinion of the majority regarding the common good. Partial consensus or partial con-

flict is not an agreement among all the participants [60]. 

It is necessary to determine when a group of decision makers is under a consensus 

or conflict, after applying an aggregation function to their preferences over the alterna-

tives. 

Types of decision matrices are those that, transformed by an aggregation function, 

represent the preference profile of a group through a group preference Řk. The consen-

sus matrix establishes a strict linear order relationship for group preference. The conflict 

matrix does not establish a strict linear order relationship for group preference. A consen-

sus or partial conflict matrix is the one that collects the cases of matrices that do not com-

ply with consensus or conflict matrices. 

O(v) represents a conflict metric or function that calculates the degree of conflict–

consensus on a weight vector “v” of dimension (n × 1), resulting from the application of 

an aggregation function to a decision matrix, as follows: 

O∶ ℕn ⟶ {1,2,3}, ℕ is the set of natural numbers 

O(v) = O(
v1
v2…
vn
)={

1 if vi ≠ vj ⍱ i ≠ j (consensus) 

3 if vi = vj⍱ i ≠ j (conflict) 

2 otherwise (partial conflict or consensus) 

 

Preference aggregation (or consensus reaching process CRP) is a decision rule ag-

gregation approach (process, method, or algorithm) that combines or aggregates a set of 

preference profiles of individual agents in one group with only one group preference Řk 

or social choice [44]. Preference aggregation is known in the literature as the aggregation 

function [8,9,20,44,59,73,74] or aggregation operator [20] that maps the set of n x m di-

mensional decision matrices M to the set of individual or group preferences [35,79,80], 

electing one as the group preference Řk or social choice. Therefore, a social choice func-

tion is a preference aggregation that maps an elected collective preference profile into a 

single preference order [6,44]. The aggregation criteria or algorithm may be a utility 

function or a voting process or system, or a particular election theory or methodology 

agreed upon by multiple agents or the group, with certain properties, principles or rules, 

certainty or uncertainty, with an adversary or without an adversary (see Figure 3). 

The process of modeling the preference profiles and the decision matrix shown in 

Figure 3 starts from the alternatives or decision objects. In this example, fruits that the 

agent Andrew will order linearly according to his taste and preference are: banana > 

mango > pear > apple. This will be integrated into a decision matrix in equal conditions 

to those of the other participating agents: Silvia, Peter, and Laura. Additionally, through 

an aggregation function related to a voting system, in particular, the group preference is 

also ordered linearly (mango > banana > apple > pear) according to the result of the ag-

gregation function. In this example, the aggregation function is the sum used in the Bor-

da method. 

We decided to standardize the voting procedure concepts with the help of mathe-

matical objects to systematize the traditional definitions in the literature such as the Bor-

da, pluralism, and Condorcet aggregation functions [44]. This helped us to understand 

the computation algorithms behind each voting system we studied. This section could 

also be seen as part of our results, because we proposed a new aggregation function that 

we called the Greatest Common Decision Maker (GCD). 

4.3. Borda Voting Procedure 

i then 1 (consensus)
otherwise then 2 (partial conflict or consensus)

The Borda, plurality, Hare, and Coombs methods are described as “democratic” voting
methods, while dictatorship social welfare is just a ranking of the candidates submitted
by the dictator [84]. Because Hare and Coombs majority voting procedures break ties
randomly [84], we decided to only compare Borda, pluralism, Condorcet, and the Greatest
Common Decision Maker rankings.

4.9. Examples of Voting Rule Dynamics

These are examples of the voting procedures that show the dynamics of the voting
rules and help in understanding the concepts.

To illustrate some of the concepts, we use a 3 × 3 order matrix, which means analyzing
individual preference accommodations in decision matrices (with a total of 216). We identify
as alternatives the set X of x1, x2, and x3. As agents or decision makers, the set D comprises
d1, d2, and d3. Additionally, the values of the preferences are the set W, comprising w1,
w2, and w3, and their respective weights, 1, 2, and 3 (see Figure 4).
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In this 3× 3 structural dimension, there are six different types of individual preferences
Rj that can be constructed, which can in turn be organized in decision matrices M called
consensus when the Borda voting system sums per row are different, partial consensus,
or partial conflict when there are some rows with equal Borda sums, and conflict when
the Borda sum of the three rows of the matrix are equal, which leads us to not being able to
have a representative group preference Řk.

Notice, we do not allow repeated values in the column preferences or individual pref-
erences of the decision makers since one of our assumptions is that preferences establish
strict linear orderings among the decision alternatives, as mentioned above.
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Conflict matrices are magic squares or Latin squares used in the design of statistical
experiments or Sudokus, in which the numbers accommodated in them must not be
repeated by columns or rows; they must add the same amount identified as the magic
number, which in this dimension corresponds to 6 in a total of 12 conflict profiles.

There is another type of matrix, the unanimity matrix, that shows the preferences of
the agents are the same in a total of 27 matrices; in addition, this matrix is also a consensus.

We identify aggregation functions or voting systems such as Borda, pluralism, ma-
jority, Greatest Common Decision Maker, Copeland, single-member majority vote, Con-
dorcet, etc.

The ballot dynamic entails starting by defining a voting matrix and crossing the
weights of the preferences against the agents to indicate what position each of the agents
gives to the alternatives with respect to the values of their preference (see Figure 5).
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From there, we pass to an equivalent decision matrix crossing the alternatives
against the agents to indicate the weight of the preference that each of the agents assigned
to the alternatives of choice.

Next, we apply the aggregation function of the voting system to the decision matrix
Mk, in this case, Borda, ordering the results of the sums by weight {8, 6, 4} obtaining Řk
into {3, 2, 1}, which represents the preference order assigned to the candidates, and finally
we assign the consensus metric O as 1, because the group preference Řk corresponds to a
group consensus.

In Figure 6, we can observe the construction of matrices of order 5 under several aggre-
gation functions; in practice, this means we must analyze a total of 24,883,200,000 matrices.
We have already explained the Borda aggregation function.

Pluralism represents the aggregation of preferences when the number of agents is
not monitored and the winning alternative achieves 51% or more. In Figure 6, we ob-
serve a simple pluralism aggregation applied to the rSBk weight submatrix where “r =
5” corresponds to the maximum weight preference of the decision matrix Mk and Řk =

spk
15

spk
25

spk
35

spk
45

spk
55

 =


0
5
5

15
0

 is the column (vector) obtained by multiplication of matrices 5SBk I(5 × 1)

=


0
0

5
0
0

0
0

0
5
0

0
5

0
0
0

0
0

0
5
0

0
0

0
5
0




1
1
1
1
1

, where Plu represents the preference order assigned to the

candidates. Furthermore, in Figure 7, we need to obtain the rSBk weight submatrices for all
“r = 1, . . . , 5” weight preference values of the decision matrix Mk to build the SPk stronger
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alternative profile matrix by columns from the vectors


spk

1r
spk

2r
. . .

spk
nr

 after the simple pluralism

aggregation is applied to each “r” in the following way:
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To obtain the pluralism ranking aggregation as shown in Figure 6, Řk is the column
(vector) of the maximum values of each row (or alternative) in the SPk matrix, where Plura
represents the preference order assigned to the candidates.

Condorcet aggregation represents, by row, the count of the winning alternatives when
each one is compared against all other preferences of the agents. To be specific, if we take
the alternative A row and compare if it is greater than B in the voting matrix for all the
agent columns, we can observe that it is in the preferences of agents D2 and D4, where
the position of A is greater than B. Or, if we take the row of alternative D and compare it
against alternative A, we observe that five agents prefer alternative D to alternative A.

The mix matrix is an intermediate step to achieve the GCD where the breakdown by
agents of the Condorcet matrix is found by columns. Let us observe how it identifies the
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two cases in which A > B; these are D2 and D4, who have the same opinion. The Mi column
summarizes what is represented in the Condorcet aggregation example by rows.

We created the “Greatest Common Decision Maker” preference aggregation, GCD,
and it consists of finding the agent whose preference behavior pattern intersects the most
with the other decision makers based on the mix matrix descriptions.

The GCD matrix is similar to the Condorcet matrix, but instead of applying it to
the alternatives, the comparison is made among the decision makers. If we compare the
columns of agents D1 and D2 in the mix matrix, we observe that the first five zeros and
the final one are the same in both columns, that is, in a coincidence count of 6. Then, we
can discover agent D5 as the greatest decision maker, i.e., the one that accumulates 30
counts more than all the other decision makers. This means that D5 is the GCD because it
is the one that has the most coincidences with all the otheOKr decision makers; hence, the
individual preference of D5 becomes the representative of the group preference ranking.

To obtain the degree of conflict–consensus for the GCD function, the Condorcet deci-

sion maker’s matrix is M5
cod =


0
0
1
0
3

0
0
0
3
1

1
0

0
2
2

0
3

2
0
2

3
1

2
2
0

 and the Condorcet decision maker’s

aggregation function is CoD(M5
cod) =


4
4
5
7
8

, but because GCD(M5
mcdco) =


29
25
20
28
30

 has

GCDi 6= GCDj
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agreed upon by multiple agents or the group, with certain properties, principles or rules, 

certainty or uncertainty, with an adversary or without an adversary (see Figure 3). 

The process of modeling the preference profiles and the decision matrix shown in 

Figure 3 starts from the alternatives or decision objects. In this example, fruits that the 

agent Andrew will order linearly according to his taste and preference are: banana > 

mango > pear > apple. This will be integrated into a decision matrix in equal conditions 

to those of the other participating agents: Silvia, Peter, and Laura. Additionally, through 

an aggregation function related to a voting system, in particular, the group preference is 

also ordered linearly (mango > banana > apple > pear) according to the result of the ag-

gregation function. In this example, the aggregation function is the sum used in the Bor-

da method. 

We decided to standardize the voting procedure concepts with the help of mathe-

matical objects to systematize the traditional definitions in the literature such as the Bor-

da, pluralism, and Condorcet aggregation functions [44]. This helped us to understand 

the computation algorithms behind each voting system we studied. This section could 

also be seen as part of our results, because we proposed a new aggregation function that 

we called the Greatest Common Decision Maker (GCD). 

4.3. Borda Voting Procedure 

I 6= j with i, j = 1, 2, 3, 4, 5, the degree of the conflict–consensus metric is
O’5 × 5 = 1, i.e., we have a consensus.

If we compare the five aggregation functions in the table, there is one tie between
C and D, with five coincidences; E has four coincidences and A has three coincidences.
Meanwhile, B has two double coincidences between “B-Co” and “Plura-GCD”, becoming
the last alternative most preferred without consensus.

5. Frameworks, Tools, and Methods

We divided our methodology into two phases: one static and the other dynamic. The
static approach aggregates the preferences of the individuals or agents involved in an
innovative way: invariant to the structure of the agent and the network topology [13,54,92].
We found how the magic number and the Borda aggregation function are related to conflict
matrices. Additionally, how different arrangements of graphs formed fractals allowed us
to calculate the Borda frequency function and tables to understand larger decision matrices.
The voting systems’ properties were explained in the previous section.

Additionally, the dynamic allows analyzing and creating strategic agendas that facili-
tate a satisfactory consensus among the parties when they are in conflict, with variation
in the structure of the agent and the topology of the network. We identified how visual
conflict maps (or heatmaps [93]) are useful to understand the group decision making
problem, the consensus reaching process, and the conflict–cooperation dynamic process
that satisfies individual goals, under mutual agreement but not necessarily unanimity.
The heatmap is a mosaic of colors that represents the hierarchical structure of data by
rows and columns of a matrix, and has been used by statisticians since the end of the
19th century [94]. The methodology is based on voting processes combined with spaces
for talking among decision makers to understand each other and move preferences for a
consensus in each cycle.

6. Results

The size of our research problem in the static phase, namely, in the case of 4 × 4 order
matrices, makes a total number of 331,776 matrices to review, within which there are
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576 Latin squares and 1944 semi-magic squares, from a total of 2520 conflict matrices,
166,752 conflict or partial consensus matrices, and 162,504 consensus matrices (see Figure 8).
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Figure 8. Summary of Borda voting procedure matrices size with n = 2, 3, 4, 5.

This allows us to conjecture, that this problem is one of computational complexity of
the NP type [78] if we observe the magnitude in which the number of matrices grows as the
matrix order changes. These numbers were simulated under the Borda voting procedure
with the help of an Excel spreadsheet.

The Borda aggregation procedure sums total per row values, and can vary from “n”
to “n2”, i.e., there are “n(n − 1) + 1” different values. In the case of 3 × 3 order matrices,
there are 8 distinct categories of matrices plus their row combinations, making a total of
216 different Borda matrices whose sums are in the set {3, 4, 5, 6, 7, 8, 9} (see Figure 9c).
Additionally, a unique category of matrices “with conflict” exists whose sums are equal to
6, the magic number (see Figure 9b). Alongside Figure 9b, we can observe the pattern of
the frequency graph of the totals of rows sums. In this case, if we take the marked category,
Figure 9a, it represents a decision matrix with 2 row sum totals equal to 5 and 1 row sum
total equal to 8, in other words, a partial conflict decision matrix.
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descriptions, (b) Borda frequencies and (c) Table of Borda frequencies.

The magic number is the base to determine what will be the equal value for the
row sum totals in the conflict matrices. Then, we can define a property of n × n conflict
matrices for the Borda aggregation method (our first general result) as follows: “a decision
matrix of order n × n is a conflict matrix or magic square, if and only if, its row sum totals are
equal to”:

n(n + 1)
2

In Figure 10, we find a table for the magic numbers of the Borda decision matrices
from dimensions 2 to 8 and their related row sum total sets.

We calculated Borda frequency tables for the row sum totals of the matrix dimensions,
aiming to develop the Borda distribution function for order n × n (see Appendix C).

We carried out other types of accommodations for the decision matrices’ group pref-
erences. In Figure 11, we can observe accommodation of the total 27 different possible
mathematical combinations of rows of alternatives in the case of the 3 × 3 matrix order;
therefore, the cells represent the total 729 (272) array cases. The empty cells represent
the matrices whose Rj individual preferences have at least for one decision maker and a
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repeated preference weight value per column. The filled cells represent the matrices whose
Rj individual preferences do not have repeated preference weight values per column.
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Figure 11. Accommodation of the combinations of rows of 3 × 3 matrices.

In Figure 11, for example, the decision matrix

2
3
1

2
1
3

2
3
1

 is formed with the combination

of row 14 values “222”, row 21 values “313”, and row 7 values “131”, corresponding to the
last row of the decision matrix, but also to the cell position, color and conflict–consensus
value in the color maps (or heatmaps) of Figures 12–14.

Figure 12 is divided into two quadrants. Each quadrant is built accordingly, as
indicated in Figure 11. In the left quadrant, we can observe the 216 preference profile matrix
cases of the 3 × 3 matrix order of Borda, where the decision maker preferences are not
repeated per column (remember they are linear orders). This also applies to the simple
pluralism ranking in the right quadrant.

The colored cell points represent the O(v) conflict metric value. The blue color with a
value equal to 1 represents a matrix where the group preference is a consensus. The yellow
color with a value equal to 2 represents a matrix where the group preference is a partial
consensus or partial conflict. Additionally, the red color with a value equal to 3 represents
a matrix where the group preference is a conflict.
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Figure 14. Comparison between the color maps (or heatmaps) for the Greatest Common Decision
Maker and Condorcet methods for n = 3.

In the quadrants for Borda and simple pluralism in Figure 12, it was observed that
the geometric arrangements form helices or snowflakes where the conflicts in red form
an ellipse and represent a reduced frequency, in addition to the yellow and blue ones.
Additionally, this is also noted in the fractal patterns.
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It is also appreciated that even though the cases of partial conflicts are reduced in the
simple pluralism method, pluralism produces more conflicts and fewer consensuses than
Borda. Additionally, some asymmetries are observed between both procedures inside the
quadrants.

Now, in Figure 13, we compare the Borda and pluralism rankings and we observe
that the conflicts are the same; meanwhile, the pluralism ranking produces more partial
conflicts and fewer consensuses than Borda.

We conducted the same comparison for the Greatest Common Decision Maker and
Condorcet, which is illustrated in Figure 14. Notice that the GCD does not generate a
partial consensus, and only total conflicts are respected; this confirms our conjecture that
conflicts are structural, and not voting method-dependent for the matrices in our research.
That is, conflicts depend only on the matrix order.

After these comparisons of voting methods, we conjecture that conflicts are structurally
independent of the methods, and partial conflicts such as consensuses are not, and depend
on the method used.

The Borda case for the 4 × 4 matrix order is shown in Figure 15. Again, a fractal
behavior of the 331,776 matrices is observed. We augmented the behavior with a magnifying
glass to better understand it (see Figure 16).
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Figure 15. Color map (or heatmap) for the Borda method with n = 4.

The accommodation in Figure 15 is different to Figure 11; we combined 256 (242)
columns and 256 (242) rows to represent the 331,776 matrices or Řk group preferences
(details are in Figure 17). Here, the total 24 different permutations of columns represent the
decision maker preferences in the case of the 4 × 4 matrix order; therefore, if we combine
them in a matrix of 244 cells, they represent the total 331,776 matrices cases whose Rj
individual preferences do not have repeated preference weight values per column.
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Figure 17. Accommodation of the combinations of columns of 4 × 4 matrices.

If we adopt the accommodation of Figure 17 for the case of the 3 × 3 matrices, we can
combine the 6 possible individual decision maker preferences as columns and the 36 (62)
rows to represent the 216 = 36(6) matrix cases or Řk group preferences. Additionally, all
methods are compared in Figure 18.

In Figure 19, we can observe the comparison of all voting methods for the 4 × 4 matrices.
The fractal behaviors are, again, remarkable.

In Figure 20, we can observe the augmented behavior details of the Greatest Common
Decision Maker with a magnifying glass.

In Figure 21, we can observe a table with all the number comparisons for the 3 × 3
and 4 × 4 matrices and all the voting methods we are reviewing. Associated with the
table in Figure 22, the figure shows increases and decreases among the distributions of
the voting methods. Notice, that pluralism methods increase conflicts and the GCDM
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method decreases partial consensus and conflicts. Borda and Condorcet behave the same
way, at least for 3 × 3 and 4 × 4 matrices cases. In contrast, simple pluralism eliminates all
consensuses (case 4 × 4) and GCDM eliminates all partial conflicts (case 3 × 3).
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In Figures 23 and 24, we can observe how the GCDM ranking method transforms the
conflicts, partial conflicts, and consensus generated by the Borda method. It is noteworthy
that the GCDM helps to mark off important preference profile patterns such as unanimities,
Latin squares, and ties between pairs.
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Figure 23. GCDM transformation of Borda conflicts and consensus for 4 × 4 matrices.

Mathematics 2022, 10, 3815 35 of 50 
 

 

 

 

Figure 24. GCDM transformation of Borda conflicts and consensus for 3 × 3 matrices. 

Consensus Reaching Process in the Dynamic Phase, a Cost Decision Visualization 

To start the dynamic phase, inspired by [2,20,74,75,95], we decided to follow the 

consensus reaching process of Figure 25, where temporary group preferences are gener-

ated from the agent’s decision matrices; each decision maker reviews their individual 

preference in a dialogue event to evaluate if it is acceptable or not to reach their individ-

ual goals under this context, and this becomes the moment in which each agent can 

modify their preferences, to build another decision matrix to evaluate subsequent group 

preferences in a cycle, until the definitive group preference is found. 

  

Figure 24. GCDM transformation of Borda conflicts and consensus for 3 × 3 matrices.



Mathematics 2022, 10, 3815 27 of 39

Consensus Reaching Process in the Dynamic Phase, a Cost Decision Visualization

To start the dynamic phase, inspired by [2,20,74,75,95], we decided to follow the
consensus reaching process of Figure 25, where temporary group preferences are generated
from the agent’s decision matrices; each decision maker reviews their individual preference
in a dialogue event to evaluate if it is acceptable or not to reach their individual goals
under this context, and this becomes the moment in which each agent can modify their
preferences, to build another decision matrix to evaluate subsequent group preferences in a
cycle, until the definitive group preference is found.
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Figure 25. Consensus reaching process.

After reviewing the literature, we aimed to create a visual representation to allow
us to comparatively evaluate the criteria of consensus–conflict against costs decisions
using visualization maps; we found different diagrams such as those of Yee [96], Zlotkin–
Rosenschein [54], Saari and Xu–Hipel–Kilgour–Fang [2].

Our proposal of a visual representation is depicted in Figure 26. Therefore, to sup-
port the evaluation of the preference aggregation methods, we carried out a new visual
arrangement of the decision matrices that we will call color map (or heatmap), as shown in
Figure 26c, with the case of the 3 × 3 matrix order as an example. This shows the 216 con-
sensus metric values: the 168 values in blue represent consensus, the 36 values in yellow
represent partial consensus, and the 12 values in red represent conflicts. Note that the
conflict represented in the upper-right part of the box, on the fourth line and second column
from right to left, is what we will call a pivot point (a4, a1, a5) because it plays the role of a
reference against to which to compare its consensus metric value with the rest of the slack
point consensus metric values; we will use it later in the following explanations. In the
example, the pivot value corresponds to the O(v) consensus metric value, and equals 3 in

red for the decision matrix or preference profile

2 1 3
3 2 1
1 3 2

 =
[
a4 a1 a5

]
= (a4, a1, a5).

The whole map is constructed following the same procedure.
First, to evaluate the effort involved in changing the decision or preference of a decision

agent, it is necessary to define the effort change matrix of the preferences [56], as shown
in Figure 26a. Remember that in the case of the 3 × 3 decision matrix order, we have six
different types of preferences, here represented by “a1” to “a6”.

Suppose that a certain company has a striking problem, and we identify that the choice
alternatives vary from stopping a strike to improving salaries, or continuing production,
and the decision makers involved are the director, the labor union, and the owner. De-
pending on the context and particular situation of the company, we can build the change
effort matrix, located in the left-middle part of Figure 26b. Additionally, to understand
how this matrix works, read the next explanation. In Figure 26d, for the director to reach a
favorable consensus for all employees, the labor union and the owner will have to value
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the effort, which could mean changing their initial preference “a1” to preference “a5”. In
the preference position “a1”, the director or agent “d1”, gives greater importance with a
value of 3 to continue with production, a value of 2 to review the salary of the employees,
and with a value of 1, with less importance, to attending the demands of the strike. In
preference position “a5”, a value of 3 is given to strike requests, a value of 2 to continuing
production, and a value of 1 to reviewing salary. The change in position or individual
preferences could mean an effort of 17; while in the opposite direction, changing from
position “a5” to “a1”, could mean no effort, because it is easy for the agent to stop attending
strike requests and return to production. Notice that if we want to reduce the research
scope, instead of calibrating a preference change effort matrix, we could adopt Kendall Tau
distance [97] and prepare a Kendall Tau distance change matrix of preferences, or other
kinds of metrics [98], to evaluate the weight change from one position to the others among
the six preferences “a1” to “a6”. In Figure 27, we calculate the Kendall Tau-normalized
distance change matrix of the preferences, as a reference.
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Figure 26. Cost decision conflict heatmap to achieve consensus. (a) Effort matrix change in prefer-
ences, (b) Example of a change effort matrix, (c) Example of a color map (or heatmap) associated to a
decision matrix and (d) Example built over change effort matrix of (b).

Once the Kendall Tau-normalized distance change matrix for the preferences has been
built, we are able to develop the following visual conflict maps, as shown in Figure 28.
Additionally, for explanations, will use the third map of the right part of Figure 28c. The
idea of a visual conflict map consists of the arrangement of a map explained in Figure 26c,
but instead of coloring and numbering consensus metric values according to the O(v)
consensus metric, first, the pivot point value is assigned to zero, because there is no effort
or distance to change from pivot point (a4, a1, a5) to pivot point (a4, a1, a5), and second, there
exists an effort or distance to change from pivot point (a4, a1, a5) to slack point (a1, a1, a1) with a
value of “1.32”. This is calculated by adding the effort or distance change needed to move
from “a4” to “a1”, “a1” to “a1”, and “a5” to “a1”, respectively; in this example, consulting
the Kendall Tau-normalized distance change matrix of the preferences, the distance change
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is equal to “0.66 + 0 + 0.66 = 1.32”. Moreover, the point values of the visual conflict map
are colored with the original map point colors corresponding to the consensus metric.
Therefore, the pivot point (a4, a1, a5) value is 0 and red in color. Additionally, the slack
point (a1, a1, a1) value is 1.32 and blue in color.
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Figure 28. Conflict heatmap with the Kendall Tau method. (a) Conflict map for the pivot point (a2, a1,
a5), (b) Conflict map for the slack point (a6, a6, a4) and (c) Conflict map for the pivot point (a4, a1, a5).

In Figure 28a, we also find the visual conflict maps for the pivot point (a2, a1, a5),
(Figure 28a, second row, and fifth column) and the pivot point (a1, a1, a4) (Figure 28b, first
row and fourth column). Note that, on the right map, the points of unanimities are also
marked by squares. The 3× 3 marked squares show the nearest neighborhoods of the pivot
points in the visual conflict maps; slack point (a6, a6, a4) (Figure 28b, last row and fourth
column) belongs to the nearest neighborhood of pivot point (a1, a1, a4) (Figure 28b, first
row and fourth column) as a reference only.

From previous explanations, we can conclude that if we want to change from conflict
pivot point (a4, a1, a5) (Figure 28c) to consensus, unanimity, partial conflict or partial
consensus slack points, there are a plurality of slack points with different distances and
different consensus metric values. This, in turn, makes us also calculate the costs that will
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mean staying in a conflict or consensus map point, to be able to evaluate visually and
mathematically speaking the consensus point we want to reach to achieve our individual
goals in a group decision-making problem or multi-agent election.

Next, to complete our research results, we include an explanation for the costs due to
loss or utility [56,99,100] that occur from staying at each pivot or slack map point position
(see Figure 29). Once the loss or profit costs have been defined for each of the positions
“a1” to “a6”, as per the cost table shown in Figure 29c, we can calculate the cost of staying
at consensus point (a1, a1, a1) with a loss value of “1 + 1 + 1 = 3” or a profit value of
“10 + 10 + 10 = 30”. The point of conflict (a4, a1, a5), Figure 28c, mentioned above would
have a loss value of “0 + 1 + 5 = 6” or a profit value of “20 + 10 + 70 = 37”, and so on for all
the map points; see Figure 29b for the cost map. In Figure 29e, the example also shows the
loss and profit cost calculation value for the consensus slack point (a2, a1, a6).
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Figure 29. Conflict map vs. utility loss list. (a) Distance change from slack point (a4, a1, a6) to its
right, (b) Loss change from slack point (a4, a1, a6) to its right, (c) Cost of staying at consensus point
(a1, a1, a1), (d) The point couple that implies the least distance and the least loss and (e) The loss and
profit cost calculation value for the consensus slack point (a2, a1, a6).

The dynamic process to reach the definitive consensus point is more convenient for the
decision makers’ group, and would consist of obtaining all the paired map point couples,
one of the distance maps (in the left part of the figure) and the other of the cost maps (in the
middle part of the figure), and finding the point couple that implies the least distance and
the least loss [92,93], as can be seen from the whole list of the 216 ordered pair points from
smallest to largest (Figure 29d). In the example list, conflict pair values are marked in red,
the partial consensus pair values are in yellow, and the consensus pair values are in blue.
The first pair in the list is the pair value for the pivot point. Hence, the most convenient
change from the conflict pivot point to a consensus slack point with the minimum distance
and loss (inspired by [61]) is the slack point (a4, a1, a6) to its right, where its distance value
is “0.33” (see Figure 29a) and its loss value is “11” (see Figure 29b). We must clarify that
even though we found slack point (a4, a1, a6) as the best slack point to move the decision
makers’ positions, it might not be the best for the agents’ individual goals. A dynamic
voting strategy agenda will need to be built for each agent until they reach a consensus
map point to satisfy their goals under a mutual agreement, but not necessarily unanimity.
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7. Discussion

A comparison among the five aggregation preference processes showed that pluralism
is a complex method for defining a group preference, considering that as a classical rule it
only accepts the first alternative voted to be ranked, and the others are not the main targets
to be ranked. However, even though it was difficult to modify, we built and completed the
rule to obtain a linear order over the alternatives. This voting method generates a lot of
conflict compared with the others.

The Borda aggregation preference, on the other hand, can be organized and character-
ized systematically. The property found is an important result that will help to understand
how conflict appears in the aggregation preference processes and understand behavior
during the simulations for the consensus negotiation [54] reaching process among the
multi-agent networks. This voting system does not generate as many partial conflicts as
pluralism, and its behavior is similar to that of the Condorcet voting [101]; both can be
managed easily.

The Greatest Common Decision Maker aggregation preference generates the minimum
structural number of conflicts and no partial conflicts of partial consensus. This aggregation
preference is shown to be too versatile to achieve consensus in the static phase because it
finds the decision maker whose individual preference has the greatest coincidence with
the others. The decision maker’s individual preference becomes the representative group
preference.

The way the decision maker assigns its preferences and how they are aggregated is
the base for understanding conflict in the group decision making process.

Our methodology intends to use different points of view, abstractions, theories, and
practice granularities to dynamically simulate the world or particular regions and in-
dividual agents’ environments to find a consensus balance among all the actors in the
decision-making elections, problems, and scenarios.

The incorporation of social concepts into our research makes the results obtained stronger.
In the end, one of the advantages of this methodology is that it is simpler than the

others and obtains the same or better results. The Greatest Common Decision Maker
method is an aggregation process containing the simplest and smallest set of assumptions
that have sufficient generality to cover the entire class of accountable decision-making
phenomena. We are aware that a consensus cannot be reached without a conflict to
overwhelm support by cooperation.

We faced several challenges during the development of the present research:

• The need to organize a large number of decision matrices or preference profiles. In
real-life environments, it is not usual to face voting selections among large amounts of
objects, but few of them.

• The amount of time needed to organize all possible combinations of objects to be
elected from the alternative set. Additionally, performing them naturally to evaluate
the strategies for each agent and map conflict was also difficult.

• In the static phase, the aggregation preference procedures played a significant role,
while in the dynamic phase the conflict maps did.

• It is necessary to know all the types of conflict matrices to understand what role they
play in the process of reaching consensus negotiation [54].

• Our research allowed us to identify that the decision problems under our assumptions
have fractal behavior patterns and computational complexity of the NP type [78].

We found that the following principles apply to our research:

• Higher frequency is better than higher weight.
• Majority is not consensus. Majority is democracy.
• Ordering means decision-making agent election order.
• Weight does not mean a majority.
• Assigning a weight is relative to each person and it is an individual opinion.
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• A decision matrix, preference matrix, or conflict matrix is a semi-magic square, ordi-
nary magic square, or a Latin square.

There are many ways to decide. In certain circumstances, having one person decide
for a whole group speeds up the organizing process, if that is the most important variable.
Is this procedure fair, does it achieve good decisions? Therefore, it is important to involve
everyone who is affected by the group decision process so that it will reflect the will of the
entire group and not just that of the leaders because the concerns that arise are resolved by
the entire group.

Reaching a consensus on a proposal does not mean that everyone agrees.

Future Work

We will measure the computational complexity of algorithms and their comparison.
We need to determine what results allow us to explain the ordering and behavior of an
agent strategy agenda that generates an agreement or consensus. Voting synchronically or
asynchronically will also be investigated.

We will explore not only square matrix profiles, but also rectangular profiles in which
there are more agents than alternatives. We will design hypercubic matrices to analyze
packages of alternatives against individual decision makers or packages of decision mak-
ers against individual alternatives. Moreover, we will identify the hidden paired con-
flicts [102,103] that appear in the underlying matrices to determine the conflict degree
metric in the proposed Greatest Common Decision Maker voting method.

We will improve the consensus reaching process for the decision-making aggregation
problem of network groups under trust networks [104–110], apply rough sets [111] and
concurrency [75], and identify group preference biases, opinion preference changes, and
chaos. Additionally, we will consider any consistency and consensus in any linguistic,
fuzzy, or social network large-group decision making process during the CRP.

We will use the statistics and the Borda probability distribution function found to carry
out the simulations of case studies [112–115]. Additionally, we will explore the relationship
that exists between raw frequencies and conflict–consensus matrix frequencies, as well as
what kind of fractals could be formed.

We will apply the results and methodology to real case studies such as aquifer basins
and medical autoimmune diseases.

8. Conclusions

The proposed Greatest Common Decision Maker aggregation preference ranking
procedure makes it easy to automate the consensus reaching process more efficiently.
Furthermore, conflict maps, effort or distance change matrices, and cost maps developed
over different visual arrangements have sufficient generality to cover the entire class of
accountable group decision-making phenomena or multi-agent elections.
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Appendix A. Abbreviations

CRP Consensus reaching process
GDM Group decision making
(n, n − 1,..., 1) Ordinal ranking
X Set of alternatives
xi Alternative “i”
i Represents the number of the alternative
D Panel of experts or decision makers
di Decision maker or agent “i”
m Represents the number of the decision maker
W Set of preference weights
Wi Weight assigned to alternative “i”
x > y “x” is preferred to “y”
R A linear order
Rj or Pj An individual preference or linear order associated with decision maker dj

Řk
A preference or linear order which is associated as a group preference of the
“m” decision makers in the set D

M An array that represent the preference data collected from “m” agents
|L(X)| Cardinality of set L(X)
#A Cardinality of a set A
Rj

T Transposed matrix of Rj

Mk
Decision matrix (or group choice profile) which represents the individual
preference arrangement of a set of agents D

rSBk Weight submatrix profile
SPk Stronger alternative (candidate) profile matrix
Mk

co Condorcet matrix
Mk

cod Condorcet decision maker’s matrix
Mk

mcd Mix matrix
Mk

mcdco Condorcet mix matrix
O(v) Conflict metric or function that calculates the degree of conflict–consensus

O’(v)
Conflict metric or function that calculates the degree of conflict-consensus
for the Greatest Common Decision Maker

v Vector of weights or Řk
B Borda aggregation function
Plu Pluralism aggregation function
Plura Pluralism ranking aggregation function
SUBr Weight submatrix profile function
SAPA Stronger alternative profile function
GCD Greatest Common Decision Maker aggregation function
Co Condorcet aggregation function
CoD Condorcet decision maker’s aggregation function

Appendix B. Demonstration that n!m Is the Total Cardinality Number of the Set of
Decision Matrices

In other words, n!m is the total number of different matrices of dimension “n ×m”,
where “m” is the number of agents and “n” is the number of alternatives.

1. Definition Řk = {w1k, w2k, . . . , wnk} represents one of the aggregation group pref-
erences of different matrices of dimension “n × m”, where “m” is the number of
decision makers and “n” is the number of alternatives. In other words, one group
preference Řk is associated one-to-one with a decision matrix.

2. From the definition, the set X has “n” alternatives; therefore, n! different orders or
permutations of this set exist based on mathematical combinatory. Each permutation
is associated one-to-one with a Pj individual preference.

3. By definition, if we build a decision matrix M, it has to be a combination of “m”
decision makers in this way M = [P1, P2, . . . , Pm].
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4. Then, the total permutations allowing repetitions necessary to build the complete set
of decision matrices is the multiplication of the “m” decision maker total preferences
where each decision maker has, in turn, n! alternatives to select.

5. Therefore, the total cardinality number of the set of decision matrices is n!m based on
mathematical combinatory QED.

Appendix C. Borda Frequency Tables and Borda Distribution Function

We calculated Borda frequency tables for the row sum totals of matrix dimensions 2
to 8 under different procedures; one of them (described in Appendix D) is a formula made
with the worlds of math & physics site and blog [116]. See tables for dimensions 4 and 5 in
Figure A1.
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Figure A1. Row sum totals in Borda distribution for n = 4, 5.

To understand the behavior of the row sum totals, we made different arrangements for
them, aiming to develop the Borda distribution function for order n × n. Additionally, we
found that the sum total values fulfilled the Hankel matrices (see Figure A2d) for diagonals
extending from left to right, as can be seen in Figure A2b, for the matrix dimension 4 × 4
case where the magic number is 10 (see Figure A2a).

Additionally, we found that the behavior pattern is similar to one of the fractals. This
can be observed in the way the colors expand in the main square, boxes, and sub-boxes
(see Figure A2c).

Based on our results, we normalized the Borda frequencies to the interval [0, 1] to make
their graphic representation easy. In Figure A3. we see the Borda distributions for orders
from 3 × 3 to 8 × 8 centered on the magic number 36 for 8 × 8 matrices. Blue corresponds
to the distribution of the order 3 × 3, green to order 8 × 8, and so on. Notice that as the
order of the matrix increases, the distributions tend to spread out on the x-axis towards
“minus infinity” and “plus infinity”, but also flatten towards a constant. This allows us
to conjecture that, for large matrix orders, the number of consensuses and conflicts tends
to proportionally balance. Additionally, we performed normality hypothesis tests on the
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Borda distributions, and we found that it fits them as a statistic norm distribution with an
error of p << 0.005.
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Figure A2. Fractal behavior pattern of row sum totals in Borda distribution for n = 4. (a) Reduced
table of frequencies for matrix dimension 4 × 4, (b) Fractal example for matrix dimension 4 × 4 case
where magic number is 10, (c) Fractal pattern for matrix dimension 4 × 4 case and (d) Example of a
Hankel matrix.
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