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Abstract: Nature-inspired metaheuristic algorithms have gained great attention over the last decade
due to their potential for finding optimal solutions to different optimization problems. In this study,
a metaheuristic based on the dwarf mongoose optimization algorithm (DMOA) is presented for
the parameter estimation of an autoregressive exogenous (ARX) model. In the DMOA, the set of
candidate solutions were stochastically created and improved using only one tuning parameter. The
performance of the DMOA for ARX identification was deeply investigated in terms of its convergence
speed, estimation accuracy, robustness and reliability. Furthermore, comparative analyses with
other recent state-of-the-art metaheuristics based on Aquila Optimizer, the Sine Cosine Algorithm,
the Arithmetic Optimization Algorithm and the Reptile Search algorithm—using a nonparametric
Kruskal–Wallis test—endorsed the consistent, accurate performance of the proposed metaheuristic
for ARX identification.

Keywords: ARX; parameter estimation; swarm intelligence; dwarf mongoose optimization

MSC: 90C31; 93-10

1. Introduction

Over recent years, metaheuristic techniques have made substantial progress in the
solution of different optimization problems arising in the spectrum of engineering ap-
plications [1–7]. One may classify optimization heuristics into four categories: Group
one includes methods inspired by human behavior such as balanced teaching–learning-
based optimization [8], harmony searches [9] and socio evolution and teaching–learning
optimization [10]. Group two includes evolutionary algorithms involving mutation and
crossover operations; a few methods in this area include genetic algorithms [11], differen-
tial evolution [12], biogeography-based optimizers [13] and bat algorithms [14,15]. Group
three includes physics-based techniques involving physical laws for optimization prob-
lem solutions; a few techniques in this area are Henry gas solubility optimization [16,17],
the big bang–big crunch [18,19] and gravitational search algorithms [20,21]. The final
group includes swarm intelligence-based techniques used for optimization solutions; a few
methods in this area are particle swarm optimization [22,23], artificial bee colonies [24,25],
cuckoo searches [26,27], the marine predators algorithm [28,29] and the slime mold algo-
rithm [30,31]. Recently, the dwarf mongoose optimization algorithm (DMOA) has been
proposed, obtaining better results than standard state-of-the-art algorithms [32–34]. Its
easy structure, with only controlling parameter, and its better performance motivated
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the authors to exploit these strengths for the parameter estimation of an autoregressive
exogenous noise (ARX) model.

The ARX model is widely used to model a number of engineering optimization prob-
lems such as electrical/power systems [35], estimating battery charge [36], predicting
electrical loads [37] and forecasting gas emissions and water flooding [38–40]. The pa-
rameter estimation of the ARX model is of paramount significance owing to its ability to
model different phenomena. Some of the parameter estimation methods that have been
proposed for ARX identification are recursive identification [41], the variational Bayesian
approach [42], the sparse estimation idea [43], momentum gradient descent [44], the vari-
able step-size information gradient scheme [45], the two-stage gradient mechanism [46],
evolutionary algorithms [47] and Aquila search optimization [48].

Sörensen exposed the metaphor of proposing novel metaheuristics in his great research
work [49] and pointed out some actual research directions in metaheuristics that would
take this field a step forward rather than backward. However, the current research study
extends the application domain of metaheuristics and provides a detailed investigation
into solving the parameter estimation problem of the ARX model through the exploitation
of the well-established strengths of the DMOA. A detailed performance evaluation of the
proposed scheme for ARX identification was conducted for different noise conditions in the
ARX structure. The reliability of the proposed approach in comparison with other recently
introduced metaheuristics was established through detailed analyses based on multiple
independent experiments and statistical tests.

The remainder of the paper can be outlined as follows: Section 2 describes the ARX
model structure. Section 3 presents the DMOA methodology, with pseudocode and flow
chart descriptions. Section 4 provides the results of detailed simulations by way of graphical
and tabular representations. Finally, Section 5 concludes the study by presenting the main
findings of the current investigation.

2. Mathematical Model of ARX Systems

The parameter estimation of the ARX model structure presented in Figure 1 is of
great interest for the research community because of its ability to model a variety of real-
life problems. Saleem et al. used the ARX structure to model real-life induction motor
drive [50]; Azarnejad et al. investigated ARX processes to study the dynamics of an actual
stock returns system [51]; Hadid et al. explored the practical applications of ARX in disaster
management through effective flood forecasting by rainfall-runoff modelling of rivers [40];
Li et al. exploited the ARX model for the modeling of practical industrial processes such as
the pH neutralization process, which is normally required in wastewater treatment [52]
and many other processes.
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The description of the terms in Figure 1 are as follows: ε(j) is the input, θ(j) is the
output, q(j) is random noise and H

(
z−1) and I

(
z−1) are polynomials with the degrees nh

and ni, respectively, as given in (1) and (2):

H
(

z−1
)
= 1 + h1z−1 + h2z−2 + · · ·+ hnh z−nh , (1)

I
(

z−1
)
= i1z−1 + i2z−2 + · · ·+ ini z

−ni (2)

The output of the ARX model presented in Figure 1 is given in (3):

θ(j) =
I
(
z−1)

H(z−1)
ε(j) +

1
H(z−1)

q(j) (3)

Multiplying (3) by H
(
z−1) on both sides results in the equation given in (4):

H
(

z−1
)

θ(j) = I
(

z−1
)

ε(j) + q(j) (4)

Equation (4) can be rewritten as:

θ(j) =
[
1− H

(
z−1
)]

θ(j) + I
(

z−1
)

ε(j) + q(j) (5)

Defining the information vectors as in (6) and (7) and the parameter vectors, they can be
estimated as shown in (8) and (9):

κh(j) = [−θ(j− 1),−θ(j− 2), · · · ,−θ(j− nh)], (6)

κi(j) = [ε(j− 1), ε(j− 2), · · · ,−ε(j− ni)], (7)

h =
[
h1, h1, · · · , hnh

]
(8)

i = [i1, i2, · · · , ini ] (9)

The identification model for the ARX system can be determined using the overall informa-
tion and parameter vectors given in (10)–(12), respectively:

θ(j) = κT(j)γ+ q(j), (10)

κ(j) =
[
κh(j) κi(j)

]
, (11)

γ =
[
h i

]
(12)

The objective was to estimate the parameter vector (12) of the ARX model through the
optimization strength of the DMOA scheme.

3. Methodology

In this section, a DMOA-based methodology for the parameter estimation of the ARX
model is presented.

3.1. Dwarf Mongoose Optimization Algorithm

The DMOA is a swarm intelligence-based method inspired by animal behavior for the
finding of solutions to optimum global problems. It replicates dwarf mongoose behavioral
responses. The DMOA model, pseudocode and algorithm flow are presented below.
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3.1.1. Population Initialization

The DMOA started with the initialization of the population for mongoose candidate
solutions (S), as given in (13):

S =

 s1,1 · · · s1,Q
...

. . .
...

sNp,1 · · · sNp,Q

 (13)

Np is the total population size and Q is the number of decision variables or the features
of the dwarf mongoose. The number of decision variables Q for the parameter estimation
problem of the ARX system represents the parameters of the ARX system provided in the
parameter vector γ, as given in (12). The population is generated randomly using (14):

Su,v = unifrnd(LB, UB, Q) (14)

LB and UB are the lower and upper bounds of the problem.

3.1.2. The DMOA Model

The optimization procedure of the DMOA was divided into three groups, which are
presented below.

Alpha Group

After the initialization, the population fitness of each solution was calculated using
(15). On the basis of fitness, the female alpha was chosen, as presented in (15):

α =
fitj

∑
Np
j=1 fitj

(15)

As the number of mongooses in α is related to the number of babysitters bb and the
vocalization of the dominant female ρ, the solution’s updated mechanism was calculated
using (16):

Sj+1 = Sj +∅∗ρ (16)

∅ is the distributed random number. The sleeping mound was calculated for every repeti-
tion using (17):

εj =
fitj+1 − fitj

max
{∣∣fitj+1, fitj

∣∣} (17)

The average of εj was calculated using (18):

σ =
∑

Np
j=1 εj

Np
(18)

The algorithm moved to the next group when the babysitter criteria was met.

Scout Group

During this phase, if the family forages far enough, then a new sleeping mound will
be discovered—this was calculated using (19a) and (19b):

if θj+1 > θj : Sj+1 = Sj −DF ∗ rand∗
[

Sj −
→
V
]

(19a)

else : Sj+1 = Sj + DF ∗ rand∗
[

Sj −
→
V
]

(19b)
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Here, the rand value was between [0, 1]. DF was a parameter for controlling the collective

volitive movement of the mongoose group and
→
V was the movement vector; they were

both calculated using (20) and (21):

DF =

(
1− m

max_G

)(2∗ m
max_G )

, (20)

→
V = ∑Np

j=1

Sj × εj

Sj
(21)

The Babysitters

The babysitters are the secondary group that stays with youngsters. To assist the alpha
female, babysitters are recycled on a routine basis, while the rest of the squad conducts
daily hunting expeditions. The pseudocode of the DMOA is presented in Algorithm 1. The
flowchart for the DMOA is shown in Figure 2.

Algorithm 1: Pseudo-code of the DMOA

Initialization:
Initialize DMOA parameters : population Np and number of babysitters bb.
Set Np = Np − bb.
Set babysitter exchange parameter K.
for m = 1 : max _G
Calculate the mongoose fitness.
Set time Counter D.
Calculate α =

fitj

∑
Np
j=1 fitj

Calculate candidate food position Sj+1 = Sj +∅∗ρ.
Evaluate new fitness of Sj+1.

Evaluate sleeping mound εj =
fitj+1− fitj

max{|fitj+1, fitj|}

Compute average of εj. σ =
∑

Np
j=1 εj

Np
.

Compute movement vector
→
V = ∑

Np

j=1
Sj×εj

Sj
.

Exchange babysitters if D ≥ K and set.
Initialize bb position usng (1) and calculate fitness fitj ≤ α.

Simulate next position Sj+1 =


Sj −DF ∗ rand ∗

[
Sj −

→
V
]

if θj+1 > θj Exploration

Sj + DF ∗ rand ∗
[

Sj −
→
V
]

else Exploration

Update best solution
end
Return best solution
End
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4. Performance Analysis

In this section, the performance analysis of the DMOA for the ARX model is presented.
The identification of the ARX model was conducted over several noise levels, generations
and population sizes. The algorithm was evaluated in terms of its accuracy, as measured
by the fitness function presented in (22):

Fitness Function = mean
(
θ − θ̂

)2
(22)
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Here, θ̂ is the estimated response determined by the DMOA and θ is the desired response
or actual output of the ARX model as presented in (12). For the simulation study, we
considered the second order ARX model presented in (23) and (24). The simulations were
conducted in Matlab with the input as a zero mean unit variance signal, and the desired
output was obtained using the desired parameters provided in Equations (23) and (24) of
the ARX system. Meanwhile, the noise signal was considered to be zero with a normal
distribution, having a constant variance.

H
(

z−1
)
= 1− 1.5z−1 + 0.7z−2, (23)

I
(

z−1
)
= 1.0z−1 + 0.5z−2 (24)

4.1. Statistical Convergence Analysis

In this section, the performance of the DMOA is judged by introducing three noise
levels to the ARX model. The simulations were conducted in a MATLAB Windows 10 en-
vironment. The parameter settings of the DMOA for the ARX model were: number of
babysitters bb = 3, babysitter exchange parameter K = 7 and female vocalization α = 2.
Moreover, the fitness of the DMOA was valued through three variations of generation
number (150, 200 and 250) and population size (15, 20 and 25). The Average Fitness, Best
Fitness, Worst Fitness and standard deviation (STD) were the evaluation metrics used to
evaluate the performance of the DMOA for the ARX model.

The performance in terms of the number of babysitters bb is presented in Table 1.
It can be seen from the table that by increasing bb, the average fitness increased for all
population numbers and generation sizes. The best values achieved for Average Fitness,
Best Fitness and Worst Fitness were 1.1× 10−4, 8.5× 10−5 and 2.6× 10−4 at a population
size of 25, a generation size of 250 and bb = 3.

Table 1. DMOA analysis w.r.t. number of babysitters and babysitter exchange parameters.

Babysitter
Exchange

Parameter (K)

Number of
Babysitters

(bb)
Generations (T) Population (Np) Average

Fitness Best Fitness Worst Fitness

7 3

150
15 7.1× 10−3 1.0× 10−4 4.2× 10−2

20 1.7× 10−3 9.4× 10−5 1.1× 10−2

25 7.7× 10−4 9.4× 10−5 2.6× 10−3

200
15 9.1× 10−4 8.9× 10−5 1.0× 10−2

20 3.5× 10−4 8.6× 10−5 1.2× 10−3

25 3.2× 10−4 8.5× 10−5 2.2× 10−3

250
15 5.1× 10−4 8.5× 10−5 5.5× 10−3

20 1.5× 10−4 8.5× 10−5 6.3× 10−4

25 1.1× 10−4 8.5× 10−5 2.6× 10−4

10 4

150
15 8.2× 10−3 1.1× 10−4 1.1× 10−1

20 3.1× 10−3 1.8× 10−4 1.2× 10−2

25 2.5× 10−3 7.8× 10−5 1.3× 10−2

200
15 4.1× 10−3 8.3× 10−5 3.5× 10−2

20 8.5× 10−4 8.0× 10−5 1.2× 10−2

25 3.1× 10−4 6.4× 10−5 1.3× 10−3

250
15 1.6× 10−3 7.2× 10−5 1.2× 10−2

20 3.4× 10−4 6.0× 10−5 1.0× 10−3

25 1.5× 10−4 5.8× 10−5 6.1× 10−4
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Table 1. Cont.

Babysitter
Exchange

Parameter (K)

Number of
Babysitters

(bb)
Generations (T) Population (Np) Average

Fitness Best Fitness Worst Fitness

12 5

150
15 1.9× 10−2 4.4× 10−4 7.1× 10−2

20 5.3× 10−3 1.7× 10−4 2.0× 10−2

25 2.7× 10−3 1.0× 10−4 2.0× 10−2

200
15 5.5× 10−3 1.7× 10−4 2.1× 10−2

20 1.8× 10−3 1.1× 10−4 7.6× 10−3

25 8.9× 10−4 1.1× 10−4 3.2× 10−3

250
15 2.5× 10−3 9.9× 10−5 1.5× 10−2

20 4.0× 10−4 9.6× 10−5 2.2× 10−3

25 1.6× 10−4 9.2× 10−5 6.0× 10−4

The performance in terms of fitness variations and standard deviations for the three
noise levels, i.e., 0.01, 0.03 and 0.05, is demonstrated in Tables 2–4, respectively. It can be
seen from Tables 2–4 that the fitness of the DMOA decreased with increasing population
size and number of generations. It is notable in Table 2 that the minimum Average Fitness,
Best Fitness and Worst Fitness achieved for the noise level = 0.01 were 1.1× 10−4, 8.5× 10−5

and 2.6× 10−4, respectively. Similarly, the three best fitness values for the noise levels
0.03 and 0.05—given in Tables 3 and 4—were 7.9× 10−4, 7.6× 10−4 and 8.9× 10−4 and
2.2× 10−3, 2.1× 10−3 and 2.6× 10−3, respectively.

Table 2. DMOA analysis w.r.t. generation numbers and population sizes at 0.01 noise variance.

Generations (T) Population (Np) Average Fitness Best Fitness Worst Fitness STD

150
15 7.1× 10−3 1.0× 10−4 4.2× 10−2 1.0× 10−2

20 1.7× 10−3 9.4× 10−5 1.1× 10−2 2.2× 10−3

25 7.7× 10−4 9.4× 10−5 2.6× 10−3 7.0× 10−4

200
15 9.1× 10−4 8.9× 10−5 1.0× 10−2 1.9× 10−3

20 3.5× 10−4 8.6× 10−5 1.2× 10−3 2.9× 10−4

25 3.2× 10−4 8.5× 10−5 2.2× 10−3 4.1× 10−4

250
15 5.1× 10−4 8.5× 10−5 5.5× 10−3 1.0× 10−3

20 1.5× 10−4 8.5× 10−5 6.3× 10−4 1.1× 10−4

25 1.1× 10−4 8.5× 10−5 2.6× 10−4 4.2× 10−5

Table 3. DMOA analysis w.r.t. generation numbers and population sizes at 0.03 noise variance.

Generations (T) Population (Np) Average Fitness Best Fitness Worst Fitness STD

150
15 4.2× 10−3 8.4× 10−4 1.0× 10−2 4.1× 10−3

20 2.0× 10−3 8.0× 10−4 8.0× 10−3 1.8× 10−3

25 1.6× 10−3 7.9× 10−4 8.0× 10−3 1.5× 10−3

200
15 2.4× 10−3 7.7× 10−4 7.7× 10−3 2.0× 10−3

20 1.5× 10−3 7.8× 10−4 8.3× 10−3 1.4× 10−3

25 1.0× 10−3 7.7× 10−4 2.7× 10−3 4.2× 10−4

250
15 1.1× 10−3 7.6× 10−4 3.9× 10−3 6.6× 10−4

20 8.5× 10−4 7.6× 10−4 1.6× 10−3 1.8× 10−4

25 7.9× 10−4 7.6× 10−4 8.9× 10−4 3.4× 10−5

The performance of the DMOA method in terms of Best Fitness for the three noise
levels, i.e., 0.01, 0.03 and 0.05, was evaluated for three variations in the number of gener-
ations (150, 200 and 250) and population size (15, 20 and 25); the fitness plots are shown
in Figure 3. The fitness curves in Figure 3a–c represent the Best Fitness of the DMOA
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algorithm for noise variance = 0.01. In contrast, Figure 3d–f signifies the Best Fitness curves
for noise variance = 0.03. Likewise, the Best Fitness plots for noise variance = 0.05 are
given in Figure 3g–i. It can be observed from Figure 3a–i that the fitness of the DMOA
for the three noise levels, i.e., 0.01, 0.03 and 0.05, was reduced significantly with increases
in population size and the number of generations. However, better results with regard
to fitness were achieved with lower values of noise, a greater number of generations and
larger population sizes.

Table 4. DMOA analysis w.r.t. generation numbers and population sizes at 0.05 noise variance.

Generations (T) Population (Np) Average Fitness Best Fitness Worst Fitness STD

150
15 5.8× 10−3 2.2× 10−3 2.0× 10−2 3.8× 10−3

20 3.6× 10−3 2.2× 10−3 1.2× 10−2 2.1× 10−3

25 2.6× 10−3 2.2× 10−3 4.6× 10−3 5.4× 10−4

200
15 3.9× 10−3 2.2× 10−3 1.6× 10−2 2.8× 10−3

20 2.3× 10−3 2.1× 10−3 3.3× 10−3 3.1× 10−4

25 2.3× 10−3 2.1× 10−3 2.9× 10−3 1.5× 10−4

250
15 2.3× 10−3 2.1× 10−3 3.2× 10−3 2.5× 10−4

20 2.2× 10−3 2.1× 10−3 2.4× 10−3 6.8× 10−5

25 2.2× 10−3 2.1× 10−3 2.6× 10−3 9.7× 10−5
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To confirm the natural behavior of the DMOA for different noise values, the perfor-
mance of the DMOA was also verified by fixing the population size (15, 20 and 25) and
changing the generation size (150, 200 and 250) for three values of noise variance (0.01,
0.03 and 0.05); the fitness-based learning curves are presented in Figure 4. Figure 4a–c
represents the Fitness achieved by the DMOA with population size = 15. However, the
fitness plots for population size = 20 are given in Figure 4d–f, while Figure 4g–i denotes
the fitness plots for population size = 25. It can be seen from the fitness curves given in
Figure 4a–i that for a fixed population size and number of generations, the fitness achieved
by the DMOA for low levels of noise, i.e., 0.01 and 0.03, was quite low compared to the
fitness for a high noise level, i.e., 0.05. Yet, the DMOA achieved the minimum value of
fitness for the smallest value of noise, i.e., 0.01, for a fixed population size. Therefore, it is
confirmed from the curves in Figure 4 that the performance of the DMOA was lower with
higher noise values.
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4.2. Results Comparison with Other Heuristics

To further investigate the DMOA, it was compared with other swarm intelligence-
based methods including Aquila optimizer (AO) [53], the reptile search algorithm (RSA) [54],
the sine cosine algorithm (SCA) [55] and the arithmetic optimization algorithm (AOA) [56]
for 30 independent runs, with multiple variations of generation number (150, 200 and 250)
and population size (15, 20 and 25) considered. These methods were selected in terms of
their performance in solving engineering optimization problems and their source code
availability. Brief descriptions and the parameter settings of these methods are summarized
in Table 5.

Table 5. Parameter settings of other metaheuristics.

Method Description Parameter

Aquila Optimizer (AO) Inspired from behavior of aquila for solving
optimization problems.

α = 0.1
δ = 0.1

Reptile Search Algorithm (RSA) Inspired from hunting behavior of reptiles for solving
complex optimization problems.

α = 0.1
β = 0.005

Sine Cosine Algorithm (SCA) Inspired from sine and cosine functions for solving
engineering optimization problems. a = 2

Arithmetic Optimization Algorithm (AOA)
Inspired from basic arithmetic operators (addition,
subtraction, multiplication, and division) for solving
optimization problems.

α = 5
µ = 0.5

The performance of the DMOA method in terms of Best Fitness was compared with
the AO, AOA, RSA and SCA for the three variations in generation number (150, 200 and
250) and population size (15, 20 and 25); the fitness plots are shown in Figure 5. The fitness
curves in Figure 5a–c represent the Best Fitness of the DMOA algorithm for Np = 15. In
contrast, Figure 5d–f signifies the Best Fitness curves for Np = 20. Likewise, the Best Fitness
plots for Np = 25 are given in Figure 5g–i. The noise variance is shown in Figure 5a–I
is 0.01. It can be observed from Figure 5a–I that the fitness of the DMOA was lower for
all variations compared to other methods. Moreover, the fitness value decreased with
increasing population size and numbers of generations.

Tables 6–8 show the performance of all the algorithms in terms of their estimated
weights and best fitness values for the 0.01, 0.03 and 0.05 noise variances. It can be seen that
for lower noise variances, i.e., 0.01, the algorithm gave better results compared to higher
noise variances. Moreover, for low noise variances, the estimated weights were closer to
true values, with minimum fitness values.

The statistical analysis of the DMOA, AO, AOA, SCA and RSA for multiple runs—with
noise variances, population sizes, and constant generation sizes—are shown in Figure 6.
It can be seen that for all noise variances, the DMOA achieved lower fitness compared to
the AOA, SCA, RSA and AO. It can also be observed that by increasing the noise level, the
performance of all the algorithms degraded. However, the DMOA achieved optimal fitness
in all scenarios.

Figure 7 shows a comparison of the boxplots for the average fitness values of the
DMOA against those of the AO, AOA, RSA and SCA for all variations of T, Np and noise
variances. It can be observed from Figure 7 that the DMOA had a lower median compared
to the other methods. Moreover, both the first and third quartiles of the DMOA had lower
values, such that it achieved lower fitness values than the other methods.
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Figure 5. Fitness plot comparison of the DMOA with the AO, AOA, RSA and SCA w.r.t population
size. (a–c) Np = 15 (d–f) Np = 20 (g–i) Np = 25.

To further investigate the performance of the DMOA vs. the AOA, the DMOA vs. the
SCA, the DMOA vs. AO and the DMOA vs. the RSA, a nonparametric Kruskal–Wallis test
was performed on the average fitness values of all the algorithms, with noise variances
0.01, 0.03 and 0.05, generation numbers 150, 200 and 250 and population sizes 15, 20 and 25.
The significance level was 0.01. The computed H-statistic was 39.7636 and the result was
significant at p < 0.01, as presented in Figures 8–11.

The results of the detailed simulations and the statistics indicate that DMOA-based
swarming optimization heuristics effectively approximate the parameters of ARX systems.
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Table 6. Comparison of the DMOA with the AO, RSA, AOA and SCA against true values for the
ARX model at 0.01 noise variance.

Algorithm Generations (T) Population (Np)
Design Parameters

Best Fitness
h1 h2 i1 i2

DMOA

150
15 −1.50 0.70 1.00 0.49 1.0× 10−4

20 −1.49 0.69 0.99 0.50 9.4× 10−5

25 −1.50 0.70 0.99 0.50 9.4× 10−5

200
15 −1.50 0.69 0.95 0.53 8.9× 10−5

20 −1.50 0.70 0.99 0.50 8.6× 10−5

25 −1.50 0.70 0.99 0.50 8.5× 10−5

250
15 −1.50 0.70 0.99 0.50 8.5× 10−5

20 −1.50 0.70 0.99 0.50 8.5× 10−5

25 −1.50 0.70 0.99 0.50 8.5× 10−5

AO

150
15 −1.47 0.66 0.77 0.75 2.2× 10−2

20 −1.47 0.67 0.89 0.52 1.8× 10−2

25 −1.43 0.64 0.87 0.68 1.0× 10−2

200
15 −1.51 0.71 1.03 0.45 1.4× 10−3

20 −1.46 0.66 0.93 0.58 3.1× 10−3

25 −1.52 0.72 0.96 0.58 4.4× 10−3

250
15 −1.49 0.68 1.07 0.48 1.3× 10−2

20 −1.55 0.73 0.99 0.32 9.9× 10−3

25 −1.54 0.74 0.92 0.50 4.3× 10−3

RSA

150
15 −1.38 0.61 1.10 0.71 3.8× 10−2

20 −1.39 0.61 1.01 0.80 4.3× 10−2

25 −1.29 0.54 1.04 0.91 6.4× 10−2

200
15 −1.38 0.63 0.84 1.01 4.0× 10−2

20 −1.48 0.68 0.73 0.77 1.3× 10−2

25 −1.42 0.66 0.97 0.82 2.1× 10−2

250
15 −1.45 0.67 0.94 0.74 1.0× 10−2

20 −1.52 0.75 0.88 0.83 3.4× 10−2

25 −1.50 0.67 1.05 0.21 2.5× 10−2

AOA

150
15 −1.65 0.79 0.97 0.00 5.8× 10−2

20 −1.73 0.87 0.88 0.01 8.6× 10−2

25 −1.46 0.67 0.47 1.08 5.8× 10−2

200
15 −1.51 0.73 1.30 0.29 2.0× 10−2

20 −1.63 0.77 0.93 0.01 6.5× 10−2

25 −1.53 0.72 0.79 0.58 8.5× 10−3

250
15 −1.34 0.55 0.68 0.98 5.4× 10−2

20 −1.54 0.76 1.66 −0.02 8.8× 10−2

25 −1.53 0.72 1.30 0.10 2.4× 10−2

SCA

150
15 −1.46 0.66 0.81 0.67 1.1× 10−2

20 −1.55 0.74 1.19 0.21 1.6× 10−2

25 −1.51 0.69 1.05 0.35 1.8× 10−2

200
15 −1.40 0.61 1.00 0.48 2.8× 10−2

20 −1.52 0.72 0.75 0.71 1.2× 10−2

25 −1.54 0.74 0.85 0.62 8.2× 10−3

250
15 −1.53 0.73 1.19 0.23 1.2× 10−2

20 −1.53 0.73 0.90 0.63 1.1× 10−2

25 −1.43 0.62 0.95 0.55 1.7× 10−2

True Values −1.50 0.70 1.00 0.50 0
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Table 7. Comparison of the DMOA with the AO, RSA, AOA and SCA against true values for the
ARX model at 0.03 noise variance.

Algorithm Generations (T) Population (Np)
Design Parameters

Best Fitness
h1 h2 i1 i2

DMOA

150
15 −1.49 0.69 0.98 0.53 8.4× 10−4

20 −1.50 0.70 0.98 0.50 8.0× 10−4

25 −1.50 0.70 0.98 0.51 7.9× 10−4

200
15 −1.50 0.69 0.99 0.51 7.7× 10−4

20 −1.50 0.70 0.98 0.50 7.8× 10−4

25 −1.50 0.70 0.99 0.51 7.7× 10−4

250
15 −1.50 0.70 0.99 0.50 7.6× 10−4

20 −1.50 0.70 0.99 0.51 7.6× 10−4

25 −1.50 0.70 0.99 0.50 7.6× 10−4

AO

150
15 −1.47 0.68 1.16 0.45 8.4× 10−3

20 −1.50 0.68 0.82 0.51 1.2× 10−2

25 −1.48 0.67 0.88 0.53 7.8× 10−3

200
15 −1.48 0.65 0.89 0.44 2.5× 10−2

20 −1.45 0.66 0.87 0.68 7.4× 10−3

25 −1.49 0.69 0.97 0.49 1.4× 10−3

250
15 −1.54 0.74 0.76 0.68 1.4× 10−2

20 −1.39 0.60 1.04 0.57 1.9× 10−2

25 −1.58 0.76 1.19 0.20 1.8× 10−2

RSA

150
15 −1.53 0.74 1.19 0.41 1.7× 10−2

20 −1.47 0.71 0.96 0.81 2.5× 10−2

25 −1.44 0.65 0.98 0.45 4.8× 10−2

200
15 −1.45 0.67 0.96 0.76 1.4× 10−2

20 −1.41 0.60 1.00 0.49 2.0× 10−2

25 −1.37 0.59 0.96 0.75 2.5× 10−2

250
15 −1.45 0.66 0.92 0.64 6.4× 10−3

20 −1.46 0.68 0.93 0.68 6.4× 10−3

25 −1.55 0.75 0.71 0.79 2.5× 10−2

AOA

150
15 −1.38 0.54 0.96 0.28 9.5× 10−2

20 −1.60 0.79 0.02 1.33 1.9× 10−1

25 −1.49 0.71 1.66 −0.00 8.3× 10−2

200
15 −1.51 0.76 1.14 0.73 5.9× 10−2

20 −1.43 0.65 1.65 0.02 8.5× 10−2

25 −1.41 0.62 1.54 0.01 7.5× 10−2

250
15 −1.66 0.84 0.92 0.38 3.5× 10−2

20 −1.40 0.64 1.09 0.78 3.0× 10−2

25 −1.42 0.62 1.41 0.06 5.9× 10−2

SCA

150
15 −1.51 0.71 0.90 0.52 4.9× 10−3

20 −1.54 0.73 1.23 0.16 1.9× 10−2

25 −1.43 0.65 1.02 0.68 1.0× 10−2

200
15 −1.51 0.70 1.15 0.27 8.7× 10−3

20 −1.47 0.67 0.79 0.70 1.0× 10−2

25 −1.51 0.70 1.14 0.29 1.1× 10−2

250
15 −1.43 0.65 1.12 0.57 1.1× 10−2

20 −1.52 0.72 1.00 0.41 5.6× 10−3

25 −1.50 0.68 1.00 0.34 9.8× 10−3

True Values −1.50 0.70 1.00 0.50 0
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Table 8. Comparison of the DMOA with the AO, RSA, AOA and SCA against true values for the
ARX model at 0.05 noise variance.

Algorithm Generations (T) Population (Np) Design Parameters
Best Fitness

h1 h2 i1 i2

DMOA

150
15 −1.50 0.70 0.98 0.53 2.2× 10−3

20 −1.50 0.70 0.96 0.51 2.2× 10−3

25 −1.50 0.69 0.99 0.51 2.2× 10−3

200
15 −1.50 0.70 0.98 0.52 2.2× 10−3

20 −1.50 0.70 0.98 0.52 2.1× 10−3

25 −1.50 0.70 0.98 0.51 2.1× 10−3

250
15 −1.50 0.70 0.98 0.51 2.1× 10−3

20 −1.50 0.70 0.98 0.51 2.1× 10−3

25 −1.50 0.70 0.98 0.51 2.1× 10−3

AO

150
15 −1.57 0.77 0.98 0.43 1.0× 10−2

20 −1.52 0.70 0.72 0.69 1.4× 10−2

25 −1.52 0.71 1.02 0.44 3.2× 10−3

200
15 −1.49 0.68 1.13 0.35 1.3× 10−2

20 −1.48 0.65 0.79 0.56 1.9× 10−2

25 −1.47 0.68 1.09 0.46 8.9× 10−3

250
15 −1.57 0.76 1.17 0.29 1.7× 10−2

20 −1.51 0.71 1.11 0.39 5.7× 10−3

25 −1.43 0.63 0.98 0.56 1.0× 10−2

RSA

150
15 −1.40 0.63 0.90 0.99 5.5× 10−2

20 −1.38 0.61 0.88 0.95 4.5× 10−2

25 −1.38 0.62 0.92 0.96 4.5× 10−2

200
15 −1.47 0.67 0.55 0.95 3.8× 10−2

20 −1.53 0.75 1.01 0.63 1.6× 10−2

25 −1.38 0.61 0.91 0.84 2.5× 10−2

250
15 −1.48 0.66 0.92 0.50 9.7× 10−3

20 −1.56 0.77 0.81 0.66 2.5× 10−2

25 −1.48 0.70 0.67 0.95 3.2× 10−2

AOA

150
15 −1.78 0.95 1.57 −0.37 1.8× 10−1

20 −1.43 0.62 1.40 0.01 6.9× 10−2

25 −1.30 0.55 1.03 0.98 6.9× 10−2

200
15 −1.55 0.71 1.12 0.04 3.9× 10−2

20 −1.28 0.56 1.08 1.13 1.1× 10−1

25 −1.47 0.68 1.27 0.30 1.8× 10−2

250
15 −1.63 0.79 1.12 0.03 3.9× 10−2

20 −1.79 0.91 0.75 0.01 1.3× 10−1

25 −1.50 0.70 1.40 0.07 3.9× 10−2

SCA

150
15 −1.43 0.62 0.77 0.66 2.4× 10−2

20 −1.44 0.65 1.00 0.65 1.0× 10−2

25 −1.50 0.71 1.12 0.32 3.2× 10−2

200
15 −1.44 0.66 0.94 0.68 1.2× 10−2

20 −1.49 0.69 0.92 0.60 3.8× 10−3

25 −1.49 0.69 0.97 0.56 5.1× 10−3

250
15 −1.48 0.69 0.99 0.63 1.1× 10−2

20 −1.52 0.70 0.71 0.63 1.6× 10−2

25 −1.52 0.70 1.08 0.30 9.4× 10−3

True Values −1.50 0.70 1.00 0.50 0
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5. Conclusions

The following conclusions were drawn from the simulation studies performed in the
last section:

The current study investigated the effective solving of the system identification prob-
lem of the ARX model using recent novel metaheuristics. A dwarf mongoose optimization
algorithm, i.e., the DMOA-based metaheuristic, was presented for the parameter estimation
of the ARX model. The DMOA effectively estimated the parameters of the ARX system us-
ing only one tuning parameter in its optimization process. The proposed DMOA approach
for ARX identification is robust, accurate and convergent. The statistical analysis performed
using a nonparametric Kruskal–Wallis test, based on an ample number of autonomous
executions, verified the reliability of the proposed scheme. Furthermore, the worth of the
DMOA was established through a comparison with other recently proposed metaheuristics
including the Aquila Optimizer Sine Cosine algorithm, Arithmetic Optimization algorithm
and Reptile Search algorithm.
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24. Öztürk, Ş.; Ahmad, R.; Akhtar, N. Variants of Artificial Bee Colony algorithm and its applications in medical image processing.
Appl. Soft Comput. 2020, 97, 106799. [CrossRef]

25. Kumar, N.K.; Gopi, R.S.; Kuppusamy, R.; Nikolovski, S.; Teekaraman, Y.; Vairavasundaram, I.; Venkateswarulu, S. Fuzzy
Logic-Based Load Frequency Control in an Island Hybrid Power System Model Using Artificial Bee Colony Optimi-zation.
Energies 2022, 15, 2199. [CrossRef]

26. Joshi, A.; Kulkarni, O.; Kakandikar, G.; Nandedkar, V. Cuckoo Search Optimization- A Review. Mater. Today: Proc. 2017, 4,
7262–7269. [CrossRef]

27. Eltamaly, A. An Improved Cuckoo Search Algorithm for Maximum Power Point Tracking of Photovoltaic Systems under Partial
Shading Conditions. Energies 2021, 14, 953. [CrossRef]

http://doi.org/10.3390/math10101696
http://doi.org/10.3390/math10091567
http://doi.org/10.3390/math10132329
http://doi.org/10.1016/j.asoc.2022.109452
http://doi.org/10.3390/e23121637
http://www.ncbi.nlm.nih.gov/pubmed/34945943
http://doi.org/10.3390/electronics10232975
http://doi.org/10.3390/s22041618
http://doi.org/10.3390/en14196408
http://doi.org/10.3390/en15062083
http://doi.org/10.3390/economies9010006
http://doi.org/10.3390/sym13071291
http://doi.org/10.3390/electronics10121469
http://doi.org/10.3390/app12031398
http://doi.org/10.3390/s21134389
http://www.ncbi.nlm.nih.gov/pubmed/34206921
http://doi.org/10.1016/j.future.2019.07.015
http://doi.org/10.3390/e23040491
http://doi.org/10.1016/j.rser.2021.111848
http://doi.org/10.3390/ma12132133
http://doi.org/10.1016/j.swevo.2018.02.018
http://doi.org/10.3390/rs13214351
http://doi.org/10.3390/make1010010
http://doi.org/10.3390/en15062211
http://doi.org/10.1016/j.asoc.2020.106799
http://doi.org/10.3390/en15062199
http://doi.org/10.1016/j.matpr.2017.07.055
http://doi.org/10.3390/en14040953


Mathematics 2022, 10, 3821 21 of 21

28. Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A nature-inspired me-taheuristic.
Expert Syst. Appl. 2020, 152, 113377. [CrossRef]

29. Riad, N.; Anis, W.; Elkassas, A.; Hassan, A.E.W. Three-phase multilevel inverter using selective harmonic elimi-nation with
marine predator algorithm. Electronics 2021, 10, 374. [CrossRef]

30. Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic opti-mization. Future
Gener. Comput. Syst. 2020, 111, 300–323. [CrossRef]

31. Farhat, M.; Kamel, S.; Atallah, A.M.; Hassan, M.H.; Agwa, A.M. ESMA-OPF: Enhanced Slime Mould Algorithm for Solving
Optimal Power Flow Problem. Sustainability 2022, 14, 2305. [CrossRef]

32. Agushaka, J.O.; Ezugwu, A.E.; Abualigah, L. Dwarf mongoose optimization algorithm. Comput. Methods Appl. Mech. Eng. 2022,
391, 114570. [CrossRef]

33. Sadoun, A.M.; Najjar, I.R.; Alsoruji, G.S.; Wagih, A.; Elaziz, M.A. Utilizing a Long Short-Term Memory Algorithm Modified
by Dwarf Mongoose Optimization to Predict Thermal Expansion of Cu-Al2O3 Nanocomposites. Mathematics 2022, 10, 1050.
[CrossRef]

34. Aldosari, F.; Abualigah, L.; Almotairi, K.H. A Normal Distributed Dwarf Mongoose Optimization Algorithm for Global
Optimization and Data Clustering Applications. Symmetry 2022, 14, 1021. [CrossRef]

35. Hwang, J.K.; Shin, J. Identification of Interarea Modes From Ambient Data of Phasor Measurement Units Using an Autoregressive
Exogenous Model. IEEE Access 2021, 9, 45695–45705. [CrossRef]

36. Dong, G.; Chen, Z.; Wei, J. Sequential Monte Carlo Filter for State-of-Charge Estimation of Lithium-Ion Batteries Based on Auto
Regressive Exogenous Model. IEEE Trans. Ind. Electron. 2019, 66, 8533–8544. [CrossRef]

37. Javed, U.; Ijaz, K.; Jawad, M.; Ansari, E.A.; Shabbir, N.; Kütt, L.; Husev, O. Exploratory Data Analysis Based Short-Term Electrical
Load Forecasting: A Comprehensive Analysis. Energies 2021, 14, 5510. [CrossRef]

38. Shabani, E.; Ghorbani, M.A.; Inyurt, S. The power of the GP-ARX model in CO2 emission forecasting. In Risk, Reliability and
Sustainable Remediation in the Field of Civil and Environmental Engineering; Elsevier: Amsterdam, The Netherlands, 2022; pp. 79–91.
[CrossRef]

39. Basu, B.; Morrissey, P.; Gill, L.W. Application of nonlinear time series and machine learning algorithms for fore-casting ground-
water flooding in a lowland karst area. Water Resour. Res. 2022, 58, e2021WR029576. [CrossRef]

40. Hadid, B.; Duviella, E.; Lecoeuche, S. Data-driven modeling for river flood forecasting based on a piecewise linear ARX system
identification. J. Process Control 2019, 86, 44–56. [CrossRef]

41. Vidal, R. Recursive identification of switched ARX systems. Automatica 2008, 44, 2274–2287. [CrossRef]
42. Lu, Y.; Huang, B.; Khatibisepehr, S. A Variational Bayesian Approach to Robust Identification of Switched ARX Models. IEEE

Trans. Cybern. 2015, 46, 3195–3208. [CrossRef]
43. Mattsson, P.; Zachariah, D.; Stoica, P. Recursive Identification Method for Piecewise ARX Models: A Sparse Estimation Approach.

IEEE Trans. Signal Process 2016, 64, 5082–5093. [CrossRef]
44. Tu, Q.; Rong, Y.; Chen, J. Parameter Identification of ARX Models Based on Modified Momentum Gradient Descent Algorithm.

Complexity 2020, 2020, 1–11. [CrossRef]
45. Jing, S. Identification of an ARX model with impulse noise using a variable step size information gradient algorithm based on the

kurtosis and minimum Renyi error entropy. Int. J. Robust Nonlinear Control 2021, 32, 1672–1686. [CrossRef]
46. Ding, F.; Lv, L.; Pan, J.; Wan, X.; Jin, X.-B. Two-stage Gradient-based Iterative Estimation Methods for Controlled Autoregressive

Systems Using the Measurement Data. Int. J. Control. Autom. Syst. 2019, 18, 886–896. [CrossRef]
47. Saad, M.S.; Jamaluddin, H.; Darus, I.Z.M. Active vibration control of a flexible beam using system identification and controller

tuning by evolutionary algorithm. J. Vib. Control 2013, 21, 2027–2042. [CrossRef]
48. Mehmood, K.; Chaudhary, N.I.; Khan, Z.A.; Raja, M.A.Z.; Cheema, K.M.; Milyani, A.H. Design of Aquila Opti-mization Heuristic

for Identification of Control Autoregressive Systems. Mathematics 2022, 10, 1749. [CrossRef]
49. Sörensen, K. Metaheuristics—The metaphor exposed. Int. Trans. Oper. Res. 2015, 22, 3–18. [CrossRef]
50. Saleem, A.; Soliman, H.; Al-Ratrout, S.; Mesbah, M. Design of a fractional order PID controller with application to an induction

motor drive. Turk. J. Electr. Eng. Comput. Sci. 2018, 26, 2768–2778. [CrossRef]
51. Azarnejad, A.; Khaloozadeh, H. Stock return system identification and multiple adaptive forecast algorithm for price trend

forecasting. Expert Syst. Appl. 2022, 198, 116685. [CrossRef]
52. Li, F.; Zheng, T.; He, N.; Cao, Q. Data-Driven Hybrid Neural Fuzzy Network and ARX Modeling Approach to Practical Industrial

Process Identification. IEEE CAA J. Autom. Sin. 2022, 9, 1702–1705. [CrossRef]
53. Abualigah, L.; Yousri, D.; Elaziz, M.A.; Ewees, A.A.; Al-Qaness, M.A.; Gandomi, A.H. Aquila Optimizer: A novel meta-heuristic

optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250. [CrossRef]
54. Abualigah, L.; Abd Elaziz, M.; Sumari, P.; Geem, Z.W.; Gandomi, A.H. Reptile Search Algorithm (RSA): A na-ture-inspired

meta-heuristic optimizer. Expert Syst. Appl. 2022, 191, 116158. [CrossRef]
55. Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl. Based Syst. 2016, 96, 120–133. [CrossRef]
56. Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The Arithmetic Optimization Algo-rithm. Comput. Methods

Appl. Mech. Eng. 2021, 376, 113609. [CrossRef]

http://doi.org/10.1016/j.eswa.2020.113377
http://doi.org/10.3390/electronics10040374
http://doi.org/10.1016/j.future.2020.03.055
http://doi.org/10.3390/su14042305
http://doi.org/10.1016/j.cma.2022.114570
http://doi.org/10.3390/math10071050
http://doi.org/10.3390/sym14051021
http://doi.org/10.1109/ACCESS.2021.3067213
http://doi.org/10.1109/TIE.2018.2890499
http://doi.org/10.3390/en14175510
http://doi.org/10.1016/B978-0-323-85698-0.00013-7
http://doi.org/10.1029/2021WR029576
http://doi.org/10.1016/j.jprocont.2019.12.007
http://doi.org/10.1016/j.automatica.2008.01.025
http://doi.org/10.1109/TCYB.2015.2499771
http://doi.org/10.1109/TSP.2016.2595487
http://doi.org/10.1155/2020/9537075
http://doi.org/10.1002/rnc.5903
http://doi.org/10.1007/s12555-019-0140-3
http://doi.org/10.1177/1077546313505635
http://doi.org/10.3390/math10101749
http://doi.org/10.1111/itor.12001
http://doi.org/10.3906/elk-1712-183
http://doi.org/10.1016/j.eswa.2022.116685
http://doi.org/10.1109/JAS.2022.105821
http://doi.org/10.1016/j.cie.2021.107250
http://doi.org/10.1016/j.eswa.2021.116158
http://doi.org/10.1016/j.knosys.2015.12.022
http://doi.org/10.1016/j.cma.2020.113609

	Introduction 
	Mathematical Model of ARX Systems 
	Methodology 
	Dwarf Mongoose Optimization Algorithm 
	Population Initialization 
	The DMOA Model 


	Performance Analysis 
	Statistical Convergence Analysis 
	Results Comparison with Other Heuristics 

	Conclusions 
	References

